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Background: With the deepening research on fatty acid metabolism, people have achieved a preliminary 
understanding of it in the development and prognosis of tumors. However, few studies are still on the 
expression pattern and prognostic value of fatty acid metabolism-related genes in gastric cancer (GC).
Methods: We chose 93 genes relevant to fatty acid metabolism from the Gene Set Enrichment Analysis 
(GSEA) database. We analyzed differentially expressed genes (DEGs) in The Cancer Genome Atlas 
(TCGA) patients. Univariate Cox analysis and LASSO regression were used to select the genes most 
related to prognosis and therefore developed a prognosis model. In addition, a dataset of 76 samples from 
Gene Expression Omnibus (GEO) selected as a test set to aid in the development of a prognostic model. 
The prognostic relevance of this model was confirmed using Kaplan-Meier survival analysis, univariate/
multivariate Cox analysis, and receiver operating characteristic (ROC) curve. Finally, enrichment analysis and 
protein-protein interaction (PPI) were used to analyze the functional differences of patients with different 
risk. Immune infiltration analysis based on CIBERSORT could check the infiltration degree and immune 
function changes of immune cell subtypes in patients with different risk groups.
Results: Overexpression of ELOVL4, ADH4, CPT1C, and ADH1B was linked to poor overall survival (OS) 
in GC patients, according to our findings. Furthermore, according to prognostic factors, patients with lower 
risk score tend to have better prognosis than patients with higher risk score. In addition, we also found that 
the infiltration levels of B cells, dendritic cells, auxiliary T cells, mast cells, neutrophils and tumor-infiltrating 
lymphocytes in patients with high-risk group were significantly increased, and the type II IFN response of 
immune cells, CCR and MHC class I receptor functions were significantly enhanced, suggesting that the 
tumor microenvironment immune activity in patients with high-risk group was active.
Conclusions: Four fatty acid metabolism-related genes were discovered to be closely connected to the 
prognosis of individuals with GC. Through analysis and verification, we believed that this prognostic model 
was reliable and instructive in the prediction of the prognosis of GC.
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Introduction

Gastric cancer (GC) is the fifth most frequent disease 
in the world and the third major cause of cancer deaths 
each year, according to statistics (1). Most GC (about 
90%) is adenocarcinoma, originating from the stomach’s 
most superficial or mucosal glands. GC is traditionally 
classified as intestinal and diffuse histological subtypes (2).  
The mechanism of GC has not yet been clarified. In 1975, 
Correa et al. proposed the hypothesis of GC. Many factors 
may play a role in the aetiology of GC, leading to the 
transformation of normal stomach tissue from multiple 
stages to GC. Stimulative environment and other factors, 
including acid secretion, excessive growth of bacteria, 
and the production of nitrite or N-nitroso compounds by 
bacteria from dietary nitrates, jointly lead to the gradual 
occurrence and metaplasia of normal gastric epithelium and 
ultimately progress to GC (3,4). Epidemiological studies 
have shown that family history, diet, drinking, smoking, 
Helicobacter pylori, and Epstein-Barr virus (EBV) infection 
are important risk factors for GC (5-8). The incidence of 
GC is different in gender and geographical differences. The 
susceptibility of males is two to three times that of females. 
The incidence of GC shows excellent regional diversity. 
More than 50% of new GCs occur in developing countries. 
GC has the highest incidence in Eastern Europe and East 
Asia (China and Japan) in Central and South America (9).  
With the deepening research on GC by researchers, 
significant progress has been made in preventing, 
examining, and treating GC. Therefore, the incidence of 
GC in most parts of the world has been declining, and the 
5-year survival rate has improved significantly (10-13). Up 
to now, clinicians still mainly use tumor, lymph node, and 
metastasis (TNM) staging systems to monitor GC progress, 
which is also the most widely used prognostic indicator. In 
addition, some other biomarkers such as mucins (MUC) 
or human epithelial growth factor receptor-2 (HER2) are 
also gradually used to predict GC prognosis (14). However, 
there exists a high degree of heterogeneity between GC, 
and patients with the same TNM stage or HER2 and MUC 
expression usually have significant differences in treatment 
effect, drug resistance, and survival outcome. Therefore, 
finding novel and reliable factors connected to the survival 
time of GC patients is an excellent supplement to the 
previous prognosis prediction system and may be used as 
an evaluation index of the effect of GC treatment, or even 
as a target for GC targeted therapy, which has important 
guiding significance for clinical practice.

