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Introduction

High-grade gliomas are known as the most common brain 
malignant tumors in adults and can be pathologically 
d i v i d e d  i n t o  g l i o b l a s t o m a  ( G B M )  ( G r a d e  I V ) , 
anaplastic astrocytoma (AA) (Grade III) and anaplastic 

oligodendroglioma (AO) (Grade III) according to the 
classification of the World Health Organization (WHO) 
in 2016 (1-5). Lacking specific blood biomarkers and 
suggestive symptoms, the subtypes of high-grade gliomas 
could only be distinguished with surgical biopsy (6-8). 
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However, without enough information, individualized 
treatment and personalized prognostic prediction are 
unlikely to be introduced. Moreover, the following 
treatment that patients undertake after surgical resection 
depends on the accurate pathological diagnosis. The 
treatment of GBM patients is based on the maximal 
safe resection, supplemented by standard postoperative 
radiotherapy plus temozolomide, and then adjuvanted with 
temozolomide (2,9-11). Patients with AA are recommended 
to receive radiation therapy or temozolomide after surgery 
or biopsy (1,10,12,13). For patients with AO, postoperative 
radiotherapy combined with PCV (procarbazine, 
lomustine, and vincristine) is a common treatment option 
(1,5,10,12,14). 

Since no specific biomarker for glioma has been 
identified, the radiological examination is essential in 
presurgical evaluation. Magnetic resonance imaging (MRI) 
is commonly used to preliminarily assess the grade of 
gliomas prior to operation (15-18). However, high-grade 
gliomas represent similar patterns on MRI, including 
irregular shape with enhancement shadows and edema 
rings around the tumor tissue (17-21). At present, doctors 
interpret images with subjective judgment according to 
their experiences. But some researchers have extracted 
quantitative information from images and tried to apply it 
in tumor diagnosis (20,22-25).

Texture analysis is a novel image processing method that 
extracts texture features from medical images to obtain 
quantitative descriptions of lesions (26-31). The texture 
parameters calculated could provide image information 
beyond human naked-eye evaluation, including the light 
intensity distribution and spatial color distribution in 
the image, quantitative analysis of spatial features, inter-
pixel relationships and image greyscale features (32-35). 
Several studies have applied texture features and pattern 
recognition techniques in differential diagnosis and 
prognosis, such as discriminating GBM from single brain 
metastasis, differentiation of papillary renal cell carcinoma 
subtypes, and prediction of survival outcomes of pancreatic 
cancer patient (28,31,36,37). In this research, we adopted 
the texture analysis-based machine learning technology to 
establish diagnostic models to presurgically differentiate 
among GBM, AA and AO. We present the following article 
in accordance with the STARD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-22-
1390/rc).

Methods

Data sets

This was a retrospective, single-center study. In the 
neurosurgery department of our hospital, 150 patients 
diagnosed with pathologically diagnostic GBM, AA or AO 
were randomly selected from January 2015 to December 
2018. The inclusion criteria for patients in this study were: (I) 
with detailed pathological reports; (II) with available high-
quality preoperative magnetic resonance (MR) images. The 
exclusion criteria were: (I) with history of anti-tumor therapy 
before MR scans, such as chemotherapy or radiotherapy; 
(II) history of irrelevant brain diseases, such as hypertensive 
intracerebral hemorrhage or other types of brain tumors. A 
senior neuropathologist with 10 years of experience adjusted 
the pathological results based on 2016 WHO glioma 
classification criteria. We collected preoperative MR images 
though Picture Archiving and Communication Systems 
(PACS) system, and reviewed electronic medical records to 
collect clinical parameters, including gender, age, tumor size, 
and the time between surgery and MR scan. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The Committee of Sichuan University 
approved this retrospective study and exempted the need 
to obtain informed consent for this retrospective study (ID: 
2021-S-851).

Sequence selection and MRI acquisition

In this study, we focused on traditional MRI sequences, 
including contrast-enhanced T1-weighted (T1C) sequence, 
T1-weighted sequence, T2-weighted sequence and fluid 
attenuated inversion recovery (FLAIR) sequence. We chose 
the T1C sequence for texture analysis because it could 
better visualize the anatomy of the brain and clearly depict 
the boundary of the tumor. All the images of the included 
patients were obtained from the radiology department of 
our hospital.

