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Introduction 

Lung cancer is currently one of the most common types of 
malignancies worldwide. Its overall incidence has declined 
in recent years due to the reduction in tobacco consumption 

and improvements in the relevant oncological treatment 

techniques. However, the mortality rate of lung cancer 

remains the highest of all cancers (1). Due to delayed 

diagnoses, most patients with lung cancer have reached 
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advanced stages by diagnosis, resulting in a low 5-year 
overall survival rate (1,2), whereas patients with stage I lung 
cancer who undergo surgery have a 10-year survival rate 
of 92% (3). Therefore, the early screening and treatment 
of people at high risk for lung cancer can improve patient 
prognosis and reduce the risk of death from lung cancer 
(4,5). The benefits demonstrated in the National Lung 
Screening Trial have led to the widespread implementation 
of lung cancer screening worldwide (6). Although low-
dose computed tomography (LDCT) can identify small 
pulmonary nodules (PNs) more effectively than can 
conventional X-rays, accurate distinction between benign 
and malignant nodules remains a challenge (7).

Pathological biopsy is the gold standard for diagnosing 
benign and malignant PNs (8). Although this method is 
accurate and effective, it has many limitations. An invasive 
approach is required for the acquisition of the standard 
tissue sample. The procedure is risky and painful for the 
patient and may cause complications such as spreading of 
the tumor and pneumothorax during the puncture process. 
Therefore, the development of a simple, reliable, and 
economical method to determine the nature of PNs has 
become an urgent clinical demand.

Radiomics has recently become the method of choice 
for analyzing medical images (9). As a quantitative analysis 
tool, radiomic features can extract and analyze image 
features from radiological images to diagnose disease more 
accurately and objectively and to predict treatment efficacy 
(10,11). Lambin et al. first introduced the concept of 
radiomic features in 2012, and since Aerts et al. first applied 
it to lung cancer in 2014, radiomic features have been used 
to predict pathological response to tumor treatment, lymph 
node metastasis, and disease diagnosis (8,12-14). Peikert  
et al. used a least absolute shrinkage and selection operator 
(LASSO) Cox regression model to screen 7 quantitative 
radiomic features, achieving a specificity of 85.6% and 
a sensitivity of 90.0% in differentiating benign from 
malignant PNs (15). Chen et al. retrospectively analyzed 
75 PNs from 72 patients. They found that 76 features 
were significantly different between benign and malignant 
lesions and selected the 4 best radiomic features with the 
highest accuracy, achieving a sensitivity of 92.85% and a 
specificity of 72.73% (16). Overall then, it appears these 
models boast good sensitivity but low specificity. Hawkins 
et al. used a radiomics model to determine the malignancy 
risk of nodules at baseline and at 1- and 2-year follow 
ups, with areas under the receiver operating characteristic 
(ROC) curve (AUCs) of 0.83 and 0.75, respectively (17). A 

study showed that AUCs of 0.944 and 0.873, respectively, 
can be achieved using deep learning with extensive sample 
data to classify benign and malignant PNs during the first  
2 years following diagnosis (18). Both of the abovementioned 
studies were based on National Lung Screening Trial data, in 
which the proportion of benign nodules is 96.4%, with only 
some nodules being pathologically confirmed; consequently, 
the model cannot be applied directly to the follow-up 
population of those with PNs and high malignancy rates (19).

