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Background: The purpose of this study was to identify the ferroptosis-related molecular subtypes 
in muscle invasive bladder cancer (MIBC) associated with the tumor microenvironment (TME) and 
immunotherapy.
Methods: Expression profiles and corresponding clinical information were obtained from The Cancer 
Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. Nonnegative matrix 
factorization (NMF) analysis was performed to identify two molecular subtypes based on 41 ferroptosis-
related prognostic genes. The differences between the two subtypes were compared in terms of prognosis, 
somatic mutations, gene ontology (GO), cytokines, pathways, immune cell infiltrations, stromal/immune 
scores, tumor purity and response to immunotherapy. We also constructed a risk prediction model using 
multivariate Cox regression analysis to analyze survival data based on differentially expressed genes (DEGs) 
between subtypes. In combination with clinicopathological features, a nomogram was constructed to provide 
a more accurate prediction for overall survival (OS).
Results: Two molecular subtypes (C1 and C2) of MIBC were identified according to the expression of 
ferroptosis-related genes. The C2 subtype manifested poor prognosis, high enrichment in the cytokine-
cytokine receptor interaction pathway, high abundance of immune cell infiltration, immune/stromal scores 
and low tumor purity. Additionally, C2 is less sensitive to immunotherapy. The risk prediction model based 
on five pivotal genes (SLC1A6, UPK3A, SLC19A3, CCL17 and UGT2B4) effectively predicted the prognosis 
of MIBC patients.
Conclusions: A novel MIBC classification approach based on ferroptosis-related gene expression profiles 
was established to provide guidance for patients who are more sensitive to immunotherapy. A nomogram 
with a five-gene signature was built to predict the prognosis of MIBC patients, which would be more 
accurate when combined with clinical factors.
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Introduction

Bladder cancer is the most common malignancy of the 
genitourinary system; the incidence of bladder cancer is 
ninth, and the mortality rate is thirteenth of all malignant 
tumors worldwide (1). Muscle invasive bladder cancer 
(MIBC) accounts for approximately 20% of newly 
diagnosed bladder cancers. Although radical cystectomy 
(RC) and pelvic lymph node dissection are the standard 
treatments for MIBC and are effective treatments for 
improving the survival rate and avoiding local recurrence 
as well as distant metastasis (2,3), approximately 50% of 
patients still have disseminated micrometastases. Therefore, 
the combination of systematic treatment and local treatment 
plays a key role in reducing the recurrence rate (2,4). Since 
the 1980s, cisplatin-based combination chemotherapy has 
been considered the first-line treatment for MIBC, but its use 
is limited by its toxic effects. In recent years, immunotherapy 
has been applied in the clinic and has shown strong antitumor 
activity in a variety of tumor treatments, including melanoma 
(5), non-small cell lung cancer (6), renal cell carcinoma 
(7) and so on, helping some patients with advanced cancer 
achieve long-term survival and even achieve the goal of 
clinical treatment. However, only some patients can benefit 
from treatment with immune checkpoint inhibitors. PD-1/
PD-L1 inhibitors play an important role in regulating the 
function of CD8+ T cells in the tumor microenvironment 
(TME), and their efficacy is also influenced by the TME. 
Therefore, research on the TME in MIBC is attracting an 
increasing amount of attention.

A typical hallmark of tumors is immune dysregulation, 
and the interaction between ferroptosis and lipid 
metabolism is  crit ical  in the regulation of tumor 
immunity. Ferroptosis is a nonapoptotic, peroxidation-
driven regulatory form of cell death that was proposed by 
Dixon in 2012. It is characterized by iron-dependent lipid 
metabolism and the accumulation of reactive oxygen species 
(ROS) (8). A large number of studies have confirmed 
that ferroptosis plays a key role in killing tumor cells and 
inhibiting tumor growth in cancers such as non-small cell 
lung cancer (9), breast cancer (10), leukemia (11), pancreatic 
cancer (12) and hepatocellular carcinoma (13). Therefore, 
inducing ferroptosis may be a new treatment strategy for 
cancer. However, there is no clear evidence that ferroptosis 
can inhibit the progression of bladder cancer. Mazdak et al. 
detected serum iron levels in 51 patients with bladder cancer 
and 58 healthy controls and found that the serum iron 
level in patients with bladder cancer was lower than that in 

healthy controls (14). In another study, the combination of 
gallium and transferrin resulted in an increase in free iron 
levels in bladder cancer cells, and a higher concentration 
of free iron was beneficial to inhibiting the proliferation of 
bladder cancer cells (15).