The 3.0T GE SIGNA MRI scanner was used for MR 
scanning with the following parameters: Flip angle =9°, 
TR/TE/TI =1,900/2.26/900 ms, slice thickness =1 mm, 
field of view =240×240 mm2 and data matrix = 256×256. 
Multi-directional data for the two-dimensional image of 
T1C sequence were collected during the interval time of 
90–250 s, including axial, parasagittal, and coronal view. 
Gadopentetate dimeglumine (0.1 mmol/kg) was used as the 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1390/rc
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Figure 1 Three cases for contrast-enhanced MRI images of high-gliomas. (A-C) Patient with GBM in (A) axial, (B) parasagittal, and (C) 
coronal view. (D-F) Patient with AA in (D) axial, (E) parasagittal, and (F) coronal view. (G-I) Patient with AO in (G) axial, (H) parasagittal, 
and (I) coronal view. MRI, magnetic resonance imaging; GBM, glioblastoma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma. 
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contrast agent. Figure 1 showed three examples of contrast-
enhanced MRI images. 

Texture feature extraction

Under the supervision of the senior radiologist, two 

researchers used LIFEx software to extract texture 
features from MR images (38). Preprocessing with spatial 
resampling, intensity discretization and intensity rescaling 
was performed for all MR images in LIFEx. Region of 
interest (ROI) was drawn along the boundaries of the 
tumor tissue on each slice. The primary tumor site was 
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separated from the edema zone around the tumor and the 
surrounding tissue with different enhancement imaging 
patterns. Then the software could automatically generate 
3D texture features within ROI with randomly selected 
64 pixels. From the original images, 40 texture features 
were extracted, involving 9 first-order features derived 
from histogram, shape, and conventional statistics, and 
31 second-order features derived from gray-level co-
occurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), neighborhood gray-level different matrix 
(NGLDM), and gray-level zone length matrix (GLZLM).

Establishment of classification model

In order to improve diagnostic performance and avoid over-
fitting, texture features should be selected first with suitable 
methods. Unsure the suitable selection methods, we 
employed two feature selection methods in training dataset, 
including distance correlation (DC) and least absolute 
shrinkage and selection operator (LASSO). The selected 
features were listed in Table 1. Then the selected parameters 
were individually introduced into linear discriminant 
analysis (LDA) algorithm and support vector machine 
(SVM) algorithm, and four diagnostic models were built 
based on this principle. Each algorithm was used without 
hyperparameter tuning.

With a ratio of 4:1, patients were randomly assigned 
to training and validation groups to evaluate the realistic 
performance of models and reduce over fitting. To assess 
the diagnostic capabilities of trained models, they were then 
applied to the validation group. In order to obtain the more 
accurate performance of models, the training group and 
the validation group both conducted a repetitive cycle of 
100 different data distributions. The workflow from texture 
features extraction to machine learning modeling was 

shown in Figure 2. 

Statistical analysis

In order to evaluate the discriminative ability of models, 
accuracy, Kappa value, and area under receiver operating 
characteristic curve (AUC) were calculated for both 
the training group and the validation group. Function 
distribution and two-dimensional projection of function 
were drawn for visual analysis. All statistical analyses of 
this study were performed by SPSS software (version 21; 
IBM, Chicago). And the machine learning algorithms 
were programmed using scikit-learn package and 
Python Programming Language.

Results

Patient characteristics

A total of 150 patients were enrolled in this study. For the 
all patients involved in this research, the mean age was 
44.93 years old, and the gender ratio of participants was 
75:75. A total number of 50 patients were pathologically 
diagnosed with GBM, 50 patients were diagnosed with 
AA and 50 patients were diagnosed with AO, respectively. 
Table 2 showed the patient’s age, gender, tumor size and 
days between MR scan and surgery.

Diagnostic ability

AUCs, Kappa values and accuracies of each model were 
summarized in Table 3. In the validation group, the 
accuracies of LDA-based models were 76.0% and 74.3%, 
while for SVM-based model were 58.0% and 63.3%, 
respectively.

Table 1 Selected features using DC, LASSO

Selection method Selected features

DC SHAPE_Volume (mL), GLRLM_LGRE, GLRLM_HGRE, GLRLM_SRLGE, 

GLRLM_SRHGE, GLZLM_LGZE, GLZLM_HGZE, GLZLM_SZLGE

LASSO MinValue, meanValue, stdValue, maxValue, GLCM_Contrast, GLRLM_HGRE

GLRLM_SRHGE, GLRLM_LRHGE, GLRLM_GLNU, GLRLM_RLNU, GLZLM_LZE

GLZLM_HGZE, GLZLM_SZHGE, GLZLM_LZLGE, GLZLM_LZHGE, GLZLM_GLNU

GLZLM_ZLNU

DC, distance correlation; LASSO, least absolute shrinkage and selection operator.
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The ROI along the boundaries of the 
tumor tissue is drawn on each image

Texture feature extraction

Training group

The structures of diagnosis model are 
using LDA and SVM

Features selection by DC and LASSO in 
training group

Validation group

Evaluate the performance of the 
diagnostic model

Confusion matrices are determined

AUC, accuracy, Kappa value

99 cycles

Figure 2 The workflow of extracting texture features into machine 
learning. ROI, region of interest; DC, distance correlation; 
LASSO, least absolute shrinkage and selection operator; LDA, 
linear discriminate analysis; SVM, support vector machine; AUC, 
area under the ROC curve; ROC, receiver operating characteristic.