In addition, liquid biopsy techniques have advanced 
rapidly in the last decade and have been applied to diagnosis 
and treatment in the clinical oncology setting (20,21). 
Previous findings have shown that a method based on the 
4-color fluorescence in-situ hybridization (FISH) technique 
to identify circulating genetically abnormal cells (CACs) 
can be used to diagnose benign and malignant PNs (22,23). 
The diagnostic value of this method has been validated in 
a Chinese population (24), where an AUC of 0.823 was 
achieved for the diagnosis of PNs. In recent years, various 
blood markers have been developed for tumor liquid 
biopsy, and blood-based biomarkers can assist with tumor 
diagnosis. A multicenter clinical study included 192 patients 
with an operable lung mass, of whom 64% had stage I lung 
cancer, with 65 lung cancer-related gene coding regions 
being sequenced. The study found that the specificity of 
plasma circulating tumor DNA (ctDNA) detection was 
96% (25). In 2017, Ooki et al. established a new cancer-
specific methylation genome (a total of 6 investigated 
genes) to diagnose early-stage non-small cell lung cancer 
(NSCLC). The sensitivity of this methylation genome was 
72.0%, with a specificity of 71.0% (26). Biomarkers have 
shown a reasonable specificity in the diagnosis of PNs, but 
their sensitivity has been disappointing. Nevertheless, due 
to several constraints, the collection and analysis process of 
novel biomarkers lacks standardization.

Due to the complex tumor microenvironment during 
tumor development, liquid biopsy or imaging histology 
alone may not be sufficient to accurately distinguish benign 
from malignant PNs. This study thus aimed to develop a 
model combining radiomics score (Rad-score) and liquid 
biopsy as a clinically valuable tool for differentiating benign 
and malignant PNs. We hypothesized that this model 
has the potential to improve the efficiency of decision-
making, increase the prognostic accuracy for patients with 
lung cancer, and serve as an auxiliary clinical diagnostic 
tool. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-1755/rc).

https://tcr.amegroups.com/article/view/10.21037/tcr-22-1755/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-1755/rc
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Methods 

Study design and participants

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Institutional Ethics Committee 
for Clinical Research of Zhongda Hospital, affiliated to 
Southeast University (No. 2019ZDSYLL176-Y01), and 
each participant provided written informed consent prior to 
the research. This prospective study involved patients with 
PNs. The inclusion criteria were as follows: (I) single or 
multiple PNs detected using computed tomography (CT) 
or LDCT within the past month, (II) age ≥18 years, and 
(III) scheduled to undergo nonsurgical biopsy or surgery. 
The exclusion criteria were as follows: (I) women who were 
breastfeeding or pregnant and (II) a history of malignant 
tumors in the last 5 years.

Between January 2020 and December 2021, 180 
patients diagnosed with PNs confirmed by an LDCT 
scan were recruited at Zhongda Hospital. All participants 
completed a demographic survey to obtain clinical 
information. In all, 156 patients with PNs who met the 
inclusion criteria completed the plasma sample collection 
and received a definite pathological diagnosis. All patients 
completed testing for traditional tumor markers, including 
carcinoembryonic antigen (CEA), CYFRA21-1, neuron-
specific enolase (NSE), progastrin-releasing protein 

(ProGRP), squamous cell carcinoma antigen (SCC), and 
CAC detection. Participants underwent fine needle biopsy, 
fiberoptic bronchoscopy, or surgical resection followed 
by pathological examination. A flowchart of patient 
recruitment and processing is presented in Figure 1. 

CAC detection

We selected a 4-color FISH assay which was developed at 
the University of Texas MD Anderson Cancer Center (23).  
This technology uses a 4-color FISH probe set to detect 
the chromosome abnormality of surfactant protein A at 
10q22.3 and 3p22.1, which have been implicated in the 
early pathogenesis of lung cancer and are related to the 
internal control genes CEP10 and 3q29 (22). A sample of 
peripheral blood (10 mL) was collected preoperatively for 
the CAC assay using the Mononuclear Cell Chromosomal 
Abnormality Detection Kit (Zhuhai Sanmed Biotechnology 
Ltd., Zhuhai, China). The assay procedure was performed 
according to the manufacturer’s instructions (22).

CT image acquisition and segmentation

All patients underwent CT examination. The CT machine 
used was a Siemens SOMATOM Definition Flash system 
(Siemens Healthineers, Erlangen, Germany) with the 
following CT scan parameters: 150 effective mAs, 120 kV, 

Figure 1 Flowchart of participant involvement. PNs, pulmonary nodules; LDCT, low-dose computed tomography; CT, computed 
tomography. 