Different immune cells in the TME show different 
sensitivities to ferroptosis. Ferroptosis is a metabolic 
vulnerability of activated CD8+ T cells, while inhibition 
of ferroptosis can promote the survival and antitumor 
effects of CD8+ T cells in tumors (16). In tumors with 
different immunophenotypes, ferroptosis inducers might 
have distinct impacts on cancer immunity, which may 
determine the efficacy of immune checkpoint inhibitor 
immunotherapy (17). Hence, a better understanding 
of ferroptosis-related molecular characteristics may 
contribute to the progression of cancer immunotherapy 
research and provide a theoretical basis for clinical trials 
to help improve treatment effects. In this study, we aimed 
to comprehensively characterize the ferroptosis-related 
molecular subtypes of the TME and immunotherapy for 
MIBC via multiomics data. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-1653/rc).

Methods

Ferroptosis-related genes

The “WP_FERROPTOSIS” gene sets (65 genes) were 
downloaded from The Molecular Signatures Database 
(MSigDB; https://www. gsea-msigdb.org/gsea/msigdb). The 
125 ferroptosis-related genes were obtained from FerrDb 
database (http://www.datjar.com:40013/bt2104/), which 
provides ferroptosis-related gene regulators, including 
drivers, suppressors, and markers. 

Data collection and preprocessing

Two MIBC cohorts (TCGA-BLCA, GSE13507), which had 
detailed follow-up information, were included in this study 
by searching The Cancer Genome Atlas (TCGA) database 
(https://tcga-data.nci.nih.gov/) and Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/). For the TCGA-BLCA cohort, high-throughput data, 
including RNA-sequencing data [fragments per kilobase of 
exon per million reads mapped (FPKM)], somatic mutation 
data of MIBC samples with detailed clinicopathological 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1653/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1653/rc
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http://www.ncbi.nlm.nih.gov/geo/
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information (age, sex, grade, TNM staging, survival status 
and follow-up time) were downloaded. The inclusion 
criteria included the following: (I) the survival time of 
patients was more than 30 days; (II) the patient’s clinical 
information must include T (T2-T4) and N stages; and 
(III) the pathological type must be urothelial carcinoma. 
Consequently, 367 MIBC samples from TCGA were 
enrolled as the training set, while 61 samples from the GEO 
database were included as the external validation set. Patient 
clinical information is shown in Table S1. The batch effects 
between two datasets were corrected with the “ComBat” 
algorithm of the sva package (18).

Clustering analysis

Before clustering, univariate Cox regression analysis was 
used to evaluate the correlation between ferroptosis-related 
genes and overall survival (OS) in the TCGA cohort. 
Genes with P<0.05 were retained for nonnegative matrix 
factorization (NMF) analysis clustering conducted via the 
NMF package in R (19). When the cophenetic correlation 
coefficient declined sharply and the colors in the groups in 
the heatmaps were more uniform, the k-value was chosen as 
the optimal number of clusters. According to the clusters, 
Kaplan–Meier overall survival curves were drawn using 
the survival package in R, followed by the log-rank test. 
Principal components analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) were presented to 
verify the classification performance on the basis of NMF 
analysis.

Differential expression and functional annotation analysis

Differentially expressed genes (DEGs) were filtered 
between two molecular subtypes via the limma package 
with cutoffs of false discovery rate (FDR) <0.05 and |log2 
fold change |≥1. Their underlying functions were predicted 
through GO enrichment analysis and Gene Set Enrichment 
Analysis (GSEA) via the clusterProfiler package in R (20). 
The P value was adjusted by the Benjamini–Hochberg 
method. Adjusted P value <0.05 was considered significant. 

Quantitative estimation of immune cell infiltration in 
MIBC

A group of immune cell gene markers, consisting of 782 
genes, which represent 28 immune cell types related to 
innate and adaptive immunity, were obtained from previous 

study to estimate the infiltration level of different immune 
cell types in the TME (21). The assessed immune cell 
types included B cells, T cells, and natural killer (NK) cells 
and so on. Subsequently, the expression profiles of each 
sample were used to estimate the infiltration level of each 
immune cell type in MIBC using the single-sample gene set 
enrichment analysis (ssGSEA) algorithm with the R package 
“GSVA” (22). The differences in the immune infiltration 
levels between subtypes were calculated via the Wilcoxon 
rank-sum test and presented by heatmap. 

