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Background and Objective: Machine learning (ML) models are increasingly being utilized in oncology 
research for use in the clinic. However, while more complicated models may provide improvements in 
predictive or prognostic power, a hurdle to their adoption are limits of model interpretability, wherein 
the inner workings can be perceived as a “black box”. Explainable artificial intelligence (XAI) frameworks 
including Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations 
(SHAP) are novel, model-agnostic approaches that aim to provide insight into the inner workings of the 
“black box” by producing quantitative visualizations of how model predictions are calculated. In doing so, 
XAI can transform complicated ML models into easily understandable charts and interpretable sets of rules, 
which can give providers with an intuitive understanding of the knowledge generated, thus facilitating the 
deployment of such models in routine clinical workflows.
Methods: We performed a comprehensive, non-systematic review of the latest literature to define use cases 
of model-agnostic XAI frameworks in oncologic research. The examined database was PubMed/MEDLINE. 
The last search was run on May 1, 2022.
Key Content and Findings: In this review, we identified several fields in oncology research where ML 
models and XAI were utilized to improve interpretability, including prognostication, diagnosis, radiomics, 
pathology, treatment selection, radiation treatment workflows, and epidemiology. Within these fields, XAI 
facilitates determination of feature importance in the overall model, visualization of relationships and/
or interactions, evaluation of how individual predictions are produced, feature selection, identification of 
prognostic and/or predictive thresholds, and overall confidence in the models, among other benefits. These 
examples provide a basis for future work to expand on, which can facilitate adoption in the clinic when the 
complexity of such modeling would otherwise be prohibitive.
Conclusions: Model-agnostic XAI frameworks offer an intuitive and effective means of describing 
oncology ML models, with applications including prognostication and determination of optimal treatment 
regimens. Using such frameworks presents an opportunity to improve understanding of ML models, which 
is a critical step to their adoption in the clinic.
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Introduction

In oncology, commonly used statistical models include 
linear regression, logistic regression, and Cox-proportional 
hazards regression. These produce odds ratios, hazard 
ratios, coefficients, and P values, which are relatively to 
interpret and apply. Oncology is an increasingly data 
driven field with nuanced clinical questions, which in 
some cases necessitates more complicated models, such 
as modelling non-linear and/or distribution assumptions-
free relationships, interaction effects, or image analysis, to 
better utilize data and make more informed and accurate 
decisions. As processing power has increased, machine 
learning (ML) algorithms have the potential to produce 
improved and clinically valuable models (1). However, 
as models increase in complexity relative to common 
regressions models, they become increasingly difficult for 
end-users (inclusive of clinicians, patients, administrators, 
stakeholders, and more) to understand, turning more 
into a metaphorical “black box” (2). End-users do not 
just care that the output of a model is accurate; they also 
want to know how that output is produced and might be 
influenced (3). Therein lies a primary difficulty of using 
ML algorithms for treatment decisions in the oncology 
clinic, limiting an otherwise powerful tool (4). The 
problem is three-fold: interpretability of the models, 
transparency of the ML algorithms, and sensitivity of the 
algorithms/models to the minute changes in the data and 
algorithmic parameters (5).

This dilemma of models losing interpretability as 
complexity increases has led to so called “explainable 
artificial intelligence (XAI)” techniques, which broadly 
seek to improve understanding of complex models by using 
interpretable visualizations and sets of rules to represent the 
inner workings of the ML “black box” and pinpoint the most 
salient and consequential features of the models (Figure 1)  
(6-8). The way XAI works differs based on the type of data 
it is explaining. In structured data analysis, XAI aims to 
identify the variables (and their interactions) that influenced 
the model output. In image analysis, XAI aims to identify 
the regions of interest which influenced the model output. 
Commonly used XAI frameworks include Local Interpretable 
Model-agnostic Explanations (LIME) (9) and SHapley 

Additive exPlanations (SHAP) (10), which have found success 
in fields such as finance (11), insurance (12), and healthcare 
and, despite their differences in implementation, both aim to 
improve interpretability of ML models (13). Details of SHAP 
and LIME can be found in Table 1. Of note, several other 
XAI frameworks do exist, including class activation mapping 
(CAM) or gradient weighted (Grad)CAM frameworks, but 
these are not model-agnostic, meaning they can only be 
applied to specific ML models (convolution neural networks 
in the case of CAM and GradCAM) (14). At their core, these 
frameworks aim to quantify the contribution that each feature 
brings to the prediction made by a model. In theory, they can 
work with any type of ML model to better understand how 
features yield given predictions.

In addition to healthcare in general, ML models and 
XAI have been combined and applied to clinical oncologic 
questions. However, use of XAI in oncology is still in 
an early stage and not widely recognized, and possible 
applications have yet to be summarized. Therefore, we 
reviewed the use of XAI in oncology literature, which 
will optimally provide a framework for possible future 
applications. In the interest of limiting scope, we limited 
results to SHAP and LIME, which are the primary 
model-agnostic XAI frameworks that are more generally 
applicable. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://tcr.amegroups.com/article/view/10.21037/tcr-22-
1626/rc).

