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Introduction

BRAF gene encodes a serine/threonine kinase and is known 
to be an oncogene (1,2). BRAF regulates the mitogen-
activated protein kinase (MAPK) pathway. The V600E 

is the most common somatic BRAF variant followed by 

V600K/D/R/M and non-V600 variants (3). Knowing the 

presence of these BRAF variants is important to make a plan 

for patient treatment, especially in melanoma and colorectal 
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carcinoma.
The presence of BRAF variants is a marker to screen 

Lynch syndrome in microsatellite-unstable (MSI-H) 
colorectal cancer (4). Lynch syndrome is an autosomal 
dominant hereditary cancer syndrome associated with 
mismatch repair gene deficiency. The presence of a BRAF 
V600E variant suggests that MSI-H colorectal cancer 
is sporadic tumor rather than a component of Lynch 
syndrome-associated malignancy (5).

Real-time polymerase chain reaction (PCR) or next-
generation sequencing were traditionally used for BRAF 
variant detection to select who will respond to the BRAF 
inhibitors. Recently immunohistochemistry and digital 
polymerase chain reaction are used for detecting BRAF 
V600E variant (6,7). BRAF inhibitors have been approved 
for the treatment of melanoma (8-10), non-small cell lung 
cancer (11), and colon cancer (12). The prediction of BRAF 
variants using gene expression data might be an alternative 
test when the direct variant sequencing test is not available 
or fails.

We have built prediction models to detect PIK3CA 
variants and homologous recombination deficiency with 
mRNA gene expression data using The Cancer Genome 
Atlas (TCGA) pan-cancer data (13). TCGA is a large cancer 
genomic consortium including more than 10,000 specimens 
from 25 different tumor types with exome sequencing, 
mRNA gene expression, DNA methylation, and clinical 
data (14). In this study, we try to develop a prediction 
model to detect BRAF V600E variant with mRNA gene 
expression data in various cancer types. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-883/rc).

Methods

Dataset

We used TCGA pan-cancer data. The mRNA gene 
expression data were downloaded from the National 
Cancer Institute (NCI)’s Genomic Data Commons (GDC) 
website (https://gdc.cancer.gov/about-data/publications/
pancanatlas). Data of BRAF variants were obtained from the 
cbioportal website (15).

We only included the presence of BRAF V600E variants 
as the target variable because BRAF inhibitors have been 
approved for cancers with BRAF V600E variants but not for 
other BRAF variants. Predictor variables were mRNA gene 

expression and cancer types. The mRNA gene expression 
predictor variables were filtered with a median absolute 
deviation to exclude less informative variables.

The BRAF V600E variants were frequently observed 
in thyroid carcinoma, cutaneous melanoma, and colon 
adenocarcinoma and very rarely observed in other cancer 
types. We used three-quarters of the three cancer types with 
a high prevalence of BRAF V600E variants for the training 
set and the remaining test set. The other cancer types with 
a low prevalence of BRAF V600E variants were regarded as 
an unseen test set.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Ethical 
approval is not required because we used public databases 
according to the TCGA publication guidelines (https://
cancergenome.nih.gov/publications/guidelines).

Dataset summary

The number of included cases of the training set, the test 
set, and the unseen test set was 1,136, 376, and 9,377, 
respectively. A total of 5,129 mRNA gene expression 
predictors were selected after filtering with median absolute 
deviation. The prevalence of BRAF V600E variants was 
0.57 (326/568 cases) for thyroid carcinoma, 0.33 (190/469 
cases) for cutaneous melanoma, and 0.10 (49/475) for 
colon adenocarcinoma. Cancer type abbreviation of pan 
TCGA dataset and number of cases of each cancer type are 
summarized in Table S1.

Prediction modeling

We adopt a penalized logistic regression for the BRAF 
V600E variants prediction model (16). Tidymodels was 
used for the modeling process. Tidymodels is a framework 
that is a collection of R packages (R project for Statistical 
Computing, RRID:SCR_001905) for modeling and 
machine learning.

Penalized logistic regression has two hyperparameters 
which are the amount of regularization (λ) and the 
proportion of lasso penalty (α). Bootstrap resampling 
was used to determine those hyperparameters. Ten times 
bootstrap resampling was performed with a combined target 
variable and cancer type stratification.