Estimation of stromal and immune cells in MIBC

The levels of infiltrating stromal and immune cells in 
MIBC were estimated for each sample based on the gene 
expression profiles utilizing the estimation of stromal and 
immune cells in malignant tumour tissues using expression 
data (ESTIMATE) algorithm (23). By combining stromal 
and immune scores, ESTIMATE scores were determined. 
The tumor purity of each sample was then calculated 
according to the ESTIMATE scores. 

Response to immune therapy and tumor mutation burden 
(TMB) between subtypes

The response to immunotherapy was assessed by the Tumor 
Immune Dysfunction and Exclusion (TIDE) website (http://
tide.dfci.harvard.edu/login/). The TIDE algorithm was 
used to estimate the response of each sample to anti-PD-1/
PD-L1 and anti-CTLA4 immunotherapy based on the gene 
expression profiles of the TCGA cohort. TMB was defined 
as the ratio of the total count of variants to the whole length 
of exons. The differences in the expression levels of TIDE 
scores and TMB levels were compared by the Wilcoxon 
rank-sum test. 

Establishment of a signature based on DEGs in two 
molecular subtypes

Prognosis-related DEGs with P<0.05 were screened by 
univariate Cox regression analysis and then used for the 
next calculation by least absolute shrinkage and selector 
operation (LASSO) analysis. A prognostic signature was 
developed for multivariate Cox regression analysis. The risk 
score of each sample was calculated using the formula Risk 
score = ExpGene1 × CoefGene1 + ExpGene2 × CoefGene2 
+ … ExpGene(n) × CoefGene(n). In this equation, 
“ExpGene” represents gene expression, and “CoefGene” 

https://cdn.amegroups.cn/static/public/TCR-22-1653-supplementary.pdf
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
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is the regression coefficient. MIBC patients from TCGA 
and GEO databases were divided into high- and low-risk 
groups in line with the cutoff value of risk scores. Kaplan-
Meier curves were used to compare the differences in OS 
between the two groups via the survival package. Time-
dependent receiver operating characteristic curves (ROCs) 
for one-, three- and five-year OS were conducted to assess 
the predictive power of the risk score using the survival 
ROC package. Furthermore, the stability and reliability of 
the signature was verified in the external validation group 
by the same methods.

Development and evaluation of a nomogram

With an attempt to predict the 1-, 3- and 5-year survival 
probability of each MIBC patient, we constructed 
a nomogram based on the five-gene signature and 
independent clinicopathological characteristics by univariate 
and multivariate Cox regression analysis. The performance 
of the nomogram was validated using time-dependent ROC 
curves and calibration plots.

Statistical analysis

All statistical analysis and figures exhibition were 
implemented using R 4.1.0 (R Foundation, Vienna, Austria). 
Log-rank test was performed to assess the difference 
between the survival curves. Variables of two subtypes 
or two risk groups were analyzed with Student’s t-test or 
Mann–Whitney U-test. A hazard ratio (HR) and a 95% 
confidence interval (CI) were evaluated by univariable and 
multivariate Cox regression models. If not specified above, 
P<0.05 was considered statistically significant.

Ethical consideration

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Characterization of two ferroptosis-related molecular 
subtypes for MIBC

A total of 190 ferroptosis-related genes were retrieved 
from the list “WP_FERROPOTOSIS” gene set and from 
FerrDb database. In the TCGA cohort, a total of 41 genes 
were associated with MIBC prognosis (all P<0.05). Based on 

the expression profiles of prognostic and ferroptosis-related 
genes, MIBC samples from TCGA were clustered via the 
NMF package. When starting from k=2, the cophenetic 
correlation coefficient started to decrease (Figure 1A). When 
k=2, the cophenetic correlation coefficient declines sharply, 
and the colors in the groups in the heatmap are more 
uniform (Figure 1B) compared to other k value (Figure 1C).  
Therefore, 367 MIBC samples were clustered into two 
molecular subtypes, C1 (n=200) and C2 (n=167). A 
prognostic difference based on OS (Figure 1D) was observed 
according to this subtype classification. Patients with the 
C1 subtype had a better prognosis than those with the C2 
subtypes (P<0.001). Also C1 and C2 can be distinguished 
by dimensional reduction methods such as PCA (Figure 1E) 
and t-SNE (Figure 1F). 