Methods

We performed a non-systematic review of the latest 
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Figure 1 Use of XAI in visualizing the inside of the “black box”. 
XAI, explainable artificial intelligence.
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literature to characterize utilization of XAI in oncology 
research. We included relevant articles in English available 
in the MEDLINE/PubMed database up to 01 May 2022. 
Search terms included (“explainable artificial intelligence” 
OR “XAI” OR “EAI” OR “SHAP” OR “LIME”) AND 
(“oncology” OR “cancer”). In this article, we summarize use 
cases in oncology wherein XAI has been published to aid in 
ML model interpretability, which can translate to improved 
adoption in the clinic (Table 2).

Utilization of XAI in oncology research

Prognostication

Perhaps the area of oncology that has been most 
extensively explored using XAI is prognostication, which 
is of no surprise given the abundance of large data sets 
[including the National Cancer Database (NCDB) and 
the Surveillance, Epidemiology, and End Results (SEER)] 
with outcomes data. These are of great interest to both 
clinicians and patients, given that this approach not only 
can help counsel patients on prognosis and planning, but 

might also inform on potential interventions that can lead 
to improvements in outcomes.

A clinical example that lends itself nicely to the utility 
of XAI is modeling of interactions between disease 
characteristics and prostate cancer and their impact on 
survival. Li et al. modeled the impact of prostate specific 
antigen (PSA), percent positive cores (PPCs), and Gleason 
score on survival using the extreme gradient boosted 
(XGB) tree algorithm (15). Specifically, they sought to 
examine nonlinear relationships and interactions, which 
facilitates identification of prognostic thresholds. Since 
LIME primarily looks only at individual predictions, 
SHAP tends to be the main framework to perform such 
analyses. Although the impact of the specified factors 
on survival was not controversial, modeling with XAI 
revealed nuances that contradict modern risk stratification. 
Visualization of such interactions is only possible by using 
a more complicated model than standard regressions and 
then explaining that model. For example, when examining 
the interaction between percentage of positive cores and 
Gleason score, the SHAP dependence plots revealed that 

Table 1 Overview of SHAP and LIME

Framework Overview Pros Cons

SHAP Based on Shapley values from game theory Can single prediction 
explanations or global model 
interpretations

Explanations of non-tree-
based algorithms can be 
computationally expensive

Calculates the average marginal contribution of a feature 
value over all possible combinations of predictions and 
sets of inputs

Explanations of tree-based 
algorithms are computationally 
inexpensive and exact

Perturbs data globally to build a model that is accurate 
locally (analogous to Fisher’s exact test)

Can guarantee consistency and 
local accuracy

Bottom line: decompose the final prediction into the 
contribution of each attribute

Diverse array of available 
summary plots

LIME Based on assumption that models behave linearly on a 
local scale

Computationally efficient for 
most algorithms

Less exhaustive so cannot 
guarantee accuracy and 
consistency

Builds sparse linear models around an individual 
prediction in its local vicinity of inputs

Useful for explaining individual 
predictions

Plots primarily limited to single 
prediction

Perturbs data around an individual prediction (locally) to 
build a model that is accurate locally

Explanations are 
approximations

Functionally a subset of SHAP (analogous to  
chi-squared test)

Code does not natively support 
some ML algorithms such as 
XGBoost

Bottom line: tells you, in a local sense, what is the most 
important attribute around the data point of interest

SHAP, SHapley Additive exPlanations; LIME, Local Interpretable Model-agnostic Explanations; ML, machine learning.
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Table 2 The search strategy summary

Items Specification

Date of search 01 May 2022

Databases and other sources searched MEDLINE/PubMed

Search terms used (“explainable artificial intelligence” OR “XAI” OR “EAI” OR “SHAP” OR “LIME”) AND 
(“oncology” OR “cancer”)

Timeframe Beginning of database through 01 May 2022

Inclusion and exclusion criteria All study types and reviews, written in English language

Selection process Consensus between co-author

XAI, explainable artificial intelligence; EAI, explainable artificial intelligence; SHAP, SHapley Additive exPlanations; LIME, Local 
Interpretable Model-agnostic Explanations.
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Figure 2 SHAP plots visualizing non-linear interactions between prognostic features in prostate cancer, including interaction between 
Gleason score and PSA (A), and PPCs and Gleason score (B). [Credit: ref. (15)]. SHAP, SHapley Additive exPlanations; PSA, prostate 
specific antigen; PPC, percent positive core.

PPC is largely irrelevant if Gleason score is 7 or less. 
Additionally, when Gleason score is 8 or higher, a PPC 
threshold of 0.7 best illustrates differences in outcomes, 
as opposed to the threshold of 0.5 that is used in modern 
practice to differentiate between favorable and unfavorable 
intermediate risk prostate cancer. The plots are also 
able to illustrate phenomena such as patients with high 
Gleason score and exceedingly low PSA counterintuitively 
having inferior survival compared to patients with more 
intermediate PSA levels. These example plots can be 
found in Figure 2. In these interaction plots, the combined 
effect of the two variables are plotted, with a value of zero 
representing an overall neutral effect.

