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LPCATS3 is a potential prognostic biomarker and may be correlated
with immune infiltration and ferroptosis in acute myeloid leukemia:
a pan-cancer analysis
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Background: Recent studies have highlighted the critical role of lysophosphatidylcholine acyltransferase
3 (LPCAT3) during cancer development. However, the abnormal expression and prognostic significance of
pan-cancer have not been determined.

Methods: We explored the expression level and prognostic value of LPCAT3 in 33 cancers by
bioinformatics techniques, and comprehensively studied the biological function and immune infiltration
based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases as well as
many online websites.

Results: LPCAT3 is significantly upregulated in many cancers, and it is associated with prognosis. Pan-
cancer Cox regression analysis indicated that the high expression of LPCAT3 was associated with poor
prognosis in acute myeloid leukemia (AML), lower-grade glioma (LGG), ovarian cancer (OV), and uveal
melanoma (UVM), while better prognosis in kidney renal clear cell carcinoma (KIRC) (all P<0.05). Further
analysis indicated that higher LPCAT3 expression in most cancers markedly decreased the infiltration
of immune cells, except diffuse large B-cell lymphoma (DLBC), AML, LGG, stomach adenocarcinoma
(STAD), and UVM. In contrast, the expression level of LPCAT3 was positively correlated with most immune
checkpoints in colon adenocarcinoma (COAD), DLBC, LGG, liver hepatocellular carcinoma (LIHC), and
UVM. Additionally, LPCAT3 expression was associated with tumor mutational burden (TMB) in 4 cancer
types, while microsatellite instability (MSI) was in 3 cancer types. Functional enrichment analysis showed
LPCATS3 upregulation was highly associated with lipid metabolism and ferroptosis processes. In addition, the
result of prediction drug response suggested that B-cell lymphoma 2 (BCL2) inhibitors and Midostaurin may
be a potential treatment option for AML with low-LPCAT?3 expression.

Conclusions: LPCAT3 expression is increased in multiple cancers. Overexpression of LPCAT3 is associated
with poor prognosis and tumor immune microenvironment in many cancers, especially in AML. Our results
showed that the oncogene of LPCAT3 may serve as a potential prognostic biomarker and/or therapeutic

target in AML patients.
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Introduction

LPCAT3 is known as membrane-bound O-acyltransferase
5 (MBOATYS), which was initially shown to play a key
role in the reacylation step of the catalytic phospholipid
remodeling process, also known as the Lands cycle (1-4).
It is vital for biological function in lipid metabolism
(5,6). A growing body of evidence suggests that LPCAT3
plays a central role in non-apoptotic cell death, especially
ferroptosis (7,8). Ferroptosis is characterized by intracellular
iron overload and lipid peroxides (9). Polyunsaturated
fatty acid-containing phospholipids are the main substrates
of lipid peroxidation in ferroptosis, which is positively
regulated by enzymes, such as acyl-CoA synthetase long-
chain family member 4 (ACSL4), LPCAT3, lipoxygenases
(ALOXs), or cytochrome P450 oxidoreductase (POR).
In particular, ACSL4 and LPCAT3 play a key role in
promoting ferroptosis by incorporating polyunsaturated
fatty acids (PUEAs) into cellular phospholipids (especially
phosphatidylethanolamine) (10-12). Therefore, LPCAT3
is considered to be one of the driver genes that promote
ferroptosis. In addition, LPCAT3 may pro-tumorigenic
activity of several neoplasms (13), including ovarian cancer
(OV) (14) and acute myeloid leukemia (AML) (15), which
means that LPCAT?3 has potential clinical translational value
in cancer patients. Therefore, it is particularly important to
study the regulatory function and molecular mechanism of
LPCAT3 in pan-cancer datasets to provide new directions
and strategies for the clinical treatment of cancer.

However, little literatures have reported the expression
level of LPCAT3 in different classes of cancer and its impact
on the clinical significance of cancer in terms of biological
function. This present study used The Cancer Genome
Atlas (TCGA) database to explore the expression profile
and prognostic value of LPCAT3 in 33 types of cancer.
Concomitantly, we reported the results of LPCAT3 analysis
in AML. We observed that LPCAT3 widely expressed
across many cancers and affects the prognosis of patients
by affecting infiltrating immune cells and ferroptosis. This
investigation offers a fresh perspective on how LPCAT3
affects prognosis in pan-cancer by modulating the tumor
immune environment through lipid metabolism leading
to ferroptosis of tumor-suppressing associated immune
cells. We present the following article in accordance with
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the STREGA reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-985/rc).