Data preprocessing included knnimputation for missing 
value imputation, and YeoJohnson transformation for 
skewness correction, center, and scale for standardization, 
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with the synthetic minority over-sampling technique (smote) 
for class imbalance.

Hyperparameter optimization with a grid search was 
done for model selection in terms of area under the 
precision-recall (AUPR). AUPR is better than area under 
the receiver operating characteristic (AUROC) to compare 
model performance with an imbalanced dataset (17). The 
hyperparameter grid was set into λ (10−5, 10−4, 10−3, 10−2, 
10−1, 100) and α (0.0, 0.25, 0.5, 0.75, 1.0).

Assessing model performance

Model performance was estimated on the test set of the 
cancer types with a high prevalence of BRAF V600E 
variants and the test set of other cancer types with a low 
prevalence of BRAF V600E variants as an unseen test set in 
terms of AUPR.

Gene ontology test

The gene ontology test was done with the PANTHER 
overrepresentation test (18) to determine which pathways 
are important in predicting the BRAF V600E variants. The 
selected predictor genes after final model fitting with entire 
training set were evaluated for gene ontology test with 
following detailed PANTHER parameters (analysis type: 
PANTHER Overrepresentation Test (Released 20210224), 
Annotation Version and Release Date: PANTHER version 
16.0 Released 2020-12-01, Reference List: Homo sapiens (all 
genes in database), Test Type: FISHER, Correction: FDR).

Statistical analysis

All statistical analysis was done using R (R Project for 
Statistical Computing, RRID:SCR_001905).

Results

Model summary

The hyperparameter was chosen as 10−5 for λ and 0.25 for 
α. Those hyperparameter values showed the highest AUPR 
by 10 times bootstrap resampling. After model fitting with 
the entire training set and selected hyperparameters, 546 
predictors were included in the final model. The cancer 
types were excluded from the final model. The coefficient 
values of genes that were included in the final model are 
summarized in Table S2. A predicted probability was 

calculated by the final logistic model after pre-determined 
data preprocessing. Genes with the largest positive 
coefficient value included ETS variant transcription factor 1 
(ETV1), AKT serine/threonine kinase 2 (AKT2), neurofibromin 
1 (NF1) and nuclear factor kappa B subunit 1 (NFKB1).

Performance of prediction model

The AUROC of BRAF V600E variant prediction on the 
training set was 0.99 in thyroid carcinoma, and 1.00 in 
colon adenocarcinoma and cutaneous melanoma. The 
AUROC on the test set was 0.98 in thyroid carcinoma, 0.90 
in colon adenocarcinoma, and 0.85 in cutaneous melanoma. 
The receiver operating characteristic curve (ROC curve) is 
illustrated in Figure 1.

The AUPR of BRAF V600 variant prediction on the 
training set was 0.99 in thyroid carcinoma, 1.00 in colon 
adenocarcinoma, and cutaneous melanoma. The AUPR on 
the test set was 0.98 in thyroid carcinoma, 0.71 in colon 
adenocarcinoma, and 0.65 in cutaneous melanoma. The 
precision-recall curve (PR curve) was illustrated in Figure 2.

AUROC was 0.52 and AUPR was 0.002 with 0.002 
baselines on an unseen test set of other cancer types with a 
low prevalence of BRAF V600E variants.

Gene ontology test

The selected predictor genes were overrepresented in the 
following pathways: Insulin/IGF pathway-protein kinase 
B signaling cascade, PI3 kinase pathway, Endothelin 
signaling pathway, Integrin signaling pathway, Apoptosis 
signaling pathway, T cell activation, CCKR signaling 
map, Inflammation mediated by chemokine and cytokine 
signaling pathway, Gonadotropin-releasing hormone 
receptor pathway. Detailed gene ontology results are 
described in the Table S3.

Discussion

Our BRAF V600 variant prediction model showed very 
good performance on the test set of the cancer types 
including thyroid carcinoma, colon adenocarcinoma, and 
cutaneous melanoma. Those cancer types have a high 
prevalence of BRAF V600E variants. This result suggests 
that a BRAF V600 variant prediction model can help to 
select patients for treatment with BRAF inhibitors.