Bertsimas et al. also used XAI to visualize nonlinear 
relationships, thereby identifying prognostic thresholds. 
The authors used an XGB model and the SHAP framework 
to explore the impact of lymph node ratio on survival 

compared to lymph node count in pancreatic cancer, which 
is used in the current American Joint Committee on Cancer 
(AJCC) staging system (16). Their model using lymph node 
ratio outperformed the AJCC schema at predicting 1-year 
overall survival with an area under the curve (AUC) of 
0.638 vs. 0.586 (though not validated via DeLong’s test or 
confidence intervals). Using the SHAP dependence plots, 
the authors, via inspection, identified thresholds for lymph 
node ratio and tumor size. The authors’ identification of 
relevant lymph node ratio thresholds was feasible by using 
graphical interpretation of dependence plots generated 
by the SHAP framework, and given the interaction is 
nonlinear, identification of thresholds with linear methods 
such as logistic regression or Cox regression would have 
required some trial and error and would not have been as 
precise.

The aforementioned studies primarily examined XAI 
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plots that summarize all predictions within the datasets. 
XAI also has been used to examine prognostication in 
individual predictions (i.e., patients). Both SHAP and 
LIME have this functionality implemented. In a study by 
Jansen et al., both SHAP and LIME are used to explain 
an XGB model of 10-year overall survival in breast cancer 
patients (17). In this study, the authors use LIME to model 
individual patients and predictions of overall survival, which 
explains how individual patients’ characteristics yield their 
prediction for 10-year overall survival. They did the same 
with SHAP, but as detailed in Table 1, SHAP has improved 
functionality in illustrating global impact of features in all 
patients, so they also presented a summary plot. Lastly, 
they compared all individual patient explanations produced 
by LIME and SHAP, demonstrating agreement in 87.8% 
to 99.9% (95.4% overall) of cases depending on the feature 
examined. This study highlights key distinctions between 
LIME and SHAP; both approaches can yield consistent 
local results, but SHAP is able to examine global trends 
within models. The same approach, examining individual 
patients and overall trends has been performed on models 
predicting survival with nasopharyngeal cancer tumor 
burden (18).

Lastly, perhaps the way XAI was used most commonly 
for prognostication and oncology in general was to 
delineate global feature importance by summarizing all 
model predictions and outputting each feature’s mean 
impact across all predictions. This permits a general 
understanding of how the overall model functions, similar 
to the summary statistics generated by regression models. 
Moncada-Torres et al. used XAI to explain a general model 
of overall survival in breast cancer (19). Importantly, 
models such as Cox regression are routinely used for such 
applications, with outputs being readily interpretable by 
most end-users. ML algorithms, namely the XGB tree 
algorithm significantly outperformed Cox regression. 
However, the standard output of such an algorithm is not 
as readily understandable in terms of how its output is 
computed. In this example, the authors used the SHAP 
framework to identify feature importance within the 
model, which can be compared to intuition to build trust 
in the model. By using the SHAP framework, the study 
was able to illustrate the prognostic significance of multiple 
commonly used variables, thereby facilitating adoption of 
algorithms such as XGB.

Several other studies have used similar approaches to the 
aforementioned study to create powerful prognostic models 
to illustrate nuanced interactions that influence prognosis, 

with XAI used to explain their ML model on a global level. 
Additional examples include predicting 30-day mortality 
following colorectal cancer surgery (20), 5-year survival and 
esophageal cancer (21), characterizing influence of ethnicity 
on outcomes and multiple myeloma (22), predicting hospital 
length of stay (23), and risk of skeletal related events 
following discontinuation of denosumab among patients 
with bone metastases (24).

Diagnosis

An additional area of research interest is ways to improve 
diagnosis of cancer, where ML models have proven to 
be valuable tools, but given the high stakes of a cancer 
diagnosis, it is important that the predictions of such 
models are both accurate and easy to explain to clinicians 
and patients, representing a great opportunity for XAI.

In one such application, Suh et al. explored a model 
predicting prostate cancer in general as well as clinically 
significant prostate cancer prior to prostate biopsy (25). 
In this study, the authors used XAI frameworks for one of 
the reasons detailed in the previous section (understanding 
global feature importance), as well as a new one (feature 
selection/construction for building clinically-relevant tools). 
When explained using SHAP summary visualizations, 
the authors identified important features predicting 
prostate cancer and clinically significant prostate cancer, 
which included known predictive factors such as PSA and 
Gleason score, and how changing these factors individually 
influenced risk. These visualizations facilitated translation to 
a risk calculator, via aiding selection of salient features, that 
could be deployed as a data driven risk estimator (https://
boramae-pcrc.appspot.com/) that would be generally 
applicable to the oncology clinic.