In normal human cells, the cytoplasm and mitochondria 
of cells provide a place for metabolism, resulting in glucose 
or fatty acids that provide most of the energy for human 
cells (15). Cancer cells usually have characteristic metabolic 
changes, and the utilization of glucose and fatty acids will 
also change accordingly. Previous studies have shown 
that the Warburg effect in glucose metabolism, especially 
in glycolysis, plays a vital role in human tumor diseases 
(16,17). Researchers have gradually noticed the relationship 
between fatty acid metabolism and cancer in recent years. 
In mammalian cells, fatty acid can be obtained directly 
from the surrounding microenvironment and can also be 
synthesized from nutrients such as glucose or glutamine. 
In cancer cells, lipid metabolic pathways are extensively 
reconstructed, including fatty acid transport, ab initio 
fat formation, storage as lipid droplets (LD), and ATP 
production by β-oxidation (18). Fatty acid is widely involved 
in cancer cell energy storage, membrane proliferation, 
and signal molecule production. Therefore, the metabolic 
changes of fatty acid can directly affect various behaviors 
of tumor cells, including proliferation, invasion, and 
metastasis (19). Based on this, people are committed to 
studying the related factors regulating fatty acid metabolism 
to find new anticancer strategies and prognostic factors. 
However, some scholars have conducted relevant studies 
on biomarkers related to fatty acid metabolism (20-22). 
There is, however, a dearth of systematic study that can 
adequately demonstrate its importance to the prognosis of 
patients with GC. This study selected the transcriptome 
profile and clinical survival data of 483 GC samples from 
different databases. We researched the relationship between 
fatty acid metabolism-related genes and GC prognosis, 
comprehensively evaluated the fatty acid metabolism mode, 
and constructed the risk score model of fatty acid prognosis. 
Furthermore, the variation in the degree of immune cell 
infiltration in stomach cancer tissues under different 
risk scores was investigated in this study. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-761/rc).

Methods

Cohort data of GC patients

This study included two cohorts and 483 samples. Four 
hundred seven transcriptome data were collected from 
The Cancer Genome Atlas (TCGA) database (https://

https://tcr.amegroups.com/article/view/10.21037/tcr-22-761/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-761/rc
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga) as test sets, including 375 tumor 
tissue data and 32 non-neoplastic tissue data. The data type 
is High Throughput Sequencing-fragments per kilobase 
of transcript per million mapped reads (HTSeq-FPKM). 
After excluding the data with missing values and survival 
time less than 30 days, 352 clinical data were obtained. The 
corresponding clinical data were extracted according to the 
following contents: age, gender, total staging, grade, TNM 
staging, survival time, and survival situation.

Seventy-six transcriptome data were collected from 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo) as validation sets, all of which were 
GC tissue data. The patients’ survival time and status were 
extracted as clinical data. The microarray data configuration 
file was based on platform GSE84426.

Ninety-three common genes related to fatty acid 
metabolism were identified from the Gene Set Enrichment 
Analysis (GSEA) database (http://www.gsea-msigdb.org/
gsea/index.jsp).

The corresponding genes annotations referred to Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) data.

Data processing and validation of the prognostic model

To deal with the fatty acid metabolism-related genes 
differentially expressed (DEGs) between GC and non-
neoplastic tissue in the TCGA cohort, we used the R 
package “limma”. The retrieved DEGs must match the 
following criteria: false discovery rate (FDR) of 0.05 and 
absolute log2 fold change (FC) >0.75. Subsequently, the 
“ggpubr” package and “corrplot” were used to make the 
analysis results visualized by boxplots and heatmap.