Gene expression signature has been used as a predictive 
biomarker in the practice of patient selection. Gene 

https://cdn.amegroups.cn/static/public/TCR-22-883-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-22-883-Supplementary.pdf


Kang et al. Prediction of BRAF mutation from gene expression4054

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2022;11(11):4051-4056 | https://dx.doi.org/10.21037/tcr-22-883

expression signature assay is recommended to select 
breast cancer patients who will benefit from receiving 
chemotherapy (19). These gene signature assay allow many 
breast cancer patients avoid adjuvant chemotherapy. 

Although the purpose of this study is to investigate 
the possibility of BRAF V600E variants predictive model 
with mRNA gene expression data, we found that our 
model is biologically relevant because some genes that are 
biologically related to BRAF V600E variants had larger 
coefficient values. ETV1 is the predictor with the largest 
positive coefficient value. ETV1 is a member of the E 
twenty-six (ETS) family of transcription factors. ETS 
family genes make translocations with the ewing sarcoma 
breakpoint region 1 (EWSR1) gene in Ewing’s sarcoma/
peripheral neuroectodermal tumor (PNET) spectrum 
and prostate cancer (20,21). The BRAF V600E variant 
is associated with ETV1 expression and brain metastasis 

in melanoma (22). ETS factors including ETV1 are 
upregulated in papillary thyroid cancer with the BRAF 
V600E variant and showed synergistic effect with TERT 
promoter mutation (23). Nuclear factor κB (NF-κB)  
is activated by BRAF  V600E variant and promotes 
invasiveness in thyroid cancer (24,25). The BRAF V600E 
variant induces NF-κB activation and increases melanoma 
cell survival in melanoma (26). Genes in the RAF-MEK-
ERK signal transduction pathway, including AKT serine/
threonine kinase 2 (AKT2) and NF1, also showed larger 
coefficient values.

A previous study predicts BRAF variants using Affymetrix 
mRNA gene expression data with a support vector machine 
model from a panel of 63 melanoma cell lines with 0.794 
ROCAUC (27). BRAF prediction studies using image data 
have been published. Ultrasound images with radiomics 
data were used for BRAF variant prediction with 0.651 

Figure 1 ROC curve of BRAF V600E variant prediction. THCA, thyroid carcinoma; SKCM, Cutaneous Melanoma; COAD, Colon 
adenocarcinoma; ROC, receiver operating characteristic.

Figure 2 The precision-recall curve of BRAF V600E variant prediction. PR, precision-recall.
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ROCAUC (28). A deep learning model from the histologic 
image was also used for BRAF variant prediction in 
melanoma with 0.83 ROCAUC (29).

Our prediction model has some limitations. Our model 
showed poor performance on the test set of other cancer 
types with a low prevalence of BRAF V600E variants. BRAF 
inhibitors have been approved in patients with lung non-
small cell carcinoma and BRAF V600E variants. The lung 
non-small cell carcinoma shows a low prevalence of BRAF 
V600E variants. Therefore, our prediction model cannot be 
applied to lung non-small cell carcinoma patients or other 
cancer types with a low prevalence of BRAF V600E variants. 
Gene expression data are expensive and still complex for 
clinical use.

In conclusion, our penalized logistic regression model 
can predict BRAF V600E variant with good performance 
in thyroid carcinoma, cutaneous melanoma and colon 
adenocarcinoma.
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Supplementary