In another study, Kwong et al. reported on a model that 
predicted side-specific extraprostatic extension and pre-
prostatectomy patients (26), again using SHAP summaries 
to gauge global feature importance. Furthermore, 
the authors examined the non-linear relationships 
between relevant factors and probability of site-specific 
extraprostatic extension with dependence plots, which is 
of clinical relevance given that features such as PPCs were 
relatively noncontributory until reaching approximately 
75% based on inspection of dependence plots. Though 
these conclusions are qualitative in nature, they inform 
quantitative hypotheses that can inform other statistical 
approaches and overall clinical intuition. Thus, the XAI 
complemented the ML model by not only providing 

https://boramae-pcrc.appspot.com/
https://boramae-pcrc.appspot.com/
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information to surgeons on risk of extraprostatic extension 
but also providing explanations of how that risk was 
calculated for given patient, where identification of non-
linear interactions is valuable.

Radiomics

A primary field of oncology that has benefited greatly from 
XAI is radiomics, given that it has the reputation of being 
a “black box” or “fishing expedition” (27,28). Radiomics 
is defined as a process designed to extract quantitative 
features from imaging, which can subsequently be used for 
hypothesis generation, testing, or both (29). In oncology, 
this might mean using imaging characteristics to predict 
tumor molecular features, behavior, and prognosis. In 
doing so, a patient’s image might be input into a radiomic 
algorithm and predict risk of relapse. However accurate 
such a prediction might be, it is also of vital importance that 
providers be able to understand why the imaging produces 
such a prediction.

Radiomics specifically represents a field where LIME 
might be preferred in certain scenarios, given that 
radiomics is highly interested in individual predictions 
and commonly uses non-tree-based algorithms, meaning 
SHAP becomes computationally intensive. Several 
radiomics studies focus on using XAI and focusing 
on individual predictions. One example that has been 
explored in the literature is molecular classification 
of gliomas. In gliomas, molecular subtypes related to 
isocitrate dehydrogenase (IDH) mutations and 1p/19q co-
deletion are of vital relevance to prognosis and might also 
inform treatment options (30). Although confirmation of 
such abnormalities occurs via pathologic analysis, it can be 
useful to identify patients with such abnormalities prior 
to surgery or if pathologic conformation is not possible. 
Manikis et al. reported on radiomic patterns that can 
predict IDH mutational status with an accuracy of 73.6% 
and an associated sensitivity and specificity of 0.6 and 
0.736, respectively (31). Following model development, 
results were explained using both the SHAP and LIME 
frameworks, which were able to identify important 
radiomic features that lead to an image being classified 
as IDH-mutant, which the authors were then able to 
correlate with biological behavior of IDH-mutant gliomas.

XAI can also be used to describe how a given imaging 
voxel contributes to a model’s output. Gaur et al. used a 
deep learning model to identify brain tumor subtypes, 
with accuracy of 94.64% (32). To explain how their model 

made its predictions, they provide examples using the 
SHAP framework where SHAP values are superimposed 
on imaging voxels, and in doing so illustrate graphically 
and intuitively how example images are classified as 
normal or meningioma, as illustrated in Figure 3. In these 
images, the probability of a given classification is increased 
with red pixels and decreased with blue pixels. As can be 
seen, for the normal MRI, the normal classification has 
the greatest amount of red pixels. The same idea holds 
true for the meningioma classification. The authors use 
both SHAP and LIME, again because this classification 
problem in highly interested in individual cases. Another 
similar published application is classification of ultrasound 
imaging of lymph nodes to predict nodal metastasis and 
early breast cancer (achieving an accuracy of 81.05%, 
which used LIME to graphically identify regions of 
interest in individual images) (33).

In addition to explaining the radiomic features, XAI also 
can aid in development of the models. A major problem 
in ML is overfitting training data, which can be a result of 
feeding the excessive features in the algorithm, including 
features that are largely irrelevant or strongly correlated 
with the causative features. This is particularly relevant in 
radiomics, where massive amounts of data points might be 
generated from a given image set. A challenge XAI helps 
address is identifying only the most important features 
predictive of the outcome, which improves final model 
feature selection, thus eliminating the irrelevant ones, 
leading to a better model that is more robust and less prone 
to overfitting. Kha et al. have reported on identification of 
a radiomic signature predictive of 1p/19q co-deletion (34). 
During model development, the SHAP framework was used 
to identify the most important features to include in their 
model, leading to improved model performance when less 
important features, based on average SHAP values, were 
removed, with an AUC of 0.710 before feature selection 
and 0.753 after.

Other applications of combination ML and XAI 
in radiomics simply use the resulting visualizations to 
identify global feature importance, to better understand 
and build trust in their respective models. These include 
prediction of early progression of nasopharyngeal cancer 
following intensity-modulated radiation therapy using 
MRI (which used the SHAP framework to demonstrate 
that select radiomic features were more predictively 
powerful than staging) (35), classification of breast 
cancer molecular subtypes using non-contract computed 
tomography (achieving an accuracy of 71.3%, using SHAP 
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Figure 3 SHAP plots visualizing neural network identification of a normal brain and meningioma. [Credit: ref. (32)]. SHAP, SHapley 
Additive exPlanations.

to identify important radiomic features) (36). In total, 
these explanations of radiomic models allows providers to 
better understand what the model is looking at, which eases 
application to the clinic by presenting them as more than 
abstract “black boxes”.