Methods
Description of the analysis tools

The TIMER2.0 web server provides comprehensive
analysis and visualization functions of tumor infiltrating
immune cells (http://timer.cistrome.org/) (16). The OPEN
TARGET platform (https://www.targetvalidation.org/)
integrates genetics, omics, and chemical data to identify
the involvement of genes in diseases and aid systematic
drug target identification and prioritization (17). Enrichr
(https://maayanlab.cloud/Enrichr/enrich#) is a web server
for several enrichment analyses of gene sets (18,19). The
data of 33 cancer types were collected from the GSCALite
(http://bioinfo.life.hust.edu.cn/web/GSCALite/), an
online tool, including genomic and immunogenomic data,
drug responses data, and normal tissue data (20). The
ROCPIlotter (http://www.rocplot.org/) is a transcriptome-
based tool for predicting biomarkers by linking gene
expressions and responses to therapy of breast, ovarian,
colorectal, and glioblastoma cancer patients (21). We
used the STRING database (https://cn.string-db.org/)
to construct the protein-protein interaction network and
investigate interacting genes (22). The GeneMANIA (http://
genemania.org/) is a web server as biological network
integration for gene prioritization and predicting gene
function (23). The study was conducted in accordance with
the Declaration of Helsinki (as revised in 2013).

Data collection

The clinical data and gene expression profiles data of cancer
cohorts were downloaded from the TCGA database. The
detailed information of the 33 TCGA cancers is shown
in Table S1. However, the gene expression profiles of the
healthy individuals were downloaded from The Genotype-
Tissue Expression (GTEx) (https://www.gtexportal.org/
home/). All the data used in this study complied with the
publication guidelines stipulated by TCGA and GTEx
database, as a result, ethical approval and informed consent
are not required.
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LPCAT3 expression pattern in pan-cancer

Based on the TCGA and GTEx database, we analyzed
the differential expression of LPCAT3 between various
types of cancer and normal tissues. All expression data were
normalized via log2 transformation.

Prognostic analysis

According to the median mRNA expression level of
LPCAT3, patients were divided into high- and low-LPCAT3
expression groups. We compared the prognosis between
the different LPCAT?3 expression groups and the 33 types
of cancer, including overall survival (OS), disease-specific
survival (DSS), and progression-free survival (PFS). The
difference in survival between groups was tested by the log-
rank test (P<0.05). Prognostic genes were then screened
using univariate Cox regression analysis (P<0.05).

Relationship between LPCAT3 expression and tumor
immune microenvirvonment (ITIME) analysis

Immune score, microenvironment score, and stromal
score analysis were performed by the “immunedeconv”
R package, which included TIMER, XCell, MCP-
counter, CIBERSORT;, EPIC, and quantized. The detailed
algorithm of the immune score was reported according to
the previously described (24,25). We apply the TIMER
algorithm to estimate 6 types of infiltrating immune cells,
including B cells, CD4" T cells, CD8" T cells, neutrophils,
macrophages, and dendritic cells, and then evaluated the
relationship between the LPCAT3 expression and the
levels of 6 types of infiltrating immune cells. To ensure the
accuracy of our results, we also utilized the XCell algorithm
to estimate 35 types of infiltrating immune cells, then, we
compared the levels of 35 types of infiltrating immune cells
with the LPCAT3 expression.

Correlations of LPCAT3 expression with check-point
molecules and immunological associated genes

We also explored the relationship between the expression
level of 8 immune checkpoints (SIGLECIS, IDO1, CD274,
HAVCR2, PDCD1, CTLA4, LAG3, and PDCDILG2)
and the level of LPCAT3 expression. Furthermore, the
correlation analysis was also performed between the
expression level of LPCAT3 and the level of immune
checkpoint-related genes.
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Relationship between the LPCAT3 expression and tumor
mutational burden (TMB) as well as microsatellite

instability (MSI)

TMB can reflect the number of mutations in tumor cells,
so it has been used as a quantifiable immune-response
biomarker. We used the somatic mutation data, downloaded
from TCGA, to calculate the TMB scores. MSI scores
were obtained for all samples based on somatic mutation
data downloaded from TCGA. The correlation analysis
between LPCAT3 expression and TMB as well as MSI was
performed by Spearman’s method (26). In our study, the
red plot in the figure represents the correlation coefficient
between LPCAT3 and TMB or MSI.

Functional enrichment analysis

We used Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGQG), and gene set enrichment
analysis (GSEA) analysis to investigate the biological,
molecular function, and potential molecular mechanism of
LPCAT3 in cancer. A total of 128 genes were used for GO
and KEGG enrichment analysis, which were downloaded
from the GEPIA2 website (100 similar genes) and STRING
website (28 adjacent genes). To explore the potential
biological functions of the LPCAT3 between high- and low-
LPCAT3 expression in AML, we conducted GSEA based
on the curated gene sets c2 kegg symbols. GO, KEGG, and
GSEA analysis was performed using the “ClusteProfiler”
package in R (27).