Table S1 Study abbreviation and number of cases

Study abbreviation Study name Number of cases

LAML Acute myeloid leukemia 173

ACC Adrenocortical carcinoma 78

BLCA Bladder urothelial carcinoma 426

LGG Brain lower grade glioma 527

BRCA Breast invasive carcinoma 1201

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 299

CHOL Cholangiocarcinoma 45

COAD Colon adenocarcinoma 475

ESCA Esophageal carcinoma 192

GBM Glioblastoma multiforme 201

HNSC Head and neck squamous cell carcinoma 561

KICH Kidney chromophobe 89

KIRC Kidney renal clear cell carcinoma 581

KIRP Kidney renal papillary cell carcinoma 316

LIHC Liver hepatocellular carcinoma 418

LUAD Lung adenocarcinoma 569

LUSC Lung squamous cell carcinoma 534

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 48

MESO Mesothelioma 87

OV Ovarian serous cystadenocarcinoma 303

PAAD Pancreatic adenocarcinoma 182

PCPG Pheochromocytoma and paraganglioma 186

PRAD Prostate adenocarcinoma 546

READ Rectum adenocarcinoma 163

SARC Sarcoma 259

SKCM Cutaneous melanoma 469

STAD Stomach adenocarcinoma 447

TGCT Testicular germ cell tumors 138

THYM Thymoma 121

THCA Thyroid carcinoma 568

UCS Uterine carcinosarcoma 57

UCEC Uterine corpus endometrial carcinoma 550

UVM Uveal melanoma 80
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Table S2 (continued)

Predictor Coefficient value

TTC3 0.118698045

OXCT1 0.118598478

TBC1D1 0.116858115

PCMT1 0.116309156

PPP2R5A 0.114435214

PSMD1 0.113489528

CRISPLD2 0.113425698

MRPS24 0.113278028

SPRED2 0.113043484

WIPI2 0.110292944

LY6E 0.109968565

NRIP1 0.10895298

CCT4 0.108176808

TXNIP 0.107679718

PPP1R9A 0.106847612

AKT2 0.105905525

ITGA2 0.10515576

MLPH 0.100495855

NFKB1 0.100488573

GDE1 0.099253853

NF1 0.09861373

C1QTNF1 0.098279261

MARCH6 0.09818392

RETSAT 0.097431727

FBXO34 0.094880043

NFATC4 0.094651548

C5orf62 0.092537745

ATF5 0.092266395

SAMD4A 0.091851926

C10orf58 0.091821872

LPHN1 0.091206168

ADCY6 0.089464002

CD55 0.089235938

CCND1 0.088506258

Table S2 (continued)