Table 2 Characteristics of patients and lesions

Characteristics
Grade IV glioma Grade III glioma 

P value
GBM (N=50) AA (N=50) AO (N=50)

Age (years) 46.7 [15–70] 41.2 [18–67] 46.9 [16–74] 0.117

Gender, n (%) 0.353

Male 22 (44.00) 29 (58.00) 24(48.00)

Female 28 (56.00) 21 (42.00) 26 (52.00)

Maximum diameter (cm) 27.8 31.5 31.7 0.093

Days between MR scan and surgery 6.4 7.2 7.8 0.058

The data are expressed as means or n (%). GBM, glioblastoma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; MR, 
magnetic resonance.

DC + LDA achieved the best performance with the 
accuracy of 76.0% in the validation group. The AUC and 
accuracy of GBM were 0.999 and 87.0% respectively, 
indicating that this diagnostic model had the strong ability 
to distinguish GBM from AA and AO. However, the AUCs 
of AA and AO were 0.834 and 0.865 respectively, suggesting 
that the diagnostic ability in differentiation between AA and 
AO was relatively poor and led to a decrease in the overall 
accuracy. 

Figure 3 showed the relationship between the canonical 
discriminative functions of the GBM, AA and AO groups 
and for each of group centroids in DC + LDA model. It 
can be observed from the overlap that the DC + LDA 
model had a good ability in distinguishing GBM from the 
other two tumors, but cannot clearly differentiate AA from 
AO. Figure 4 showed a DC + LDA model for one of the 
100 independent validation cycles, which conformed for 
distribution of canonical functions. The obvious shifts of 
LDA function can be observed, with a negative shift for 
GBM and positive shifts for AA and AO. 

Discussion

Accurate classification of high-grade gliomas is significantly 
valuable in clinic because it is related to the treatment 
strategy, treatment response and prognosis of the patient. 
MR scan is the most important presurgical radiological 
examination. However, high-grade gliomas always represent 
similar image patterns, leading to inaccurate diagnosis in 
naked-eye assessment. Advanced MR technology, such as 
diffusion tensor imaging (DTI), also represented limited 
diagnostic value (39,40). Nowadays, the diagnosis of three 
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subtypes of tumors mainly depends on histological and 
molecular pathology examination, requiring the tissue 
sample collected in the surgery or stereotactic biopsy. 
Therefore, we hope to maximize the utility of preoperative 
MR images to noninvasively identify the subtypes of high-
grade gliomas.

Texture analysis, one branch of radiomics, can provide 
the spatial information of histological heterogeneity beyond 
visual assessment. Several studies have shown that texture 

parameters can reflect tumor edema, hemorrhage, necrosis, 
exudation, calcification, which provides a viable mechanism 
for the identification of GBM, AA and AO (36,41,42). 
Moreover, quantitative features extracted from the lesion 
image can be analyzed with novel computer technology, 
such as machine learning and deep learning algorithms 
(43,44). Previous studies suggested that machine learning 
based on texture analysis could be applied to the diagnosis 
and classification of brain tumors, such as low-grade 
gliomas from high-grade gliomas, GBM from primal central 
never system lymphoma (32,33,35,41,45,46). In previous 
researches, the best AUC of texture analysis-based models 
in distinguishing low and high-grade gliomas was 0.90 (46), 
for another, texture analysis on conventional preoperative 
MRI images can accurately predict early malignant 
transformation of low-grade glioma with AUC of 0.96 (35).  
The results suggested that machine learning-model had 
potential in improving accuracy of early diagnosis and 
reducing clinical workload. However, researches on high-
grade gliomas were limited and most previous studies 
focused on distinguishing between two types of tumors  
(47-50). For this reason, we employed radiomics-based 
machine learning technology to distinguish among GAM, 
AA and AO, and this multi-classification study was more 
suitable for clinical requirements.

Feature selection is a measure of statistics dependence 
between two random variables or two random vectors 
of arbitrary, which can test each feature, measure the 
relationship between the feature and the response variable, 
and discard the bad features according to the evaluation. 
As an important process of machine learning, feature 

Table 3 Diagnostic performance of classification models

Models

Training group Validation group

GBM AA AO Kappa value GBM AA AO Kappa value
AUC

GBM AA AO

LDA

DC 97.4% 71.3% 60.5% 0.643 (accuracy =76.3%) 87.0% 83.0% 55.4% 0.639 (accuracy =76.0%) 0.999 0.834 0.865

LASSO 99.0% 77.8% 61.0% 0.685 (accuracy =79.0%) 87.0% 85% 47.8% 0.613 (accuracy =74.3%) 0.945 0.790 0.821