Estimation of chemotberapy drug response

Based on the median cut-off of LPCAT3 expression, patients
were divided into high- and low-LPCAT3 expression
groups. The half-maximal inhibitory concentration
(IC50) values of chemotherapy drugs (BCL2 inhibitors,
Midostaurin and Sorafenib), from the Genomics of Drug
Sensitivity in Cancer (GDSC) project (www.cancerRxgene.
org), were predicted by the “pRRophetic” package, and
then was compared the drug response between the different
expression groups.

Statistical analysis

All analyses were conducted using the statistical software
R (version 4.1). Alterations in LPCAT3 expression levels in
cancer tissues and normal tissues were analyzed by Wilcoxon
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Figure 1 LPCAT3 gene structure, single-cell localization, variations, and expression profiles under physiological conditions. (A) LPCAT3

chromosome localization in normal cells. (B) LPCAT3 is distributed in normal subcellular cells, concentrated in the endoplasmic reticulum

(ER). (C) LPCATS3 protein topology showing membrane localization. (D) LPCAT3 mRINA expressions in various normal human immune

cells from the Genecards database. (E) LPCAT3 mRNA expressions in various normal human tissues from the GTEx database. (F)

the LPCAT3-associated disease network. Abbreviations: LPCAT3, lysophosphatidylcholine acyltransferase 3; GTEx, Genotype Tissue

Expr

rank-sum test. The median expression level of LPCAT3 was
regarded as the cut-off value. The prognostic factors were
evaluated by Cox regression analysis and the Kaplan-Meier
method. The effect of risk factors on OS was evaluated by
the Cox proportional hazards regression model. Candidate
variables with P<0.05 in univariate analysis were reserved
and incorporated in multivariate analysis. The P value was

ession.

set at the routine 0.05 significance level.
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LPCAT3, also known as MBOATSY, is located on

12p13.31, containing 13 exons (Figure 1A).

The distribution of LPCAT3 in the endoplasmic reticulum

crotubules using GeneCards database
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(Figure 1B). The LPCAT3 protein topology revealed a
crossing membrane (Figure 1C). Furthermore, we observed
LPCAT3 messenger mRINA expression in various normal
immune cells and tissues (Figure 1D,1E). Interestingly,
LPCAT3 is highly expressed in monocytes. LPCAT3 is
associated with a variety of cancers, metabolic diseases,
immune system, and hematological diseases through
gene-disease network (https://platform.opentargets.org/)
interaction analysis (Figure 1F).

Pan-cancer expression landscape of LPCAT3

According to the data, downloaded from the TCGA
database and GTEx, to compare the LPCAT3 expression.
The expression level of LPCAT3 was significantly higher
in tumor tissues versus adjacent tissues in the bladder
urothelial carcinoma (BLCA), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), AML, lower-grade
glioma (LGG), OV, pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), stomach adenocarcinoma
(STAD), testicular germ cell tumors (TGCT), thymoma
(THYM), and uterine corpus endometrial carcinoma
(UCEC) (Figure 2A4). However, the expression level of
LPCAT3 was observed to increase in tumor tissues versus
normal tissues in the BLCA, breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma (CESC), ESCA,
GBM, HNSC, KICH, KIRC, KIRP, PRAD, STAD, and
UCEC based on the TIMER database (Figure 2B).

Prognostic value of LPCAT3 in pan-cancer

In pan-cancer data, we assessed the relationship between
LPCAT3 expression and prognosis, including OS, DSS,
and PFS. Univariate Cox analysis to conclude that LPCAT3
expression was significantly associated with OS in 5 cancer
types, including KIRC, AML, LGG, OV, and uveal
melanoma (UVM) (Figure 3A4). The Kaplan-Meier survival
curve showed that the upregulation of LPCAT3 expression
was significantly correlated with poorer OS in AML, LGG,
OV, and UVM, while the opposite in KIRC. (Figure S1).
Moreover, the relationship between LPCAT3 expression
and DSS in cancer patients was investigated. The results of
COX regression analysis showed that LPCAT3 expression
was associated with DSS in BRCA, KIRC, KIRP, LGG,
and UVM (Figure 3B). Kaplan-Meier analysis revealed
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that increased expression of LPCAT3 correlated with poor
DSS in LGG and UVM patients, while increased LPCAT3
expression predicted good DSS in BRCA, KIRC, and KIRP
(Figure S2). We further analyzed the association between
the LPCAT3 expression and PES in pan-cancer. The results
of COX regression showed that the expression level of
LPCAT3 was significantly correlated with LGG, KIRC, and
PRAD (Figure 3C). The Kaplan-Meier analysis showed that
compared with the low-LPCAT3 expression patients, the
high-LPCAT3 expression patients were correlated with a
worse PFS in LGG, while a better PFS in KIRC and PRAD
(Figure S3). In addition, adjusted by other covariates,
multivariate analysis confirmed that high-LPCAT3
expression adversely impacted OS (HR, 2.183, 95% CI:
1.34-3.57; P=0.002) in AML (Table S2).