To investigate the link between fatty acid metabolism-
related gene expression and GC prognosis, we divided the 
patients who came from GC cohort into three different 
subgroups by using the “Consensus Plus” R package. The 
survival curve was then generated using the “survival” 
package based on the Kaplan-Meier analysis to compare the 
survival outcomes of the subgroups.

Univariate Cox regression was used to determine 
whether fatty acid metabolism-related genes are connected 
with overall survival (OS) in patients with GC. The “glmnet” 
package and “survival” package were used to establish the 
prognosis model for selected prognostic genes to obtain the 
association between prognostic genes and patient survival. 
To select the appropriate prognostic genes for complicated 

data, the LASSO regression in the “glment” package was 
employed to minimize the influence of strongly linked 
genes. Then we included prognostic genes and arrived 
at the risk score calculation. According to the expression 
score of prognostic associated genes, patients with GC were 
separated into two groups: high-risk and low-risk.

Validation of the prognostic model

As previously stated, we classified GC patients into different 
risk categories based on the expression of prognostic genes. 
The Kaplan-Meier function was then used to compare the 
survival outcomes of the two patients and to examine the 
area under the receiver operating characteristic (ROC) 
curve (AUC) to ensure the stability of the prognostic 
model. Following that, we used the TCGA cohort to test 
the accuracy of the prognostic model in predicting patient 
outcome to standard prediction approaches, and we used 
the forest map as a presentation. The clinical factors and 
prognosis-related genes’ heatmap was plotted to summarize 
the association between gene expression and clinical 
practice. The TCGA patients were divided into low-risk 
and high-risk groups based on the prognostic model score, 
and differential expression analysis was done. The screened 
differential genes were enriched and evaluated to see 
whether there were any variations in gene function between 
the risk groups. Finally, the difference in the degree of 
immune cell infiltration in GC tissues between risk groups 
was examined in order to investigate the association 
between immune cell infiltration in GC tissues and scores 
for various risk variables.

Statistical analysis

For all of the aforementioned analysis, a P value of less than 
0.05 was considered statistically significant.

Ethical consideration

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Results

Fatty acid metabolism-related genes in GC

All the genes which were including in our study could be 
acquired in Appendix 1. We observed the gene expression 
differences in GC patients and non-neoplastic persons in 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://cdn.amegroups.cn/static/public/TCR-22-761-Supplementary.pdf
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the TCGA cohort and found 30 fatty acid metabolism-
related genes. The heatmap clearly revealed the differential 
expression of the genes selected in patients with GC and 
non-neoplastic people (Figure 1A). The boxplot allowed for 
more in-depth examination of the differential expression 
of genes involved in fatty acid metabolism. The boxplot 
showed the expression levels of ALDH1B1, ACACB, 
ADH1B, HACD4, ELOVL4, HACD1, ADH7, ALDH3A2, 
ACOT2, ACOT1, ADH4, ADH6, ADH1C, and ALDH2 
in non-neoplastic people were higher than those in GC 
patients. The expression of ELOVL7, OXSM, HSD17B12, 
ACLY, ACACA, FASN, HACD2, HACD3, ACOT7, MCAT, 
MECR, OLAH, ELOVL2, CPT1C, PPT1, ELOVL3 in 
non-neoplastic people was lower than that in GC patients  
(Figure 1B). In addition, we conducted a correlation analysis 
of these 30 fatty acid metabolism-related genes to observe 
the potential links between genes.

The results of correlation analysis showed that HACD1 
had a relation with multiple genes, in which ACACB was 
the most significant. The expression level of HACD1 was 
probable to promote the expression of ACACB (Figure 1C).

Use of consensus clustering according to fatty acid 
metabolism-related genes to identify different clusters of 
GC patients with different clinical outcomes

According to the status of fatty acid metabolism-related 
genes, CG samples were divided into different subgroups to 
analyze each subgroup’s survival and clinical correlation.