Pathology

Pathology is another diagnostic specialty in oncology 
where XAI has improved predictive ML models. Like 
radiomics, pathology is also a field highly interested in 
individual predictions, where both SHAP and LIME can 
often be applicable. In a study similar to the one performed 
by Gaur et al. (32) in radiomics, Palatnik de Sousa et al. 
used XAI to depict how a neural network identified tumors 
in histology samples of lymph node metastases (37). Given 
that this problem involved a convolution neural network 
and was primarily interested in individual patients, this 
was a prime example where LIME was a good choice, 
where SHAP would be more computationally inefficient. 
Using this method, the model output can overlay histology 
slides, and end-users can see locations of interest identified 
by the model. These overlays permitted the authors to 
biologically validate results by comparing highlighted 
areas of interest with clinical intuition. This technique 
has also been applied to diagnosing leukemia (accuracy of 
98.38%) (38). Examination of individual patients has also 

been used on structured data to help classify primary and 
metastatic cancers using origin-based DNA methylation 
profiles (39).

Next, pathology studies have harnessed plots of non-
linear interactions to identify prognostic thresholds 
or make a case for policy change. Chakraborty et al. 
examined the influence of the tumor microenvironment 
on prognosis in breast cancer (40). In this study, not only 
did XAI facilitate identification of prognostic factors 
via global feature importance, but it also illustrated 
non-linear interactions that permitted identification 
prognostic thresholds for each factor, which could help 
tailor identification of treatments that could manipulate 
the tumor microenvironment and improve prognosis. 
In this study, the authors used SHAP dependence plots 
to identify inflection points to correspond to potentially 
clinically relevant thresholds, generally corresponding 
to where SHAP values crossed zero. Similarly, in a 
paper examining the impact of synoptic reporting on 
survival in patients with prostate cancer using an XGB 
model explained by SHAP, Janssen et al. reported (41).  
Where this study has the possibility to benefit pathology is 
using XAI summary plots, the authors could conclude that 
synoptic reporting, specifically reporting pathologic data in 
a structured manner, is the second most important factor 
after age. In this example, these plots allow interpretation of 
a ML model that could lead to real policy changes, such as 
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standard implementation of synoptic reporting, that would 
be difficult to illustrate to decision makers without XAI.

Lastly, as is the case in other disciplines, XAI has been 
used to explain overall models to better understand how 
they generally function. Meena et al. developed a model 
for diagnosis of squamous cell carcinoma (SCC) based on 
genetic signature (42). In a simple example of how SHAP 
values can be powerful, when distinguishing between 
healthy tissue and SCC, only a single gene (HNRNPM) 
produced a significant impact on the model, which was 
interestingly not among the 20 most important genes in 
actinic keratosis based on SHAP values. Although accurate 
diagnosis of SCC is useful, and the model was 92.86% 
accurate, these signatures made available by XAI are highly 
valuable to end-users evaluating reports without access 
to sophisticated models, permitting powerful qualitative 
conclusions. Similar approaches have been applied to 
hematopoietic cancer subtype classification (accuracy of 
97.01%) (43).

Treatment selection

Following diagnosis, an area where XAI has a significant 
opportunity to influence the clinic is in treatment selection. 
This might include identification of optimal treatment 
options and predicting outcomes of a given intervention. 
This is of great interest to the oncology clinic, as any 
additional information to determine optimal patient care is 
appreciated, but understanding such information is equally 
important in order to be able to explain recommendations 
to patients, their family, and other members of the care 
team.

Dependence plots generated by XAI can be useful for 
identification of predictive thresholds. Ladbury et al. (44) 
and Zarinshenas et al. (45) examined the prognostic and 
predictive value of nodal burden in endometrial cancer 
and locally advanced non-small cell lung cancer (NSCLC), 
respectively, with associated XAI plots aiding in addressing 
controversies in the field. In endometrial cancer, via 
qualitative inspection of SHAP plots, XAI facilitated 
identification of a threshold of four or more positive nodes 
where treatment with adjuvant chemoradiation achieved 
optimal outcomes, while chemotherapy alone had a neutral 
effect and radiation alone had a deleterious effect. This 
finding adds insight following publication of PORTEC-3 
and GOG 258, wherein optimal adjuvant therapy and 
sequencing remains unclear (46,47). In locally advanced 
NSCLC, again via qualitative inspection of SHAP plots, 

XAI enabled identification of nodal thresholds including 
three or more positive lymph nodes or a lymph node ration 
of 0.34 or greater as possible scenarios where addition 
of postoperative radiotherapy might improve outcomes, 
which is an area of controversy following publication of the 
LungART and PORT-C trials suggesting no benefit with 
postoperative radiotherapy (48,49). These conclusions were 
only possible because XAI enabled graphical depiction of 
interactions between nodal burden and treatments in the 
models, allowing for identification of predictive thresholds. 
The associated plots illustrating these interactions are 
found in Figure 4. Using a value of zero as neutral, the 
aforementioned thresholds can be identified, where patients 
who do not receive postoperative radiotherapy, represented 
in blue, have increased risk above those thresholds.