Relationship between LPCAT3 expression and the tumor
immune microenvironment

The previous study has indicated that the quantity and
activity status of tumor immune cells are the important
predictive criterion for cancer survival times (28). Hence,
we evaluated the correlation between immune infiltration
level and LPCAT3 expression. First, based on the TIMER
algorithm, we analyzed the relationship between LPCAT3
expression and the levels of 6 types of infiltrating immune
cells. Figure 44 showed that LPCAT3 expression was
significantly correlated with immune infiltrating cell
abundance. LPCAT3 level was significantly correlated
with the infiltration levels of CD8" T cells in 15 cancer
types (such as THCA, PAAD, PRAD, etc.), CD4" T cells
in 14 cancer types (such as COAD, HNSC, READ, etc.),
neutrophils in 19 cancer types (such as DLBC, LGG,
PRAD, etc.), DCs in 18 cancer types (such as COAD,
LGG, PRAD, etc.), macrophages in 20 cancer types (such
as THCA, THYM, PRAD, etc.), and B cells in 11 types of
cancer (such as KIRC, PCPG, READ, etc.) (all P<0.05).
Besides, in our study, to ensure the accuracy of our results,
we also utilized the XCell algorithm to estimate 35 types
of infiltrating immune cells and 3 kinds of TIME scores.
we observed that NK/T cell, CD4" T cell (Thl cell), and
Plasmacytoid dendritic cells were negatively associated with
the LPCAT3 expression in pan-cancer, while Mast cell and
Common lymphoid progenitor were positively correlated
with the LPCAT3 expression in Pan-cancer (Figure 4B).
Moreover, T cell CD4" effector memory, Eosinophils,
Common myeloid progenitor cell, and B cell plasma
were negatively correlated with the LPCAT3 expression
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Figure 2 Upregulated mRNA expression of LPCAT3 in pan-cancer. (A) The expression level of LPCAT?3 in different cancer types from
TCGA and GTEx data. It is clear that there is significant upregulation of LPCAT3 in BLCA, ESCA, GBM, HNSC, KICH, KIRC, KIRP,
LAML, LGG, OV, PAAD, PRAD, STAD, TGCT, THYM, and UCEC. (B) Pan-cancer expression profile of LPCAT3 from TIMER
database. Compared with normal tissues, the level of LPCAT3 expression was significantly upregulated in BLCA, BRCA, CESC, ESCA,
GBM, HNSC, KICH, KIRC, KIRP, PRAD, STAD, and UCEC. Red and blue boxes represent respectively tumor tissue and normal tissue.
*, P<0.05; **, P<0.01; ***, P<0.001. ns, not significant; LPCAT3, lysophosphatidylcholine acyltransferase 3; TPM, transcript per million;

GTEx, Genotype Tissue Expression; TCGA, Cancer Genome Atla:

in AML. However, Macrophages M2, followed by
Monocytes, Macrophages M1, Macrophages, and myeloid
dendritic activated cells were positively associated with
the LPCAT3 expression in AML. (Figure 4B). In addition,
our results showed that LPCAT3 expression positively
correlated with immune score and microenvironment
score in AML and LGG, while negatively correlated with
an immune score, microenvironment score, and stromal
score in multiple cancers, including BLCA, BRCA, KICH,
KIRC, KIRP, LUSC, PCPG, PRAD, TGCT, THCA,
THYM, and UCEC (Figure 4B). The result of correlation

© Translational Cancer Research. All rights reserved.
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analysis indicated that the monocytes (r=0.32), monocyte
macrophages (r=0.32), and neutrophils (r=0.30) were
positively correlated with the LPCAT3 expression, while
the T cell was negatively correlated with the LPCAT3
expression (r=-0.20) (Figure 4C).

Correlations of LPCAT3 expression levels with check-point
molecules and immunological associated genes

To estimate the relationship between the LPCAT3
expression and the potential therapeutic value of the immune
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Figure 3 Prognostic Value of LPCAT3 in pan-cancer. (A) Forest plots of hazard ratios of OS, DSS (B), and PES (C) of LPCAT3 in pan-

cancer. HR (High exp) represents the hazard ratio of the low-expression sample relatives to the high-expression sample. HR <1 indicates the

gene is a risk factor, and HR >1 indicates the gene is a protective factor. CI, confidence interval; OS, overall survival; DSS, disease-specific

survival; PFS, progression-free survival; LPCAT3, lysophosphatidylcholine acyltransferase 3; HR, hazard ratio.