DEGS between subtypes and enrichment analysis

A total of 2,237 DEGs from the whole expression profile 
were identified between C1 and C2. Among them, 
there were 1,558 up- and 679 downregulated genes in 
C2 compared to C1 (Figure 2A,2B). The results of GO 
functional annotation analysis of the DEGs (Figure 2C) 
showed that the most significantly enriched biological 
processes (BPs) included external encapsulating structure 
organization, extracellular matrix organization, and 
extracellular structure organization. The most significantly 
enriched cellular components (CCs) included collagen-
containing extracellular matrix, collagen trimer, and 
cornified envelope, and the molecular functions (MFs) 
included receptor ligand activity, signaling receptor 
activator activity, and cytokine activity. GSEA pathway 
enrichment analysis  (Figure 2D )  showed that the 
significant pathways included cytokine-cytokine receptor 
interactions, ECM receptor interactions, and cell adhesion 
molecules. Therefore, from the enrichment analysis of 
DEGs, we found that there may be a relationship between 
cytokines and ferroptosis-related subtypes. In our study, 
the expression of CXCL1/2/5/16 cytokines in the C1 
subtype was significantly lower than that in the C2 subtype  
(Figure 2E-2H).

Immune cell infiltration analysis between subtypes

Here, we first assessed the differential sensitivity to 
immunotherapy between the two ferroptosis-related 
molecular subtypes in MIBC. Specifically, C2 displayed 
higher infiltration levels of neutrophils (P<0.001)  
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Figure 1 NMF identifies two distinct ferroptosis-related molecular subtypes for MIBC in TCGA-BLCA dataset. (A) Factorization rank 
for k=2–10. (B) The single-heatmap of the consensus matrix when the consensus clustering k=2. The columns and rows are sorted through 
hierarchical clustering according to the Euclidean distance of the average link. (C) The heatmap of the consensus matrix when the consensus 
clustering k=2–10. (D) Kaplan-Meier OS curves for the two clusters in TCGA cohort. The assessment of difference was achieved by log-
rank test. (E) The PCA and (F) t-SNE scatter plots are in support of the classification into two MIBC molecular subtypes based on the 
ferroptosis-related gene expression profiles. The colors are indicative of samples from two molecular subtypes. NMF, nonnegative matrix 
factorization; MIBC, muscle invasive bladder cancer; TCGA-BLCA, The Cancer Genome Atlas-Bladder Cancer; OS, overall survival; PCA, 
principal components analysis; t-SNE, t-distributed stochastic neighbor embedding.
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(Figure 3A), activated B cells (P<0.001) (Figure 3B), 
regulatory T cells (P<0.001) (Figure 3C), and macrophages 
(P<0.001) (Figure 3D) than C1. Additionally, C1 exhibited 
distinctly higher levels of CD56dim natural killer cells 
(P=0.045) (Figure 3E) and monocytes (P=0.029) (Figure 3F) 
than C2. Overall, the degree of immune infiltration of C2 
was higher than that of C1 (Figure 3G). 

Another important aspect of the TME is stromal cells, 
which are also believed to play an important role in tumor 
growth, disease progression, and drug resistance (24). The 
patterns of stromal scores (Figure 4A), immune scores 
(Figure 4B), ESTIMATE scores (Figure 4C) and tumor 
purity (Figure 4D) in each MIBC sample from TCGA were 
evaluated via the ESTIMATE algorithm. The patients 
in the C2 subtype had relatively high levels of stromal, 
immune and ESTIMATE scores in comparison to C1 (all 
P<0.001), while we found lower levels of tumor purity in C2 
than in C1 (P<0.001).

In addition, we used the TIDE algorithm to predict 
the response of the C1/C2 groups to immunotherapy 
and found that C2 displayed higher TIDE levels than C1 
(P<0.001), suggesting that C2 was less likely to respond 
to immunotherapy than C1 (Figure 4E). TMB represents 
the number of mutations per megabase (Mut/Mb) of DNA 
that were sequenced in a specific cancer. We know that 

somatic cell mutations can be expressed at the RNA or 
protein level, producing new antigens, protein fragments 
or polypeptides. These new proteins are recognized by the 
autoimmune system as non-self-antigens, activate T cells, 
and cause immune responses. Therefore, as the number 
of accumulated genetic variations per megabase increases, 
many new antigens can be created (25). However, there 
was no significant difference in TMB between subtypes 
(Figure 4F). 