Beyond predicting optimal treatments, XAI has also 
demonstrated ability to help globally explain models that 
predict outcomes of treatments. Namely, Laios et al. (50) 
and Bang et al. (51) explored models that predicted for 
complete cytoreduction in ovarian cancer and curative 
resection in early undifferentiated gastric cancer. In the 
case of ovarian cancer, the model predicted R0 resection 
with an AUC of 0.866, using SHAP to identify important 
features. Additionally, using SHAP it identified non-linear 
interactions via inspection of dependence plots, such as 
significant decreases in R0 resection rates with peritoneal 
carcinomatosis indices greater than five and no significant 
change in R0 resection rates in years from 2017 onwards. 
In the case of gastric cancer, the model predicted curative 
resection with accuracy of 89.8% and used SHAP to identify 
important factors. In combination, these two studies using 
XAI provide end-users with useful information that can 
help counsel patients not only on odds of curative resection 
but also explain how these estimates were determined.

Epidemiology

An additional area involves improvements in epidemiology 
analyses using XAI, which benefit from examining global 
interactions and individual predictions. Ahmed et al. used 
ML to explore spatial variability of lung and bronchus cancer 
mortality rates across the contiguous United States (52).  
The authors used dependence plots, break down plots, 
and maps to visually and geographically represent how 
key factors were interrelated and might affect specific 
geographic locations, rather than simply describing the 
United States population as a whole. For example, they 
use XAI not only to show that Union County, Florida has 
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Figure 4 SHAP dependence plots (A,C) and interaction plots (B,D) illustrating thresholds for lymph node burden predictive of benefit of 
PORT in completely resected N2 NSCLC. [Credit: ref. (45)]. SHAP, SHapley Additive exPlanations; PORT, post-operative radiotherapy; 
NSCLC, non-small cell lung cancer.

an almost 13-fold higher risk of mortality than Summit 
County, Utah, but also show that elevation is the largest 
protective factor in Summit County, while smoking is the 
largest risk factor in Union County. These conclusions 
were made possible by the authors using waterfall plots 
for corresponding individual explanations to visualize how 
model behavior can vary drastically based on the given 
example. This information permits the model to be both 
predictive and able to inform possible interventions. In a 
study by Kobylińska et al., XAI was used to investigate the 
influence of factors on lung cancer screening (53). The 
authors used the SHAP framework to produce summary 
plots, to overall illustrate lung cancer risk in lung cancer 
screening populations, dependence plots to show how 
changing individual variables influenced risk, and plots of 
individual predictions, which can be used how individual 
patient risk is calculated. This information is useful, as it 
can be broadly used to counsel patients on decreasing lung 
cancer risk, but can also inform specific patients of the best 
way to decrease their risk by identifying the most impactful 
factors to them.

Similar to other disciplines, studies in epidemiology 

have also benefitted from XAI aiding with feature selection/
construction. In a study by Richter et al., electronic health 
record (EHR) data was utilized to predict risk of developing 
melanoma (54). In the study, use of XAI not only depicted 
important factors that are associated with risk of developing 
melanoma, but it also facilitated improvements in model 
efficiency that would facilitate use of ML algorithms on 
EHR data by helping to select only the most relevant 
and impactful features, which would otherwise require 
prohibitive computational resources due to large data size 
and data missingness.

Radiation treatment workflow

One more niche area where XAI has been evaluated is in the 
radiation oncology clinic aiding in workflow for treatment 
planning. The first scenario that was evaluated by Siciarz  
et al. was clinical decision support systems for radiation plan 
evaluation in brain tumors (55). The authors used XAI to 
look at the model globally, to examine interactions within 
features, and evaluate individual predictions. This model 
classified treatment plans based on whether the target 
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volume planning objective was met or whether the target 
volume planning objective was met or not due to a priority 
trade off due to organ at risk constraints. Such a model 
uses knowledge from previous radiation treatment plans 
to inform on when trade-offs might be necessary. SHAP 
was used on the model to be able to determine relevant 
dosimetric factors that would inform whether a plan was 
acceptable, which can provide useful feedback to medical 
physicist and radiation oncologists when determining ways 
to further optimize plans that are not deemed acceptable. 
In this case, XAI was helpful in that it provides information 
on generally what leads to objectives being met, and also 
providing a breakdown of specific cases. Next, once the plan 
is approved, quality assurance is required to ensure patient’s 
safety and avoid clinically significant errors such as delivery 
of the desired dose. This is a process that can be somewhat 
automated with ML models. Again, it is important that a 
model predicts that a plan can be safely delivered and for 
end-users to understand why this conclusion was made to 
facilitate improvements. Chen et al. explored a model that 
evaluated whether a plan would be deemed acceptable and 
used XAI to identify features that led to such a prediction, 
both globally and individually, which aids in further 
automating the quality assurance process (56).