checkpoint, we evaluated the association between the
LPCAT3 expression and eight immune checkpoints (7IGIT,
SIGLECIS, PDCDILG2, PDCDI1, LAG3, HAVCR2, CTLA4,
and CD274). Notably, we observed that the expression level
of LPCAT3 was negatively correlated with most immune
checkpoints in ACC, LUSC, TGCT, and THCA. In contrast,
the expression level of LPCAT3 was positively correlated
with most checkpoints in COAD, DLBC, LGG, LIHC,
and UVM (Figure 5A). In addition, the results indicated that
only two immune checkpoints of PDCDI1LG2 and CD274
were positively correlated with the expression of LPCAT3
(Figure 5A). We further investigated the correlation between
the LPCAT3 expression and immunological associated genes
through the GEPIA2 tool and found that it was positively
related to CD27, CD40, CD80, CD274, CTLA4, PDCDILG2,

TIGIT, and etc. In contrast, a negatively correlation was

© Translational Cancer Research. All rights reserved.

found between LPCAT3 expression and IMIGD?2 as well as
CD244 (Figure SB).

The relationship between the LPCAT3 expression and
TMB as well as MSI score

Previous research indicated that TMB and MSI are
considered essential factors impacting the occurrence and
progression of the tumor (29). So, it is necessary to further
explore the relationship between LPCAT3 expression and
TMB as well as MSI score. The results demonstrated that
the LPCAT?3 expression was positively associated with
the TMB score in LGG and THYM, while, the LPCAT3
expression was negatively associated with the TMB score in
KIRC and LUAD (Figure 6A). Furthermore, the LPCAT3
expression was positively correlated with MSI in UVM
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Figure 4 Correlation analysis between the expression level of LPCAT3 and infiltration abundances of immune cells in pan-cancer. (A) The
LPCAT3 expression significantly correlated with the infiltration levels of various immune cells in the TIMER, xCell (B), and Mcpcounter
database in LAML (C). LPCAT3, lysophosphatidylcholine acyltransferase 3; LAML, acute myeloid leukemia.

and TGCT, and negatively correlated with MSI in DLBC
(Figure 6B).

LPCAT3-related gene enrichment analysis

To analyze the molecular mechanism of the LPCAT3 gene
in tumorigenesis, we screened out the targeting LPCAT3-
binding proteins and the LPCAT3 expression-related genes

© Translational Cancer Research. All rights reserved.

for pathway enrichment. Figure 74,78 showed that the
interaction network of LPCAT3 has 25 binding proteins
based on the STRING tool and GeneMania. We also
used the GEPIA?2 tool to obtain the top 100 genes that are
remarkably similar to LPCAT3 expression. Among the 100
similar genes, we selected five genes (BRAP, HK1, TLNI,
TPD52L2, and PNPO) that were most associated with
LPCAT3. As shown in Figure 7C-7G, the expression level

Transl Cancer Res 2022;11(10):3491-3505 | https://dx.doi.org/10.21037/tcr-22-985



Translational Cancer Research, Vol 11, No 10 October 2022

A

* P<0.05
** P<0.01

Correlation | p: s B
| | . : H i &
04

02 ol
0.0 =
02

QS O QA O
U F S EE O

© 9O O @ O OE O L PSR L DL S KL
FCFF IS LSS FENE LS E SIS

3499

T
SIGLECTS
{3; : : PDCDILG2
~  Pocot

o Les

HAVCR2

cTLAs

Figure 5 The correlation of the relationship between the expression level of the LPCAT3 and immune checkpoint-related genes as well
as the expression levels of immune cells. (A) Heat maps of the LPCAT3 expression of immune checkpoint-related genes in diverse tumors.
(B) The correlation of the relationship between the LPCAT3 and the expression levels of known immune cells. *, P<0.05; **, P<0.01; ***,

P<0.001. LPCAT3, lysophosphatidylcholine acyltransferase 3.

A ACC B ACC
uvMm BLCA uvm* BLCA
ucs ) BRCA ucs . BRCA
UCEC s CESC UCEC CESC
THYM™ o2 CHOL THYM ; CHOL
THCA ki COAD THCA COAD
TGCT u DLBC TGCT* DLBC**
-0
STAD ESCA STAD ESCA
SKCM GBM SKCM GBM
SARC HNSC SARC HNSC
READ KICH READ KICH
PRAD KIRC* PRAD KIRC
PCPG KIRP PCPG KIRP
PAAD LAML PAAD LAML
ov LGG*™* ov LGG
MESO | isc | yap-HHC MESO | jgc LuapHC
TMB » cor MSI & cor

Figure 6 The correlation between the expression of LPCAT3 in pan-cancer and TMB and MSI. (A) A radar plot shows the correlation
between LPCAT3 expression and TMB in pan-cancer. (B) A radar plot shows the correlation between the LPCAT3 expression and MSI in

various tumors. Correlation analysis was performed using Spearman’s method. *, P<0.05; **, P<0.01; ***, P<0.001. TMB, tumor mutational

burden; MSI, microsatellite instability; LPCAT3, lysophosphatidylcholine acyltransferase 3.

of LPCAT3 was significantly correlated with that of BRAP
(R=0.73), HK1 (R=0.65), TLN1 (R=0.6), TPD52L2 (R=0.6),
and PNPO (R=0.62) genes (all P<0.001).