The Consensus Plus analysis in R indicated that when  
k =3, the difference between clusters is the most minimized 
(Figure 2A-2D). Therefore, according to the analysis 
results, we determined the optimal cluster number of 
3 and divided patients in TCGA cohorts into different 
clusters. Subsequently, we made a heat map according to 
the different clinical data between the three clusters. We 
analyzed the survival of patients in these three clusters 
according to the OS of patients. The heatmap showed 
differences in gene expression between different subgroups 
(Figure 2E). Kaplan-Meier analysis indicated that the 
survival time of subgroup 1 and subgroup 2 was similar, 
which was longer than that of subgroup 3. However, we did 
not find the difference statistically significant (Figure 2F).

Generation of LASSO model

In order to research the relevance of fatty acid metabolism-
related genes to the GC prognosis, we used univariate 

and LASSO Cox regression to select four best prognosis 
related genes from 30 fatty acid metabolism-related 
genes: ELOVL4 (coefficient 0.31), CPT1C (coefficient 
0.12), ADH4 (coefficient 0.13), ADH1B (coefficient 0.04)  
(Figure 3A-3C). Therefore, we obtained the risk scoring 
formula: risk score = (0.31 × ELOVL4 expression value) + 
(0.12 × CPT1C expression value) + (0.13 × ADH4 expression 
value) + (0.04 × ADH1B expression value).

Verifying the reliability of the prognosis model 

To investigate the prognostic impact of these four 
prognostic genes, we split GC patients into distinct risk 
groups based on prognostic model scores. Following that, 
we preliminary validated the prognosis model. The Kaplan-
Meier survival analysis was repeated based on the risk score 
groupings. The Kaplan-Meier survival analysis revealed 
that, regardless of whether the cohort was TCGA or GEO, 
the OS of the high-risk group was much lower than that 
of the low-risk group, and the results were statistically 
significant (Figure 4A,4B). In addition, in order to facilitate 
the observation of the impact of a single gene on the OS of 
patients, we again conducted a survival analysis of a single 
gene in patients with TCGA cohort. Survival analysis 
showed that each prognosis-related gene could well predict 
the prognosis of patients, which further proved the accuracy 
of our prognosis model (Figure 4C-4F).

Then we made the risk score distribution map of GC 
patients, each point representing the survival outcome of 
each patient (Figure 4G,4H). In addition, we employed the 
ROC curve to assess the accuracy of our prognostic model’s 
prediction in TCGA patients. The results indicated that 
AUC of 1-, 3-, and 5-year OS was more significant than 
0.5 (0.590; 0.622; 0.663) (Figure 4I), indicating that these 
four prognostic-related genes as biomarkers of GC have the 
solid predictive ability for the prognosis of GC.

Prognostic model and clinicopathological features

After excluding cases with missing clinical pathology data 
and those with a survival time of less than 30 days from 
the cohort, Cox regression analysis was done. Univariate 
analysis revealed that, among the standard methods for 
evaluating the prognosis of GC patients, only stage was 
connected with the prognosis of GC patients, and the risk 
score had a greater predictive effect than stage (Figure 5A). 
Then, under the influence of many clinical parameters, 
we performed a multivariate Cox regression analysis to 
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see if the prognostic model retained its reliable predictive 
abilities. The findings of the multivariate Cox regression 
analysis verified the risk score’s dependability once more 
(Figure 5B), indicating that the risk score may be utilised 
as an effective supplement to standard prediction methods 
to more correctly forecast the prognosis of GC patients. 
Therefore, we believed that our prognostic model could 
not only accurately evaluate the prognosis of GC as an 

independent prognostic means but also provide more 
valuable judgment for the prognosis of patients with 
traditional prediction means. Finally, we made a clinical 
correlation heatmap according to the prognostic model 
and clinicopathological features. The heatmap showed that 
the expression of prognostic genes was much lower in the 
low-risk group than in the high-risk group (Figure 5C), 
confirming the accuracy of our prognosis model.