Discussion

The studies discussed above, including how model-
agnostic XAI was used by the authors, is summarized in 
Table 3. We found that the use of XAI could be divided into 
five categories: delineation of global feature importance, 
characterization of individual prediction feature importance, 
visualization of nonlinear relationships and interactions, 
identification of prognostic and/or predictive thresholds, 
and feature selection/construction. These permit additional 
conclusions to be drawn from ML models, which are key 
to implementation in the oncology clinic, given that they 
improve understandability and therefore confidence.

In general, XAI is a vibrant area of ML research, with 
hundreds of papers produced in the field over the last 
decade. While there is a wide adoption of interpretability 
“add-ons” (to the “classical” ML classifiers and estimators), 
such as SHAP and LIME, there is yet no unifying XAI 
framework in the broad ML field, let alone biomedical ML. 
This situation is likely to change, given the heightened 
interest in XAI within both theoretical and applied ML 
research communities. Adoption of the cutting-edge 
XAI ML research advances and methods, preferably 

biomedical data-specific, in oncology is the next frontier. 
That being said, there are already existing methods and 
algorithms in the ML/AI toolkit that are more explainable 
and interpretable by design, such as probabilistic causal 
modeling, various Bayesian methodologies and fast/
oblique decision trees. Adaptation of such techniques to 
the oncology spaces is an emerging trend (57-61). Notably, 
Bayesian network modeling aims to construct and visualize 
graphical probabilistic/causal multiscale models from the 
“flat” multivariate data; while outside of the scope of this 
communication, there is significant recent body of work in 
the Bayesian networks in oncology space, numbering ~100 
publications per annum in the 2020s.

Other areas of active research with direct ties to 
oncology are computation of hazard ratios from XAI 
output (62) and using XAI as an explicit feature selection/
construction mechanism (63). XAI offers an opportunity 
for collaboration of oncologists and computer scientists to 
improve patient care. Integration of EHRs can facilitate 
training and implementation of models and associated 
explanations to leverage information and decision-
making for oncology patients. With availability of 
massive quantities of patient data in the EHR, inclusive of 
genomic and clinical characteristics, applications to better 
understanding precision medicine that arises from out ML 
models.

In summary, there remains a fundamental tradeoff 
between the predictive accuracy (oftentimes directly 
correlated with the model complexity and opaqueness) and 
descriptive interpretability (64). While the focus of the 
ML research has often been on the former, the latter is 
no less significant in our (oncology) context. Finding the 
proper balance between the two has been elusive; recent 
advances in XAI, while promising, remain incremental and 
fragmentary. Therefore, our broad recommendation to 
the oncology researchers and practitioners is three-fold: 
first, utilize the high-performance scalable ML methods 
augmented with the interpretability tools, such as SHAP 
and LIME. Second, adopt inherently high-interpretability 
methods, such as “simple” decision trees, regression 
models such as least absolute shrinkage and selection 
operator (LASSO), and probabilistic causal networks, 
when the data modalities and dimensionality allow such 
applications and their predictive performance is not that 
different from more complex (and opaque) models. Third, 
be on a lookout for the emerging XAI advances in the 
ML spaces, both systemic and method-specific. By using 
these approaches, the power of ML can be optimally 
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Table 3 Summary of identified model-agnostic XAI studies in oncology

Study Cancer type
XAI 

Framework

Purpose of XAI

Delineation 
of global 
feature 

importance

Characterization 
of individual 
prediction 

feature 
importance

Visualization 
of nonlinear 
relationships 

and interactions

Identification 
of prognostic 

and/or 
predictive 
thresholds

Feature 
selection

Prognostication

Li et al., 2020 (15) Prostate SHAP √ √

Bertsimas et al., 2021 (16) Pancreatic SHAP √ √

Jansen et al., 2020 (17) Breast SHAP, LIME √ √ √

Chen et al., 2021 (18) Nasopharyngeal SHAP √ √ √

Moncada-Torres et al., 2021 (19) Breast SHAP √

van den Bosch et al., 2021 (20) Colorectal SHAP √

Gong et al., 2021 (21) Esophageal SHAP √ √

Farswan et al., 2021 (22) Multiple myeloma SHAP √ √

Alsinglawi et al., 2022 (23) Lung SHAP √

Jacobson et al., 2022 (24) Bone metastases SHAP √ √

Diagnosis

Suh et al., 2020 (25) Prostate SHAP √ √

Kwong et al., 2022 (26) Prostate SHAP √ √

Radiomics

Manikis et al., 2021 (31) Glioma SHAP, LIME √ √

Gaur et al., 2022 (32) Brain tumor SHAP, LIME √

Lee et al., 2021 (33) Breast LIME √

Kha et al., 2021 (34) Glioma SHAP √ √

Du et al., 2019 (35) Nasopharyngeal SHAP √ √

Wang et al., 2022 (36) Breast SHAP √

Pathology

Palatnik de Sousa  
et al., 2019 (37)

General LIME √

Abir et al., 2022 (38) Leukemia LIME √

Modhukar et al., 2021 (39) Breast LIME √

Chakraborty et al., 2021 (40) Breast SHAP, LIME √ √ √

Janssen et al., 2022 (41) Prostate SHAP √ √

Meena et al., 2022 (42) Skin SHAP √

Park et al., 2021 (43) Leukemia SHAP √

Table 3 (continued)
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Table 3 (continued)