Development of a subtype-specific prognostic five-gene 
signature for MIBC

To explore the relationships between the DEGs and the 
prognosis of MIBC patients, univariate Cox regression 
analysis was performed with the 2,237 DEGs using the 
survival R package. A total of 641 DEGs were found to be 
associated with OS in MIBC patients (P<0.05). Then, 53 
prognostic genes were selected from the 641 prognostic 
DEGs using LASSO Cox regression (Figure 5A,5B). Finally, 
to identify the optimal prognosis-related DEGs, we used 
multivariate Cox proportional hazards regression to further 
screen 5 pivotal genes to evaluate independent prognostic 
value (Table 1). Among these 5 pivotal genes, the high 
expression of 3 genes (SLC1A6, UPK3A and SLC19A3) is 
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Figure 2 The difference between C1 and C2. (A) Heatmap depicting all DEGs between C1 (green) and C2 (red). (B) Volcano plots up-
regulated genes (red dots) and down-regulated genes (green dots) in C1 compared to C2. (C) Bubble plots of the top ten GO function 
annotation analysis results including BP, CC and MF categories. (D) Top five enriched KEGG signaling pathways in C2 cluster. Differences 
in expression patterns of CXC cytokines between two MIBC molecular subtypes. As depicted in the box plots, the expression levels of (E) 
CXCL1 (F) CXCL2 (G) CXCL5 (H) CXCL16 are visualized in MIBC samples between C1 and C2. FDR, false discovery rate; DEGs, 
differentially expressed genes; GO, gene ontology; BP, biological processes; CC, cellular component; MF, molecular function; KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Immune cells infiltration between subtypes. Patterns of (A) neutrophil, (B) activated B cell, (C) regulatory T cell, (D) macrophage, 
(E) CD56dim natural killer cell and (F) monocyte between subtypes. (G) The heatmap visualizing the expression patterns of 28 immune 
cells in the two subtypes.
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Figure 4 ESTIMATE, TIDE and TMB. Patterns of (A) stromal cell scores, (B) immune cell scores, (C) ESTIMATE scores and (D) 
tumor purity between subtypes. (E,F) Box plots showing the correlation between TIDE/TMB levels and molecular subtypes. ESTIMATE, 
Estimation of Stromal and Immune Cells in Malignant Tumour Tissues using expression data; TIDE, Tumor Immune Dysfunction and 
Exclusion; TMB, tumor mutation burden.
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closely related to the shorter survival of patients, so their 
high expression may be a risk factor, while the remaining 2 
genes (CCL17 and UGT2B4) are often prognostic protective 
factors, and their high expression is associated with longer 
survival. The expression level of each pivotal gene was 
weighted by the regression coefficient of the multivariate 
Cox regression model, and an individual risk scoring 
model was established. Through this risk scoring model, 
we calculated the risk score of each sample in the TCGA 
cohort and GEO cohort. All TCGA patients were separated 
into high- and low-risk groups in accordance with the cutoff 
values of risk scores. The higher the risk score, the greater 
the number of patients who died. The high-risk group had 
higher expression levels of 3 genes (SLC1A6, UPK3A and 
SLC19A3) than the low-risk group (Figure 5C). As shown 
in the ROC curves, the AUCs for one-, three- and five-
year OS were 0.73, 0.69, and 0.71, respectively, suggesting 
the good performance of the risk prediction model for OS 
in the TCGA cohort (Figure 5D). Likewise, in the GEO 
cohort, the AUCs for one-, three- and five-year OS were 
0.67, 0.76, and 0.72, respectively (Figure 5E). Patients with 

high-risk scores exhibited poorer OS (P<0.001) in the two 
cohorts (Figure 5F,5G). 

A nomogram integrating the five-gene signature and 
clinical factors improves predictive power for MIBC 
prognosis

Considering that the sample size of N3 in the N stage is 
too small, forcible modeling will reduce the accuracy of 
the model. Therefore, we constructed a nomogram by 
combining the five-gene signature and clinical factors, 
including age, T stage (T2-4), and N stage (N0-2), for 
predicting MIBC patient OS (Figure 6A). From the 
nomogram, by adding up the corresponding scores for each 
independent risk factor, we obtain a total score that yields 
the corresponding predicted patient survival rates at 1, 3, 
and 5 years. We further evaluated whether the integration 
of the five-gene signature and clinical factors could boost 
the predictive efficiency for MIBC prognosis in the TCGA 
cohort. The AUCs for one-, three- and five-year OS were 
0.77, 0.71, and 0.72, respectively, suggesting the good 
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Figure 5 Development of a prognostic five-gene signature for MIBC. (A) 10-time cross-validation for tuning parameter selection in the 
LASSO Cox model. (B) Plots of the LASSO coefficients. (C) The risk score rank (up), distribution of survival status (alive or dead; middle) 
and expression patterns of five genes in high- and low-risk groups. (D) Time-dependent ROC curves of five-gene signature for one-, three- 
and five-year OS time in TCGA cohort. (E) Time-dependent ROC curves of five-gene signature for one-, three- and five-year OS time 
in GEO cohort. (F,G) Kaplan-Meier OS curve for high- and low-risk groups in TCGA cohort and GEO cohort. MIBC, muscle invasive 
bladder cancer; LASSO, Least Absolute Shrinkage and Selector Operation; ROC, receiver operating characteristic; GEO, Gene Expression 
Omnibus.
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performance of the nomogram (Figure 6B). We can use the 
information of each patient to infer its prognosis based on 
the nomogram (Figure 6C). Calibration plots confirmed that 
the nomogram-predicted probabilities of one- (Figure 6D),  
three- (Figure 6E) and five-year (Figure 6F) OS had high 
consistency with the actual survival. Collectively, the 
nomogram integrating the five-gene signature, age, T stage, 
and N stage could enhance the predictive power of MIBC 
patient prognosis.