Patients diagnosed with PNs confirmed by 
an LDCT scan in Zhongda Hospital, between 

January 2020 and December 2021.
(n=180)

Inclusion criteria:
(1) Single or multiple PNs detected using CT or 
LDCT within the past month;
(2) Age ≥18 years;
(3) Patients were scheduled to undergo 
nonsurgical biopsy or surgery.

Exclusion criteria: 
(1) Women who were breastfeeding or 
pregnant; (n=11)
(2) A history of malignant tumors in the 
last 5 years. (n=13)

Qualified patients  
(n=156)

Training set
 (n=109)

Testing set
 (n=47)
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beam collimation 128 mm × 0.6 mm, frame rotation time 
0.5 s, pitch 1.2, and a reconstructed image slice thickness 
0.625–1.25 mm. 

In this study, all regions of interest (ROIs) of PNs were 
segmented using 3D Slicer version 4.11.20210226 (3D 
Slicer; National Institutes of Health, Bethesda, MD, USA). 
A radiologist with 5 years of experience performed the 
segmentation task twice manually. In all, 103 patients with 
multiple nodules were included in this study. The larger 
PNs were segmented. An interclass correlation coefficient 
(ICC) was used for analyzing intraobserver agreement (ICC 
>0.80). The image segmentation process is shown in Figure 2.

Radiomic feature extraction 

Open-source software [FeAture Explorer (FAE) v. 0.0.3; 
Song et al., Shanghai, China] was used to extract and select 
radiomic features and then establish a radiomics model. The 
software automatically matched the original data with the 
corresponding ROIs and extracted 106 radiomics features. All 
texture features were calculated for 13 directions and merged 
using the 3D-average approach. Parameters of params.yaml 
for radiomics extraction are provided in website: https://cdn.
amegroups.cn/static/public/tcr-22-1755-1.yaml.

Model building

At a ratio of 7:3, 156 eligible patients with PNs were 
randomly divided into a training set (n=109) and an internal 
test set (n=47). The synthetic minority oversampling 
technique (SMOTE) was used to remove the imbalance 
of the training data set. We applied principal component 
analysis (PCA) to the feature matrix. Before building the 
model, we used the Kruskal-Wallis test to select features 

and used logistic regression with LASSO constraint as 
the classifier. To conclude the model’s hyper-parameter, 
we applied 5-fold cross-validation on the training data 
set. Each participant’s Rad-score was calculated using 
the linear combination of the final selected features and 
their corresponding weights. The above processes were 
performed with FAEPro version 0.3.7 (FAE).

Statistical analysis

The SPSS 20.0 software (IBM Corp., Armonk, NY, USA), 
Python 3.7 (Python Software Foundation, Beaverton, OR, 
USA), and MedCalc 19.6.4 (MedCalc Software, Ostend, 
Belgium) were used for statistical analyses. Continuous data 
(age, diameter of the nodule, and Rad-score) were tested for 
normality and homogeneity of variance. For categorical data 
(gender, smoking history, and family history), the differences 
between the 2 groups were compared using independent 
samples t-tests. A P value <0.05 indicated statistical significance.

A multivariate logistic regression model was constructed 
using the established Rad-score and clinical data in the 
training set. Pathology results were used as the gold 
standard to generate the ROC curve. The ROC curve and 
AUC were used to evaluate the model’s performance in the 
training and test sets. DeLong’s test was applied to compare 
whether the differences in AUC between models were 
statistically significant.

Results

Patient characteristics

A total of 156 patients with PNs were included. The clinical 
characteristics of all enrolled patients are shown in Table 1. 
There were 59 (54.1%) patients in the training set and 26 

Figure 2 Image segmentation process. (A) Original image. (B) Delineation of the ROI. ROI, region of interest.
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(55.3%) in the test set with malignant PNs. Smoking history 
differed significantly between benign and malignant PNs in 
the training and test sets (P<0.001); whether the nodule was 
solid or not was significantly different between malignant 
and benign PNs (P<0.001), but benign and malignant 
nodules differed significantly in diameter (P<0.05).