Study Cancer type
XAI 

Framework

Purpose of XAI

Delineation 
of global 
feature 

importance

Characterization 
of individual 
prediction 

feature 
importance

Visualization 
of nonlinear 
relationships 

and interactions

Identification 
of prognostic 

and/or 
predictive 
thresholds

Feature 
selection

Treatment selection

Ladbury et al., 2022 (44) Endometrial SHAP √ √

Zarinshenas et al., 2022 (45) Lung SHAP √ √

Laios et al., 2022 (50) Ovarian SHAP √ √ √

Bang et al., 2021 (51) Gastric SHAP √

Epidemiology

Ahmed et al., 2021 (52) Lung SHAP   √ √

Kobylińska et al., 2022 (53) Lung SHAP √ √ √

Richter et al., 2019 (54) Melanoma SHAP √ √

Radiation treatment workflow

Siciarz et al., 2021 (55) Brain tumor SHAP √ √ √

Chen et al., 2022 (56) Prostate SHAP, LIME √ √

XAI, explainable artificial intelligence; SHAP, SHapley Additive exPlanations; LIME, Local Interpretable Model-agnostic Explanations.

utilized to improve the oncology clinic. These will help 
harness ongoing advances in oncology, including big data 
and personalized medicine, to be able to provide better, 
personalized, more economic, and less-demanding/toxic 
diagnostic and treatment options.

Although XAI is a powerful tool for improving the 
interpretability and thereby adoption of ML models in 
the oncology clinic, it is not without limitations, which do 
also apply to oncology research (65). First, as discussed 
previously, an active area of research is implementation 
of models that are both accurate and interpretable, 
which potentially bypassed the need for XAI entirely. 
Therefore, the notion that ML inherently is a black 
box that must be explained must not always be true. 
Nevertheless, less interpretable models continue to be 
popular in oncology, as detailed by this review, meaning 
XAI still has a niche to fill as long as the gap between 
using accurate and interpretable models is being bridged. 
Next, there are inherent inaccuracies in explanations of 
certain ML models; many “explanations” are actually 
approximations or probabilistic measures, as creating exact 
representations is computationally prohibitive (9,10). 

Furthermore, attempts to distill models may necessitate 
simplifications in order to be interpretable, which can 
raise concerns for applicability as well as human error 
when the explanations are used to make modifications for 
individual cases. Of course, this is a major hindrance to 
adoption in a high-stakes field such as oncology. When 
addressing this problem, a critical question for researchers 
is model selection; “simpler” models such as LASSO 
regression may yield superior generalization results (thanks 
to decreased overfitting) relative to feature selection 
facilitated with XAI and a complex ML model. Notably, 
XAI complements feature selection (or includes feature 
selection, in the explainability-embedded ML methods), 
not “competes” with it. A potential analysis framework 
might include variable selection, then XAI, then further 
variable selection guided by XAI if necessary. Future work 
should also seek to characterize “significance” of resulting 
model explanations, which might be accomplished with a 
permutation test such as a permutation LASSO for variable 
selection (66) or aforementioned efforts to generate hazard 
ratios and p-values from explanations (62). Lastly, the 
explanations can only be as good as their models, so it is 
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important that models undergo robust testing with suitable 
performance metrics and are empirically sound before 
being explained, yielding improved efficacy and safety. 
Notably, a major limitation of most of the included studies 
in this review is a lack external validation of model results 
as well as cross-validation of explanations. Future work 
should ensure models are extensively quality controlled, 
tested, and validated, optimally via a schema such as 
transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) (67), 
minimum information about clinical artificial intelligence 
modeling (MI-CLAIM) (68),  or radiomics quality  
score (69), of course acknowledging that due to availability 
of suitable datasets opportunities for external validation 
may be limited. Despite these limitations, it is not our 
recommendation that XAI have no place in oncology. 
On the contrary, as discussed above it is our belief that 
it is a valuable tool, but it does need to be implemented 
responsibly and assessed critically before being used to 
influence patient care.

Conclusions

ML certainly offers many opportunities for the oncology 
clinic to be improved. In addition to providing accurate 
predictive models, it is also important that models be 
interpretable by providers who will be using them, or 
else adoption in the clinic will be limited due to their 
complicated and often indecipherable nature. XAI 
methodology such as LIME and SHAP can produce 
powerful and diverse visualizations to illustrate the 
inner workings of ML algorithms in several oncologic 
fields, which makes them easier for average end-users 
to understand, and in some cases provides actionable 
information that end-users might use to improve patient 
outcomes. Further, XAI facilitates feature selection/
construction, identification of prognostic and/or predictive 
thresholds, and overall confidence in the models, among 
other benefits. To ensure ML oncologic research achieves 
its maximal benefit and reach, future studies should 
consider utilization of XAI frameworks, which can make the 
models more understandable to end-users without technical 
acumen that would otherwise be needed to interpret ML 
literature.
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