Discussion

Although RC is the main treatment for MIBC at present, 
Herr et al. showed that for patients treated with RC alone, 
the postoperative recurrence rate of T1 and T2 stage is 
20–30% and that of T3 and T4 stage is 50–90% (26).  
For patients with high risk or recurrence, adjuvant 
chemotherapy or radiation therapy is required after surgery. 
However, its practical clinical application is somewhat 
limited considering the adverse effects of chemotherapy and 
radiotherapy. The presence of immunological checkpoint 
inhibitors has radically changed the therapeutic pattern of 
bladder cancer and expanded the therapeutic strategy (27). 
Compared with traditional chemotherapy and radiotherapy, 
immunotherapy has the advantages of good targeting, fewer 
adverse reactions and better curative effects. Currently, 
major authoritative national and international guidelines 
recommend immune checkpoint inhibitors as second-line 
treatment for patients with bladder cancer who have lost the 
opportunity for resection and metastases and as first-line 
treatment for PD-L1-positive patients who are not suitable 
for platinum-based chemotherapy (28,29).

Notably, ferroptosis is an iron-dependent form of cell 
death characterized by an accumulation of lipid peroxides, 
playing a significant role in mediating immune cells 
and immunotherapies. Recent study has shown that the 

combination of immunotherapy and ferroptosis inducers can 
lead to a strong immune response, which in turn promotes 
ferroptosis in tumor cells to enhance the antitumor effect. 
In tumor patients treated with combination therapy, the 
level of ferroptosis in tumor cells correlated significantly 
with the prognosis of survival and treatment efficacy (30). 
Therefore, ferroptosis is closely related to immunotherapy 
of tumors. Considering that only 30% of tumor patients 
currently respond to immunotherapy, it is necessary for 
us to identify sensitive patients for precise treatment. In 
this study, we attempted to differentiate the sensitivity of 
MIBC patients to immunotherapy by different subtypes of 
ferroptosis-related molecules.

First, based on 41 ferroptosis-related genes associated 
with prognosis, we identified two ferroptosis-associated 
molecular subtypes in the TCGA cohort by NMF analysis: 
C1 and C2. Furthermore, two data dimensionality reduction 
algorithms, PCA and t-SNE, were used to visualize the 
differentiation of the two subtypes. Additionally, we further 
performed prognostic survival analysis for both subtypes, 
and the results suggested that patients in the C2 subtype 
group had a poorer prognosis (P<0.001). What exactly are 
the differences between the two subtypes?

To further investigate the two ferroptosis-associated 
molecular subtypes in MIBC, we explored the differences 
from the perspective of gene expression profiles. Genes 
between the two subtypes were subjected to differential 
analysis and pathway enrichment analysis, and the results 
suggested that DEGs between the two subtypes were 
associated with cytokines, especially chemokines that play 
important roles in angiogenesis (31), hematopoiesis (32),  
tumor cell metastasis (24) and so on. Among these 
cytokines, we found that some of them were significantly 
associated with prognosis. Zangouei et al. previously 
found that CXCL1/2/5/16 cytokines were associated with 
prognosis or infiltration of bladder cancer (33). With 
increased levels of CXCL1, patients face poor survival and 
advanced grade and stage (34). CXCL2/16 upregulation 
was associated with advanced stage and poor survival 
in bladder cancer patients (35,36). There was a direct 
correlation between CXCL5 downregulation and decreased 
bladder tumor cell migration and invasion, which was 
due to the reduced and increased expression of Snail and 
E-cadherin, respectively (37). Therefore, the expression of 
these cytokines in the C1 subtype was significantly lower 
than that in the C2 subtype, suggesting that the C2 had a 
poor prognosis in another aspect (Figure 2E-2H).