Biomarkers 

All patients were tested for established tumor biomarkers 

and CACs. In both the training and test groups, the 

detection results of CACs in malignant PNs were 

significantly different from those in benign PNs (P<0.001). 

Table 1 Clinical characteristics of the 156 patients 

Characteristics
Training set (n=109) Testing set (n=47)

Benign Malignant P value Benign Malignant P value

Age (years) 57.84±12.430 57.31±12.282 0.822 57.14±12.607 55.88±11.010 0.717

Gender 0.110 0.282

Female 17 (34%) 29 (49.2%) 8 (38.1%) 14 (53.8%)

Male 33 (66%) 30 (50.8%) 13 (61.9%) 12 (46.2%)

Smoking history <0.001 <0.001

Nonsmoker* 44 (88%) 24 (40.7%) 19 (90.5%) 5 (19.2%)

Current or past smoker† 6 (12%) 35 (59.3%) 2 (9.5%) 21 (80.8%)

Family history 0.718 0.360

No 34 (68%) 42 (71.2%) 9 (42.9%) 19 (73.1%)

Yes 16 (32%) 17 (28.8%) 12 (57.1%) 7 (26.9%)

Nodule count 0.056 0.112

Multiple 36 (72%) 32 (54.2%) 18 (85.7%) 17 (65.4%)

Single 14 (28%) 27 (45.8%) 3 (14.3%) 9 (34.6%)

Diameter of the nodule 10.06±5.783 13.15±5.956 0.007 9.67±5.228 12.38±5.906 0.106

Type of nodule <0.001 <0.001

Subsolid 12 (24%) 45 (76.3%) 7 (33.3%) 20 (76.9%)

Solid 38 (76%) 14 (23.7%) 14 (66.7%) 6 (23.1%)

Nodule location 0.718 0.016

Non-upper lobe 28 (56%) 31 (52.5%) 13 (61.9%) 7 (26.9%)

Upper lobe 22 (44%) 28 (47.5%) 8 (38.1%) 19 (73.1%)

Cancer stage – –

IA1 – 41 (69.5%) – 19 (73.1%)

IA2 – 11 (18.6%) – 4 (15.4%)

IA3 – 7 (11.9%) – 3 (11.5%)

Malignant subtypes – –

Adenocarcinoma – 57 (96.6%) – 26 (100.0%)

Squamous cell carcinoma – 2 (3.4%) – –

No. of patients (%) for categorical variable; mean ± standard deviation for continuous variables. *, current smokers were identified as 
those with 20 pack-years; †, past smokers were identified as those having a quit time of <15 years.
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However, none of the established tumor biomarkers were 
significantly different between malignant and benign PNs 
(Table 2). When 3 was selected as the cutoff value (22), the 
sensitivity of CACs in diagnosing benign and malignant 
PNs was 83.1% while the specificity was 78.0% (Table 3). 
Table 3 shows that the AUC of CACs in diagnosing benign 
and malignant PNs was 0.805 [95% confidence interval (CI): 
0.718–0.875], with a sensitivity of 83.1%. In the test set, the 
sensitivity of CACs was 73.1%.

Radiomics model

In all, 105 radiomic features were extracted from the CT 
images of each patient with PNs. These radiomic features 
are described in website: https://cdn.amegroups.cn/static/
public/tcr-22-1755-2.xlsx. The model based on 5 features 
achieved the highest AUC in the validation data set. The 
AUC was 0.804 (95% CI: 0.708–0.886). The AUC of the 

radiomics model was 0.844 (95% CI: 0.766–0.915) in the 
training set. This model had a sensitivity of 83.1% and a 
specificity of 80.0%. The ROC curves and the selected 
features are shown in Figure 3. 