Figure 1 Fatty acid metabolism-related genes in GC. (A) Expression of genes related to fatty acid metabolism in non-neoplastic and GC 
tissues (heatmap). Red represents high gene expression, and the green represents low gene expression. (B) The expression of fatty acid 
metabolism-related genes in non-neoplastic tissues and GC tissues (boxplot), green represents non-neoplastic tissues, red represents GC 
tissues. (C) Correlation matrix of gene interaction related to fatty acid metabolism. Red represents positive correlation, and the green 
represents negative correlation. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. GC, gastric cancer.
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Figure 2 Consensus clustering based on fatty acid metabolism-related genes is used to identify two GC patient clusters with distinct clinical 
outcomes. (A) When k =3, the consensus clustering matrix has the most transparent edge. (B) The CDF at k =2–9. (C) Relative change of 
area under CDF curve when k =2–9. (D) k-means partition comparison graph for k =2–9. (E) The distribution of clinicopathological features 
and the expression of four fatty acid metabolism-related genes in the three groups were shown by heatmap. ***, P<0.001. (F) Kaplan-Meier 
survival analysis of three groups. k, the number of the clusters; GC, gastric cancer; CDF, cumulative distribution function; N, lymph node; M, 
distant metastasis; T, T-primary tumor.
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Function of DEGs in different risk-groups

We split patients in the TCGA cohort into high-risk 
and low-risk groups and evaluated the difference in gene 
expression between the two groups to detect DEGs (P<0.05, 
logFC >0.75). In the high-risk and low-risk groups, 
884 genes were found to be differently expressed. GO 
and KEGG enrichment analysis for displaying primary 
functions of DEGs. GO enrichment analysis indicated that 
gene functions were mainly expressed in the muscle system, 

immune defense, and fatty acid metabolism (Figure 6A). 
KEGG enrichment analysis indicated that the gene function 
was mainly manifested in fat metabolism and digestion, 
receptor-ligand pathway, and smooth muscle contraction 
(Figure 6B). In addition, we performed protein interaction 
network analysis on all differential genes in String  
(Figure 6C) and extracted the first 20 genes with the 
strongest association for enrichment analysis again. 
GO and KEGG enrichment analysis demonstrated that 

Figure 3 Generation of LASSO model. (A) The forest map of hazard ratio of survival-related fatty acid metabolism-related genes in GC 
was screened based on single-factor Cox regression and the LASSO Cox regression. (B,C) Using LASSO Cox regression model to draw the 
relationship between partial likelihood deviance versus log (λ), the coefficients of the selected features are displayed by lambda parameters. 
LASSO, least absolute shrinkage and selection operator; GC, gastric cancer.
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Figure 4 Validation of prognostic model. (A,B) Based on the prognostic model and risk score, TCGA and GEO cohort patients were 
divided into high-risk and low-risk groups, and Kaplan-Meier survival curves of the two groups were drawn. (A) TCGA cohort. (B) GEO 
cohort. (C-F) Survival analysis of single gene. (C) CPT1C. (D) ADH4. (E) ELOVL4. (F) ADH1B. (G) Risk score distribution of GC patients 
in the prognosis model. Each point represents the survival status of each patient, red represents the death of the patient, and blue represents 
the survival. (H) Distribution of survival status in prognostic model. (I) ROC curve of GC model, AUC of 1 year, 3 years, and 5 years were 
0.590, 0.622, and 0.663, respectively. AUC, the area under the receiver operating characteristic curve; TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus; GC, gastric cancer; ROC, receiver operating characteristic.
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Figure 5 Prognostic model and clinicopathological features. (A) Univariate Cox regression analysis of clinicopathological parameters 
and OS. (B) Multivariate Cox regression analysis of clinical-pathological parameters and OS. (C) Heatmap showed the distribution of 
clinicopathological features and the expression of fatty acid metabolism-related genes in high-risk and low-risk groups. **, P<0.01. T, 
T-primary tumor; M, distant metastasis; N, lymph node; OS, overall survival.
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gene functions were mainly enriched in smooth muscle 
contraction, sphingomyelin metabolism, and inflammatory 
response regulation (Figure 6D,6E), proving that high and 
low-risk groups were grouped was indeed associated with 
fatty acid metabolism.