It is well known that the TME is closely related to tumor 

Table 1 The 5 pivotal genes used to construct a subtype-specific 
signature 

Gene Coefficient Hazard ratio P value

SLC1A6 0.016 1.017 0.001

CCL17 −0.007 0.929 0.003

UPK3A 0.001 1.001 <0.001

UGT2B4 −2.162 0.115 0.007

SLC19A3 0.448 1.565 <0.001
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Figure 6 A Nomogram Integrating the five-gene signature and clinical factors improves predictive power for MIBC Prognosis. (A) 
Forest plots showing the multivariate Cox regression analyses results of the five-gene signature and clinical factors with OS. (B) Time 
dependent ROC curves of five-gene signature and clinical factors for one-, three- and five-year OS time in TCGA cohort. (C) A nomogram 
incorporating five-gene signature and clinical factors improves predictive efficacy for MIBC prognosis. (D-F) Calibration plots displayed the 
actual and nomogram-predicted probability of one-, three- and five-year OS in TCGA cohort. ROC, receiver operator characteristic; AUC, 
area under the curves; MIBC, muscle invasive bladder cancer; OS, overall survival; TCGA, The Cancer Genome Atlas.
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prognosis, and the sensitivity of patients to immunotherapy 
depends largely on the TME. In addition to tumor cells, 
the TME is also associated with normal stromal cells, 
immune cells, vascular endothelial cells and blood cells 
in blood vessels. The most important are immune cells, 
different types of which play different roles in antitumor 
and tumor immune escape processes. Therefore, to 
explore the abundance of immune infiltration in the two 
subtypes, we utilized the ssGSEA algorithm and found a 
higher abundance of immune cell infiltration in the C2 
subtype, mainly in neutrophils, activated B cells, regulatory 
T cells, and macrophages. Recent study targeting the 
TME have found that several immune-infiltrating cells 
exhibit important immunosuppressive functions, including 
myeloid suppressor cells (MDSCs) (38), tumor-associated 
macrophages (TAMs), regulatory T cells (Tregs) (39), and 
tumors associated neutrophils (TANs) (40). Some TAMs 
show M1-like macrophage phenotype, especially in the 
early stage of tumorigenesis, expressing anti-tumor effect. 
By reprogramming TAMs, the vast majority of TAMs 
show an M2-like macrophage phenotype, which plays an 
important role in promoting tumorigenesis, progression 
and metastasis (41). In this study, all four types of cells 
were highly infiltrated in C2 cluster, which may affect its 
prognosis. To further explore the relationship between 
ferroptosis and immune cell infiltration in this study, we 
used correlation analysis to study the relationship between 
ferroptosis prognosis-related genes and T cells in this study, 
and expressed it in the form of heatmap (Figure S1). We 
found that IFNG, ZEB, SLC39A14, and AGPS were all 
positively correlated with the infiltration degree of activated 
CD8 T cells, and all were ferroptosis-promoting genes. The 
two genes, PLA2G6 and SRC, showed a negative correlation 
with activated CD8 cells, and they were both ferroptosis 
suppressor genes. Another important aspect of the TME is 
stromal cells, which are also thought to play an important 
role in tumor growth, disease progression, and drug 
resistance (24). Similarly, using the Estimate algorithm, we 
found higher stromal cell scores and lower tumor purity 
for the C2 subtype, which matches the immune infiltration 
results we obtained previously using the ssGSEA algorithm.

Since the two subtypes have different immune 
microenvironments, are there differences in their effects 
on immunotherapy? Based on the TIDE algorithm, 
immune checkpoint blockade (ICB) was found to have a 
low therapeutic potential for C2. Through the above study, 
we found that patients with the C2 subtype of MIBC have 
a higher degree of tumor immune infiltration, lower tumor 

purity, and are less sensitive to immunotherapy, which 
reminds us of the need for alternative treatment options for 
this subtype of patients.