Building a multidimensional model

The Rad-score of each PN was calculated using the linear 
combination of radiomics features and their corresponding 
weights (available online: https://cdn.amegroups.cn/
static/public/tcr-22-1755-3.xlsx). We selected the clinical 
characteristics with P<0.1 (smoking history, nodule 
count, diameter of the nodule, and type of nodule) and 
combined them with CACs and Rad-score to construct a 
multidimensional model using logistic regression analysis. 
The final multidimensional model incorporated 4 variables 
(P<0.05), the AUC of the multidimensional model was 0.943 
(95% CI: 0.881–0.978), the sensitivity was 86.4%, and the 

Table 2 Comparative analysis of markers in 156 patients

Characteristics
Training set (n=109) Testing set (n=47)

Benign Malignant P value Benign Malignant P value

CAC <0.001 <0.001

Negative 39 (78%) 10 (16.9%) 17 (81.0%) 7 (26.9%)

Positive 11 (22%) 49 (83.1%) 4 (19.0%) 19 (73.1%)

CEA (ng/mL) 0.906 0.877

Negative 49 (98%) 58 (98.3%) 20 (95.2%) 25 (96.2%)

Positive 1 (2%) 1 (1.7%) 1 (4.8%) 1 (3.8%)

SCC (μg/L) – –

Negative 50 (100%) 59 (100%) 21 (100%) 26 (100%)

Positive 0 (0%) 0 (0%) 0 (0%) 0 (0%)

NSE (ng/mL) 0.291 0.108

Negative 47 (94%) 52 (88.1%) 21 (100%) 23 (88.5%)

Positive 3 (6%) 7 (11.9%) 0 (0%) 3 (11.5%)

Pro-GRP (pg/mL) 0.189 0.364

Negative 50 (100%) 57 (96.6%) 21 (100%) 25 (96.2%)

Positive 0 (0%) 2 (3.4%) 0 (0%) 1 (3.8%)

CYFRA21-1 (ng/mL) 0.235 0.683

Negative 49 (98%) 55 (93.2%) 20 (95.2%) 24 (92.3%)

Positive 1 (2%) 4 (6.8%) 1 (4.8%) 2 (7.7%)

Data are presented as n (%). CAC, circulating genetically abnormal cell; CEA, carcinoembryonic antigen; SCC, squamous cell carcinoma 
antigen; NSE, neuron-specific enolase; ProGRP, progastrin-releasing protein. 

https://cdn.amegroups.cn/static/public/tcr-22-1755-3.xlsx
https://cdn.amegroups.cn/static/public/tcr-22-1755-3.xlsx
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Table 3 Statistical analysis results of the models with different predictors

Predictors
Training set (n=109) Testing set (n=47)

Sensitivity Specificity AUC (95% CI) Sensitivity Specificity AUC (95% CI)

Radiomics model 0.831 0.800 0.844 (0.766–0.915) 0.885 0.619 0.769 (0.611–0.901)

CAC 0.831 0.780 0.805 (0.718–0.875) 0.731 0.810 0.770 (0.624–0.880)

Model (CAC + type of nodule + 
smoking history + Rad-score)

0.864 0.920 0.943 (0.881–0.978) 0.846 0.952 0.960 (0.858–0.995)

AUC, area under the ROC curve; CI, confidence interval; CAC, circulating genetically abnormal cell; Rad-score, radiomics score. 

Figure 3 Statistical analysis results of the radiomics model. (A) ROC curves of the radiomics model. (B) The coefficients of features in the 
model. AUC, area under the ROC curve; ROC, receiver operating characteristic; PCA, principal component analysis.
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Figure 5 Performance of diagnostic model. (A) Five-fold cross-validation of the model. (B) The calibration plot of the model in the training 
set. The diagonal line represents perfect prediction by an ideal model. The solid blue line represents the performance of the model. ROC, 
receiver operating characteristic; AUC, area under the ROC curve; CI, confidence interval. 
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specificity was 92.0% (Table 3 and Figure 4). Nonetheless, 
we tested the significance of AUCs with the DeLong’s test. 
The difference between CACs and the multidimensional 
model was significant (P<0.05). The model achieved stable 
performance in 5-fold cross-validation (Figure 5A). The 
calibration plot showed good agreement between prediction 
and observation (Figure 5B). 