Furthermore, we also downloaded 28 adjacent genes
of LPCAT3 from the STRING. To better understand
the functional implication of the 128 genes (100 similar
genes and 28 adjacent genes), the GO terms of BP, CC,
and ME, as well as KEGG for those genes were explored.
The results showed that GO enrichment analysis was
primarily enriched in the pathways of lipid metabolism
or cellular biology, such as O-acyltransferase activity
lysophospholipid acyltransferase activity, transferring
acyl groups, lysophosphatidic acid acyltransferase activity,
transferase activity, and others (Figure 7H). KEGG pathway

© Translational Cancer Research. All rights reserved.

analysis revealed that 128 genes were mainly enriched in
the phospholipase D signaling pathway, Lipid metabolism,
and Ferroptosis processes (all adjusted P<0.05) (Figure 7I).
The KEGG enrichment analysis indicated that the lipid
metabolism and ferroptosis processes might be involved in
the effect of LPCAT3 on tumorigenesis.

To investigate the differential activation of LPCAT3-
related signaling pathways in cancer, the GSEA analysis
was performed. GSEA analysis in the KEGG gene set
demonstrated that the genes are enriched in pathways like
the FLT3 signaling pathway, PD-I signaling pathway, IL6-
JAK-STAT3 signaling pathway, hematopoietic stem cell
differentiation, fatty acid metabolism, and adipogenesis
(Figure 77-7L).
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Drug response between high- and low-LPCAT3 expression
groups

We estimated the drug sensitivity between the different
LPCATS3 expression groups with BCL2 inhibitors,
Midostaurin, and Sorafenib in the TCGA AML cohort. In
comparison to the low-LPCAT3 expression group, there
was a prominently increased IC50 value of BCL2 inhibitors
(P=0.003) and midostaurin (P=0.015) in high-LPCAT3
expression group (Figure 84,8B). This indicates that low-
risk patients displayed more benefit to BCL2 inhibitors and
Midostaurin. However, the sensitivity of sorafenib was not
significantly different between the high- and low-LPCAT3
expression groups (Figure §C).

Discussion

In recent years, with the improvement of transplantation
technology and supportive therapy, the overall mortality
rate of AML has decreased slightly, but the survival rate
is still not satisfactory (30). Early detection and effective
treatment measures are essential for enhancing the
prognosis of AML. To identify early diagnosis and sensitive
biomarkers of cancers, more and more pan-cancer analysis
studies shape genetic mutations and cancer driver genes
(31,32). This study reveals the similarities and differences
of LPCAT3 among different cancers through pan-cancer
analysis and provides potential personalized treatment
strategies for AML.

LPCATS3 is involved in the reacylation process of

© Translational Cancer Research. All rights reserved.

the lysophosphatidic transferase (LPLATSs) catalyzed
phospholipid remodeling pathway in the liver, namely, the
Lands cycle (2). LPCAT?3 is known to be overexpressed in
nasal epithelium and liver and up-regulated in Monocytes,
B lymphocytes, CD8" T cells, NK cells, CD4" T cells, and
Lymph nodes (33). However, its roles in pan-cancer and
whether it can be used as a biomarker are still unclear.

In this study, we utilized GTEx and TCGA databases
to detect expression level of LPCAT3 and its effects on
prognosis in human pan-cancer. We found for the first
time that LPCAT3 is abnormally overexpressed in multiple
cancers including BLCA, BRCA, ESCA, CESC, GBM,
HNSC, KICH, KIRC, KIRP, AML, LGG, OV, PAAD,
PRAD, STAD, TGCT, THYM, and UCEC compared with
adjacent tissues. This result is consistent with the previous
study that LPCAT3 is overexpressed in BRCA tissues
compared with their normal tissues (34). In addition, we
also analyzed the relationship between LPCAT3 levels and
the prognosis of patients in human pan-cancer. Our results
showed that the up-regulation of LPCAT3 expression is
associated with poor prognosis in several tumor types,
including AML, LGG, OV, and UVM. However, up-
regulation of LPCAT3 expression correlated with better
prognosis in KIRC. The previous study also indicated the
same result that an increased LPCAT3 expression correlated
with poor prognosis in OV (35).