However, how can MIBC patients belong to the C1 or 
C2 subtype be distinguished? We previously performed 
NMF analysis using 48 ferroptosis-associated prognostic 
genes to derive two subtypes. Then, these 48 genes were 
analyzed for differences between subtypes, and genes with 
P values less than 0.05 and large differences (|log2 fold 
change>2|) were identified. SLC7A11, SLC16A1, and 
CAV1 ranked in the top three highly expressed genes in the 
C2 subtype. The cystine/glutamate antiporter SLC7A11 
functions to import cystine for glutathione biosynthesis 
and antioxidant defense, and its overexpression promotes 
tumor growth partly by suppressing ferroptosis (42). Li 
et al. found that silencing lncRNA SLC16A1 can induce 
ferroptosis through miR-1433p/SLC7A11 signaling in 
renal cancer (43). In addition, overexpression of CAV1 in 
HNSCC inhibited the process of ferroptosis, leading to 
aggressive phenotypes and worse prognosis (44). SLC7A11, 
SLC16A1 and CAV1 are ferroptosis inhibitor-related genes 
and are closely related to the occurrence, development and 
prognosis of various malignant tumors, while there is a lack 
of research on these three genes in MIBC, which provides 
a new direction for subsequent basic research on MIBC. 
Whether these three genes can be used to distinguish 
MIBC as the C1 or C2 subtype will depend on more studies 
in the future.

Currently, it is a hot topic to predict the prognosis of 
tumor patients by signature, and it has great significance for 
clinical treatment and basic research guidance. This study 
constructed a subtype-specific signature of 5 pivotal genes 
(SLC1A6, UPK3A, SLC19A3, CCL17 and UGT2B4) from 
DEGs between different subtypes after using univariate 
Cox regression analysis, LASSO Cox regression analysis 
and multivariate Cox regression analysis. Among 5 pivotal 
genes, SLC1A6, UPK3A, and SLC19A3 were risk factors 
for the prognosis of MIBC in this study, while CCL17 and 
UGT2B4 were protective factors. Through the difference 
analysis between C1 and C2, CCL17 and UGT2B4 were 
relatively low expressed in C2. Li et al. found that bladder 
cancer patients with high expression levels of CCL17 were 
associated with a significantly better prognosis (45), which 
is consistent with our study. Zeng et al. found that high 
expression of UGT2B4 is associated with low-grade prostate 
cancer, and UGT2B4 upregulation in tumors is associated 
with upregulation of metabolic pathways, such as novel 
IMP biosynthetic processes, glutamine and monocarboxylic 

https://cdn.amegroups.cn/static/public/TCR-22-1653-supplementary.pdf
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acid metabolism (46). UP3KA is not only a prognostic risk 
factor, but Lai et al. found that the measurement of UPK3A 
in urine is a sensitive new marker with good performance 
for detecting bladder cancer (47). SLC1A6, a member of 
the SLC1A family, encodes a transmembrane transporter 
that mediates L-glutamate and L/D-aspartate uptake, and 
its overexpression reduces the response of nasopharyngeal 
carcinoma radioresistant cells to cisplatin and radiation 
sensitivity. Zou et al. concluded that the expression level of 
SLC1A6 was an independent predictor of poor prognosis 
in bladder cancer patients through multivariate COX 
regression analysis (48). SLC19A3, which was relatively 
high expression in C2, encodes hTHTR2 and is mainly 
expressed in the intestine, liver, kidney and placenta. 
Mutations in it cause alkaloid-responsive basal ganglia 
disease and thiamine-responsive encephalopathy (49). 
However, research on UGT2B4 and SLC19A3 in bladder 
cancer is still lacking. Following validation, this signature 
could robustly and independently predict the OS of MIBC 
patients. To more accurately predict the prognosis of MIBC 
patients, we also constructed a nomogram combining the 
signature and other clinical factors. The prediction system 
can guide the establishment of personalized examination 
procedures for MIBC patients and boost the effective use of 
medical resources.

There are also some limitations in our study. First, 
the multigene prognostic models were constructed 
and validated on public databases, which need further 
bioinformatic and experimental verification of our own 
data. Second, we identified the difference between the two 
subtypes, but the underlying mechanisms and new markers 
for distinct subtypes still warrant further investigation.

Conclusions

In this study, we obtained two ferroptosis-related molecular 
subtypes using NMF analysis of ferroptosis-related 
genes and found that the C2 subtype had more abundant 
immune infiltration, lower tumor purity, higher cytokine 
expression, less sensitivity to immmunotherapy and poorer 
prognosis. Following the prognostic correlation analysis by 
DEGs of the two subtypes, five genes, SLC1A6, UPK3A, 
SLC19A3, and CCL17 UGT2B4, were constructed for 
prognostic models that had better predictive performance 
and credibility both at the genetic level alone and in 
combination with clinical data. 
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