Fatty acid metabolism-related genes and immune cell

Given that the enrichment analysis results indicated that the 
role of immune cells in patients with varying risk scores may 
differ, we examined tissue immune cell infiltration in patients 
in low and high-risk groups. The results showed that the 
infiltration levels of B cells, Dendritic cells, T helper cells, 
mast cells, neutrophils, and tumor-infiltrating lymphocytes 
were much lower in the low-risk group than in the high-
risk group (Figure 7A). Immune cells in the high-risk 
group had a more robust type II IFN response, CCR, and 
MHC I receptor function than those in the low-risk group, 
and the difference was statistically significant (Figure 7B).  
This shows that immune cells may influence the prognosis 
of GC patients with fatty acid metabolism-related genes.

Discussion

People have achieved more advances in basic research 
and clinical diagnosis and treatment of stomach cancer 
thanks to the tireless efforts of researchers, but the 
diagnosis, treatment, and prognosis of GC patients remain 
unsatisfactory (23-25). Therefore, it is necessary to clarify 
the exact molecular mechanism of GC to find possible 
therapeutic targets and prognostic markers for GC. 
More and more researchers focus on the role of fatty acid 
metabolism (including synthesis and catabolic reactions) in 
cancer. Many researches have demonstrated that abnormal 
expression of genes related to fatty acid synthesis or 
oxidation is associated with malignant phenotypes, including 
metastasis, treatment resistance, and recurrence (26).  
Researchers found that the energy preference of cancer 
cells for glycolysis even in aerobic conditions and the 
hypoxic environment caused by the imbalance of vascular 
distribution by interstitial tumor fibrosis often cause 
acidosis in tumors (27-29), acidosis promotes or inhibits 
acetylation of mitochondria and histones in cancer cells, 
thus altering fatty acid metabolism and promoting cancer 
cell proliferation (30). Due to the lack of previous studies 
on GC and fatty acid metabolism-related genes, it is not 
easy to effectively prove the relationship between them at 

this stage. Therefore, we screened DEGs in GC patients in 
this study and then selected four genes related to prognosis 
to establish a prognosis model. The prognosis model was 
extensively validated to produce a score model capable 
of reliably predicting the prognosis of GC patients and 
providing innovative ideas for future GC research.

According to our study, four genes were included in 
the establishment of the prognosis model. Overexpression 
of these four genes indicated a poor prognosis, indicating 
that these four genes might play an essential part during 
different processes of GC progression. The full name of 
ELOVL4 is elongation of very-long-chain fatty acids-4. Its 
encoding product is a long chain enzyme that is responsible 
for the production of ultra-long chain saturated fatty acids 
and polyunsaturated fatty acids in the brain, retina, skin, 
meibomian gland, and testis (31). ELOVL4 mutations 
have been linked to significant system disorders such as 
Stargardt’s macular dystrophy (STGD3) and spinocerebellar 
ataxia 34 (SCA34) (32). In addition, ELOVL4 may be 
involved in maintaining of the skin permeability barrier and 
sperm function (33). In addition to neuroblastoma (34), we 
did not find the relationship between ELOVL4 and other 
tumors. Therefore, according to our findings, we support 
further studies on the relationship between ELOVL4 
and different tumors such as GC to reveal the possible 
mechanism of ELOVL4 in GC progression.

Carnitine palmitoyltransferase 1C (CPT1C) regulates 
mitochondrial energy metabolism as well as tumor cell 
growth. Chen et al. (35) confirmed that CPT1C promotes 
GC progression by mediating enhanced fatty acid oxidation. 
CPT1C was also found to play a role in GC resistance (36).  
Previously, it was shown that a new miR-1291-ERR-
CPT1C axis plays a role in cancers such as breast cancer and 
pancreatic cancer, suggesting a new carcinogenic mechanism 
of CPT1C (37). ADH4 and ADH1B are different subtypes 
of alcohol dehydrogenase, related to many physiological 
and pathological  processes  in humans,  including 
alcohol metabolism, liver function damage, and cancer 
occurrence (38). ADH4 and ADH1B are associated with 
various gastrointestinal tumors, especially hepatocellular 
carcinoma, colorectal cancer, GC, and esophageal cancer 
(39-42). However, the existing studies have not clarified the 
molecular association between ADH4 and ADH1B and the 
pathogenesis of GC.