Discussion

This single-center prospective study constructed logistic 
regression models and tested their predictive power. A 
new model was established that combines clinical features, 
CACs, and Rad-score, and it achieved good diagnostic 
results in distinguishing benign and malignant PNs.

The  d iagnos i s  and  t rea tment  o f  PNs  a re  not 
standardized, and a unified consensus has not yet been 
reached. Excessive surgical treatment of many PNs is not 
uncommon. Some authors have asserted that an ideal model 
for diagnosis and prediction should be comprehensive and 
include histology, serum markers, medical history (27), and 
other features in addition to radiomic features. However, it 
remains to be determined which features should be included 
in the feature selection of comprehensive models and 
whether these features improve diagnostic performance. It 
is also controversial whether a model combining imaging 
factors, radiomics, or other features is better than a single-
factor model (28); the results of existing studies have been 
inconsistent. 

Due to the epidemiological importance of lung cancer 

in different regions and across various ethnic groups, many 
different countries are actively conducting research on lung 
cancer. Despite the great potential of existing methods for 
the early diagnosis of lung cancer, there is no single method 
for this purpose that is routinely used for clinical detection. 
Therefore, clinical validation and application of existing 
biomarkers are especially important. Research is needed 
on combining promising biomarkers in different ways and 
using the most suitable combination for screening.

Compared with traditional CT scan images, radiomics 
reduces the influence of human error and can thus 
contribute greatly to distinguishing benign from malignant 
PNs. This study used LASSO regression to screen 5 stable 
features from 105 radiological features and to build a model. 
In the training set, the radiomics model had a sensitivity of 
83.1% and a specificity of 80.0% (Table 3).

In this study, CACs were detected in the enrolled 
population, and the ROC curve was used to evaluate the 
diagnostic value of CACs. Accordingly, we combined the 
Rad-score, CACs, and clinical characteristics (type of nodule 
and smoking history) to construct a multidimensional model. 
Compared with the sensitivity of CACs, the sensitivity of 
the model was significantly improved (Table 3), which also 
verified the high sensitivity of radiomics. Compared with the 
classic Mayo model (AUC =0.8328) (29), the AUC =0.943 
(95% CI: 0.881–0.978) of the multidimensional model was 
improved (Table 3). Among the clinical parameters, type of 
nodule and smoking history were identified as independent 
risk factors according to multivariate logistic regression. 
Although the incidence of lung cancer among nonsmoking 
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women in China is increasing annually (30), smoking history 
is still a significant risk factor for lung cancer. 

The multidimensional model showed that further 
combination, exploration, and validation of existing 
diagnostic methods is a promising research paradigm for 
diagnosing malignant PNs. However, this study has a few 
shortcomings: (I) we employed a prospective study design 
with a small data set. Some studies indicate that models based 
on small data sets that lack standardized scanning instruments 
and protocols are prone to overfitting and perform poorly 
in multicenter validation (27,31). (II) The ROIs of this study 
were manually delineated by radiologists, and thus specific 
human errors might have occurred. (III) The sample data 
came from a single-center medical institution, which might 
have led to biased results. (IV) The study lacked an external 
independent test set, and so the diagnostic effect of the model 
should be furthered verified using larger samples.

Conclusions

In this prospective study, we constructed a multidimensional 
predictive model for the identification of malignant PNs. 
The diagnostic performance of the model was better than 
that of existing biomarkers. The model has the advantages 
of noninvasiveness, simplicity, and efficiency and can be 
used as an auxiliary tool for the diagnosis of PNs. The 
combination and validation of multiple diagnostic methods 
are promising in the field of the early lung cancer diagnosis.
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