Evidence has accrued that a comprehensive understanding
of the status of TIME in cancer patients is particularly
important for selecting clinical-decision. To further improve
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our understanding of the mechanisms by which LPCAT3
expression may mediate differential prognosis in human pan-
cancer, TIME showed that LPCAT?3 significantly correlated
with the immune infiltration levels of CD8" T cells, CD4" T
cells, neutrophils, myeloid dendritic cell, macrophages, and
B cell. We further used the XCell algorithm to examine the
association between LPCAT3 expression and the immune
infiltration levels of different types of immune cells. Our
results showed that NK/T cell, CD4" T cell (Th1 cell), and
Plasmacytoid dendritic cells were negatively associated with
the LPCAT3 expression in pan-cancer, while Mast cell and
Common lymphoid progenitor were positively correlated
with the LPCAT3 expression in pan-cancer. Furthermore,
in the AML cohort, we found that the up-regulation of
LPCAT3 expression was positively associated with the score
of Macrophages M2. Macrophages are part of anti-tumor
immunity. However, Macrophages M2 do not kill tumor
cells but promote tumor development (36), which may help
to explain to some extent why high-LPCAT3 expression
AML patients with poor prognosis. Interestingly, our results
showed that LPCAT3 expression was positively correlated
with immune score and microenvironment score in AML
and LGG, while negatively correlated with an immune
score, microenvironment score, and stromal score in most
cancer types. This suggests that a higher immune score
may be associated with a poor prognosis in AML, which is
consistent with the previous research (37).

The correlation between the LPCAT3 expression and
immune checkpoints was also analyzed. We observed that
LPCAT3 expression was positively correlated with immune
checkpoints in various types of cancer, including COAD,
DLBC, LGG, LIHC, OV, THYM, and UVM. These
results strongly indicate that LPCAT3 may be a potential
biomarker and play vital roles in tumor immunity. However,
in the AML cohort, only two immune checkpoints of
PDCDILG2 and CD274 were positively correlated with the
expression level of LPCAT3, those might help to explain
why AML patients limited benefit from immune checkpoint
therapy (38). In addition, we also found that the LPCAT3
expression was a significant correlation with immunological
associated genes. These findings suggest that LPCAT3 plays
an important role in regulating immunity in human pan-
cancer.

TMB is an emerging pan-cancer predictive biomarker
and can guide immunotherapy, which has been demonstrated
in the non-small-cell lung (39) and colorectal (40)
cancers. Furthermore, TMB can also predict prognosis
after immunotherapy in human pan-cancer (41). MSI is

© Translational Cancer Research. All rights reserved.

Ke et al. The significance of LPCAT3 in AML

also a promising biomarker for predicting immunotherapy
response. Our study demonstrated that LPCAT3 expression
is correlated with TMB in 4 cancer types (including THYM,
LGG, KIRC, and LUAD) and with MSI in 3 cancer types
(including TGCT, UVM, and DLBC). Consistent with
previous research (42), our result also showed that the
LPCATS3 expression will affect the TMB and MSI of multiple
cancers, thereby affecting the patient's response to immune
checkpoint therapy. However, further researches are needed
to determine whether LPCAT3 can serve as a biomarker for
predicting immunotherapy response in those cancers.

To further explore the molecular biological mechanism
of the LPCAT?3 in human pan-cancer, functional enrichment
analysis showed that phospholipase D signaling pathway,
Ferroptosis, and Lipid metabolism processes were found to
be enriched. Ferroptosis is a programmed cell death process,
which is marked by the accumulation of iron-dependent
lipid peroxides. Recent studies have shown that reduced or
increased sensitivity of ferroptosis can significantly promote
AML tumor cell apoptosis (43,44). Ferroptosis promotes
the production of immunosuppressive media by cancer cells
and tumor-infiltrating immune cells, which may inhibit
anti-tumor immunity and promote tumor growth (45).
Furthermore, ferroptosis can also help adjacent cancer cells
survive or evade immunity (46). Based on existing research
and our findings, we infer that ferroptosis and immune
microenvironment are significantly correlated, which
together affect prognosis in pan-cancer, especially in AML.
In addition, our study also showed that LPCAT3 expression
was significantly associated with the lipid metabolism
process, which was consistent with other LPCAT?3 studies
(1-3). In cancer, lipid metabolism is one of the most
prominent metabolic changes, which can re-activate fat
formation without relying on external lipids (46,47).
These might be one of the reasons for the unfavorable
prognosis in patients with overexpression of LPCAT3. In
the AML cohort, the GSEA pathway analysis revealed that
the FLT3 signaling pathway, PD-I signaling pathway, IL6-
JAK-STAT3 signaling pathway, hematopoietic stem cell
differentiation, fatty acid metabolism, and adipogenesis
were significantly activated, high-LPCAT3 expression
group. The activation of the FLT3 signaling pathway has
been reported as survival mechanism for drug resistance in
AML (48). This might be one of the reasons for the poor
prognosis in high-LPCAT3 expression group.

To evaluate patients may benefit from which drugs, we
estimated the sensitivity of some chemotherapy drugs in
AML. Our result indicated that the low-LPCAT3 expression
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patients were more likely to benefit from BCL2 inhibitor
and midostaurin. This provides some references for our
clinical drug selection and clinical trials.