Our study provides an accurate prediction model in 
addition to the traditional forecasting methods for the 
prognosis of GC patients. We have carried out a variety of 
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Figure 6 Enrichment analysis of DEGs in high and low-risk groups. (A) Screening of DEGs (P<0.05, logFC >0.75) between high-risk and 
low-risk patients, and GO enrichment analysis. (B) KEGG enrichment analysis. (C) PPI network. (D,E) The top 20 DEGs with the most 
robust protein interaction were analyzed by GO and KEGG again. GO, Gene Ontology; FC, fold change; BP, biological process; CC, 
cellular component; MF, molecular function; DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
PPI, protein-protein interaction.
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verifications to ensure its scientificity. In addition, previous 
studies have shown that up-regulated or down-regulated 
genes in GC can induce the infiltration of immune cells 
(43-45). We investigated immune cell infiltration in GC 
tissues under various risk variables. We discovered that up-
regulation of prognosis-related genes may promote the 
infiltration of B cells, dendritic cells, auxiliary T cells, mast 
cells, neutrophils, and tumor-infiltrating lymphocytes in 
GC tissues, which provided a novel idea for further research 
into immune cell infiltration in GC tissues. 

The limitations of this study are mainly manifested in 
the fact that all the analyses are carried out using the sample 
data of TCGA and GEO, and no experiments are carried 
out to prove our research conclusions. In addition, the large 
sample size gap between tumor tissue and non-neoplastic 
tissue in the TCGA database may lead to potential errors 
in differential gene screening results. In addition, this study 
fails to cover all countries and races and cannot avoid the 
existence of selective bias. Therefore, it is still uncertain 
whether there is universality in all countries and races.

Conclusions

In summary, we demonstrated that the increase of ELOVL4, 
CPT1C, ADH4, and ADH1B gene levels was closely 

related to OS prolongation in GC patients. Furthermore, 
using univariate and LASSO Cox regression analysis, we 
developed a prognostic model involving ELOVL4, CPT1C, 
ADH4, and ADH1B gene expression and demonstrated its 
stability and repeatability. We also believe that these four 
genes play a major role in GC prognosis prediction and 
can be exploited as therapeutic targets. We believe that the 
conclusions of our research can provide more insights for 
more and more prospective GC treatment literature.
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Supplementary

Appendix 1

93 fatty acid metabolism-related genes in our study

ABCD1, ABCD2, ACAA2, ACAD9, ACADL, ACADM, ACADS, ACADVL, ACAT1, ACSL1, ACSL3, ACSL4, ACSL5, ACSL6, 
ACSM1, ACSM2A, ACSM2B, ACSM3, ACSM4, ACSS1, ACSS2, ACSS3, CPT1A, CPT1B, CPT2, CRAT, CROT, ECHS1, 
ETFA, ETFB, ETFDH, HADH, HADHA, HADHB, HSD17B10, PEX11G, PEX13, PEX14, SLC25A20, ACAT2, ACAA1, 
EHHADH, ACOX3, ACOX1, ACADSB, GCDH, ACSBG1, ACSBG2, CPT1C, ECI1, ECI2, CYP4A11, CYP4A22, ADH1A, 
ADH1B, ADH1C, ADH7, ADH4, ADH5, ADH6, ALDH2, ALDH3A2, ALDH1B1, ALDH7A1, ALDH9A1, ACACA, ACACB, 
ACLY, FASN, MCAT, OLAH, OXSM, MECR, PPT1, PPT2, ELOVL1, ELOVL2, ELOVL3, ELOVL4, ELOVL5, ELOVL6, 
ELOVL7, HSD17B12, HACD2, HACD1, HACD4, HACD3, TECR, ACOT4, ACOT2, ACOT1, ACOT7, AKR1B1.