SVM

DC 100.0% 17.3% 64.7% 0.407 (accuracy =60.4%) 100.0% 11.0% 59.8% 0.365 (accuracy =58.0%) 1.00 0.725 0.821

LASSO 100.0% 8.8% 83.1% 0.457 (accuracy =63.8%) 100.0% 3.0% 85.9% 0.451 (accuracy =63.3%) 0.992 0.830 0.839

GBM, glioblastoma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; AUC, area under the ROC curve; LDA, linear 
discriminate analysis; SVM, support vector machine; DC, distance correlation; LASSO, least absolute shrinkage and selection operator; 
ROC, receiver operating characteristic.
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Figure 3 Relationship between the canonical discriminative 
functions of the GBM, AA and AO groups and for each of group 
centroids in DC + LDA model. The three distinctive clusters 
formed by GBM, AA and AO suggest the DC + LDA model could 
separate GBM from AA and AO, but cannot clearly distinguish 
AA and AO. GBM, glioblastoma; AA, anaplastic astrocytoma; AO, 
anaplastic oligodendroglioma; LDA, linear discriminate analysis; 
DC, distance correlation.
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selection is able to reduce the irrelevant or redundant 
features, simplify and improve accuracy of the model. Our 
results also indicated that selection methods may affect 
the model performance. According to the mechanism, 
the selection methods for feature can be divided into 
three types: (I) Filter Method selects the features of data 
sets before the training of learners; (II) Wrapper Method 
selects the feature selection based on the results of machine 
learning, and its performance is better than filter method; 
(III) Embedded Method automatically selects the features 
during the training of learners (51). Two selection methods 
with different mechanisms were applied in this study: 
DC as the representative of Filter Method; LASSO as 
the representative of Embedded Method. The mutual 
features selected with both DC and LASSO indicated 
that they may play an important role in classification. The 
results suggested that DC can select the most sensitive and 
specific features. GLRLM_HGRE, GLRLM_SRHGE, 
and GLZLM_HGZE were the most frequently selected 
features, which are related to the size of homogenous 
grey-level runs for each grey level. They calculated the 
distribution of the high and low grey level runs in ROI, 
indicating that the heterogeneity of the tumor made the 
grey pixels of the image change. Therefore, it is reasonable 
to consider that this MRI feature is closely related to these 
texture features.

With LDA/SVM classifiers, four models were established 
in the current study. LDA is a classical classification 
algorithm and has a good performance in many previous 
studies (52-54). The results showed that the DC + LDA 
model had the promising diagnostic performance, especially 

in differentiation of grade III glioma (AA and AO) from 
grade IV glioma (GBM) with AUC more than 0.99. AA 
and AO have high consistency in growth and invasion, 
so features extracted from image also share statistical 
similarity (17-19,21,55), which may lead to the model’s 
not particularly satisfactory performance in predicting AA 
and AO, with the AUC of 0.834 and 0.865. However, the 
diagnosis model still had the recognition ability beyond 
the expectation and would be optimized in the subsequent 
research. In our study, we also found that the accuracy of 
LDA was higher than that of SVM. This may be due to 
the sensitivity of SVM feature selection, and SVM usually 
only supports binary classification algorithm, but has some 
shortcomings in multi classification problem.

Our study has some limitations.  First ,  i t  was a 
retrospective, single-center survey with inherent selection 
bias. Second, the results were severely limited by patient 
sample size, and a larger sample size was required to 
improve our preliminary study. Third, the computer 
technology is developing rapidly in recent years, and novel 
classifiers were not evaluated in the current research. 
Fourth, we only used conventional MR images in this study, 
and the combination of other MRI sequences or advanced 
technology [such as magnetic resonance spectroscopy (MRS) 
and positron emission computed tomography (PET)] may 
provide more valuable parameters to improve performance. 
Last and foremost, diagnostic models were not validated 
in external datasets. Different MR scanners and imaging 
protocols may lead to uncertainty of our results. However, 
given the analysis protocols and image processing software 
we used were open-source, future researchers could repeat 
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Figure 4 The Histogram showed the distribution of the canonical functions based on LDA model for the GBM, AA and AO for one 
of the 100 independent validation cycles to show the performance of the DC + LDA model. The obvious shifts of LDA function can be 
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and verify our results.

Conclusions

In this study, we extracted texture features from the 
contrast-enhanced MRI images and analyzed the features 
using five machine learning models. The results showed 
that MRI texture analysis with LDA algorithm had the 
potential to distinguish GBM, AA and AO. The DC + LDA 
model had the best diagnostic performance in this study. 
Multi-center studies including larger patient cohort and 
more machine learning classifiers combined with other MRI 
sequences are warranted to verify our results.
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