In this research, we comprehensively analyzed the
relationship between LPCAT3 expression and human pan-
cancer. Nevertheless, there are several limitations in the
current study. First, all the data came from public databases.
Furthermore, the results of the study only came from
bioinformatics analysis, further experimental are required to
validate it and reveal the probable mechanism.

Conclusions

The current study has indicated that LPCAT3 overexpression
correlates with poor prognosis in multiple human cancers,
including AML. Furthermore, we also tried to reveal the
possible mechanism of the poor prognosis from many
aspects. Based on the results of the present study, the
LPCATS3 level is related to cancer immunity, ferroptosis, and
lipid metabolism. These findings may provide a theoretical
basis for the treatment AML via targeting ferroptosis
and lipid metabolism. Therefore, LPCAT3 may serve as a
potential prognostic and treatment biomarker.
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Supplementary

Table S1 List of pan-cancer analyzed in this study.

TCGA code Cancer type Histology Body location
ACC Adrenocortical carcinoma Carcinomas Endocrine
BLCA Bladder urothelial carcinoma Carcinomas Genitourinary
BRCA Breast invasive carcinoma Carcinomas  Breast

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma Carcinomas  Gynecology
CHOL Cholangiocarcinoma (bile duct) Carcinomas Digestive
COAD Colon adenocarcinoma Carcinomas Digestive
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma lymphoma Lymphoma
ESCA Esophageal carcinoma Carcinomas Digestive
GBM Glioblastoma multiforme Sarcomas Neurologic
HNSC Head and neck squamous cell carcinoma Carcinomas Head and neck
KICH Kidney chromophobe Carcinomas Genitourinary
KIRC Kidney renal clear cell carcinoma Carcinomas Genitourinary
KIRP Kidney renal papillary cell carcinoma Carcinomas Genitourinary
LAML Acute myeloid leukemia Leukemia Hematologic
LGG Brain lower grade glioma Sarcoma Neurologic
LIHC Liver hepatocellular carcinoma Carcinomas Digestive
LUAD Lung adenocarcinoma Carcinomas Respiratory
LUSC Lung squamous cell carcinoma Carcinomas Respiratory
ov Ovarian serous cystadenocarcinoma Carcinomas Gynecology
PAAD Pancreatic adenocarcinoma Carcinomas Digestive
PCPG Pheochromocytoma and paraganglioma (adrenal gland) Endocrine
PRAD Prostate adenocarcinoma Carcinomas Genitourinary
READ Rectum adenocarcinoma Carcinomas Digestive
SARC Sarcoma Sarcoma Gynecology
SKCM Skin cutaneous melanoma Skin

STAD Stomach adenocarcinoma Carcinomas Digestive
TGCT Testicular germ cell tumors Carcinomas  Genitourinary
THCA Thyroid carcinoma Carcinomas Endocrine
THYM Thymoma Lymphoma Respiratory
UCEC Uterine corpus endometrial carcinoma Carcinomas  Gynecology
ucs Uterine carcinosarcoma Mixed type Gynecology
UVM Uveal melanoma Carcinomas Eye
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Table S2 Univariate and Multivariate Cox regression analysis for the overall survival in the AML

Univariate analysis Multivariate analysis
Characteristics Total (N)
Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Gender 140

Female 63 Reference

Male 77 1.030 (0.674-1.572) 0.892
Age 140

<60 79 Reference

>60 61 3.333 (2.164-5.134) <0.001 2.498 (1.579-3.950) <0.001
WBC count (x10%L) 139

<20 75 Reference

>20 64 1.161 (0.760-1.772) 0.490
BM blasts (%) 140

<20 59 Reference

>20 81 1.165 (0.758-1.790) 0.486
Cytogenetic risk 138

Favorable 31 Reference

Intermediate 76 2.957 (1.498-5.836) 0.002 1.719 (0.827-3.573) 0.147

Poor 31 4.157 (1.944-8.893) <0.001 2.271 (1.016-5.074) 0.046
FLT3 mutation 136

Negative 97 Reference

Positive 39 1.271 (0.801-2.016) 0.309
RAS mutation 139

Negative 131 Reference

Positive 8 0.643 (0.235-1.760) 0.390
NPM1 mutation 139

Negative 106 Reference

Positive 33 1.137 (0.706-1.832) 0.596
LPCAT3 140

Low expression 70 Reference

High expression 70 2.991 (1.908-4.688) <0.001 2.183 (1.336-3.567) 0.002
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Figure S1 Kaplan-Meier survival analysis of the LPCAT3 signature from TCGA dataset, comparison among different groups was made by
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Figure S2 Kaplan-Meier survival analysis of the LPCAT3 signature from TCGA dataset, comparison among different groups was made by
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