Table S2 The coefficient values of genes are included in the final 
model

Predictor Coefficient value

C2orf18 0.300852407

PTK2 0.242215773

FKBP5 0.231662872

DCN 0.223877955

FOSB 0.221057365

PTPRE 0.210010009

CAV1 0.207495453

CAMK2N1 0.196625042

ETV1 0.194502905

CHD3 0.190458013

EXT2 0.188940626

CD200 0.185461899

MMP9 0.18499858

RARG 0.184466599

SOX13 0.18263483

PDLIM4 0.182004634

HNRNPH2 0.169171491

NEK7 0.159721077

SULF2 0.158557026

JAZF1 0.155588028

DDRGK1 0.154423318

SORL1 0.153924494

LIMA1 0.149032802

UNC45A 0.14470599

ITIH5 0.143173781

ETNK1 0.141935617

GBAS 0.141174046

ALDH1A1 0.138736872

C1S 0.138443724

PIGQ 0.131092706

HSPA8 0.126238315

RTKN 0.125980941

VAPB 0.123207175

DHCR24 0.123195818

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

SUMO1 0.066229742

ATP1B1 0.065661254

TCEAL8 0.065435389

AGPAT3 0.065368532

EP400 0.064906137

NBL1 0.063939314

RTN3 0.063369972

NAP1L1 0.062870275

SMC5 0.061187484

PAFAH1B1 0.060463032

TCIRG1 0.060099389

FMOD 0.059363374

SFRS6 0.059319976

TRAK1 0.059221807

DNAJA4 0.058812443

TTC19 0.058609681

UPF1 0.058099781

BBX 0.057647272

SERPINF1 0.057243117

ADAM15 0.057133469

ITPRIPL2 0.056725428

UBB 0.056092814

PSIP1 0.055793463

AKAP2 0.055220868

ATP6V0E2 0.054865422

GGCT 0.05395249

LRRC8A 0.052489697

SMARCC2 0.052266561

RRM1 0.052092938

TMEM9 0.051126731

CD59 0.05071526

SEC11C 0.050690072

ECHDC1 0.050320647

FOSL2 0.050100302

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

SFRP2 0.087677229

ZNF83 0.087546468

TPD52L1 0.085712481

LPIN2 0.084126614

GTF2IP1 0.083390487

S100A4 0.08288983

PXN 0.082238383

MYO1E 0.081908354

STK17B 0.080614539

SMG6 0.080131022

MYO5B 0.078605001

TRIB1 0.078588893

SERPING1 0.077370566

EIF3I 0.077357538

SQSTM1 0.077295597

GLOD4 0.07718981

NDUFA10 0.07701059

CCDC6 0.076946383

RNF144A 0.076929418

FYN 0.076595277

CCNG2 0.07645841

ELP2 0.076066824

MFSD1 0.074244674

STC1 0.072967766

PCGF2 0.072520212

PYGO2 0.071519324

SGK223 0.070781512

SNX9 0.068813508

RARRES2 0.068414047

PTPRU 0.068397909

TXNDC12 0.06819452

YWHAE 0.067861886

ATF7IP 0.067669038

NCS1 0.067328748

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

HIPK2 0.040434807

NXN 0.040413567

UBA1 0.040376974

AK3 0.040244489

TIMP1 0.039665115

VPS53 0.038876352

GBP4 0.038021839

CHD2 0.037810724

NEAT1 0.037157293

MAP3K5 0.037037163

PIGY 0.036502849

RPS17 0.036204355

LSM4 0.03558709

TESC 0.035548457

PRDM1 0.035180784

FAM111A 0.034755251

CBR1 0.0346988

PACSIN2 0.034450275

RRP7A 0.033567084

HCP5 0.033013885

IFNGR2 0.032854811

AFAP1L2 0.032535422

GLG1 0.032162567

DLST 0.032072897

ZNF385A 0.03205089

CDK14 0.032021909

SPTBN2 0.031855716

PLXNB2 0.031240957

TM7SF3 0.031234756

PTP4A2 0.03115106

KIAA1797 0.030899719

NFKBIA 0.030786842

R3HDM2 0.030557894

MBP 0.029986966

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

TBL1XR1 0.050044447

POLE3 0.050011027

PRDX6 0.049746269

SCYL1 0.04970137

KIAA0284 0.04952663

TMEM115 0.049371505

ASAP2 0.048787608

EWSR1 0.048755607

RAP1GAP2 0.04844853

SPTBN1 0.048277591

TMED3 0.048243962

RELL1 0.047672887

C2orf28 0.046125098

NR2F2 0.045858868

SLC29A1 0.045743246

NUP50 0.045634565

MSN 0.045223306

NAP1L4 0.045084993

GTPBP2 0.044673267

PDGFRA 0.044646466

EFR3B 0.044415726

MCM5 0.044285624

C20orf3 0.043861156

NDUFB9 0.04328223

SKAP2 0.043165334

ETV4 0.042880029

SPOCK2 0.042529934

SEC61G 0.042423094

USP48 0.042373017

CNIH 0.041370304

ERRFI1 0.041155552

SH3GLB2 0.0411296

C1orf116 0.040877909

CTAGE5 0.04087093

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

POLR2J3 0.017379979

USP53 0.0171379

GNG12 0.017052882

ARAP2 0.016630591

NPM1 0.016008692

ENO2 0.015019148

DCAKD 0.014914673

LOC729678 0.014413783

ENPP2 0.013956892

FBLN2 0.013531858

MAP3K11 0.013529472

RB1CC1 0.013283522

PFKFB2 0.013252072

EIF4B 0.013235598

UXS1 0.013038237

ATP6V1H 0.012893538

MAN2C1 0.012775558

RSL24D1 0.011258685

PLDN 0.011236057

SEPN1 0.010736932

SPTLC1 0.01025044

TNS1 0.010233013

ERGIC1 0.010142683

BTN3A2 0.009788192

VTI1B 0.009341172

GPBP1 0.009219948

LLGL1 0.008821434

BASP1 0.008584885

LYN 0.008461498

CHPF 0.008158752

ZNF655 0.008016446

TBC1D9B 0.007769478

GPRC5B 0.007600647

GCNT1 0.007451532

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

SUDS3 0.029841016

SCD5 0.029156601

ANGPTL2 0.029023953

RBM15B 0.028549076

MAT2B 0.028383461

BTG1 0.028292035

SIPA1L1 0.027565644

NFIC 0.026843709

HBP1 0.026437415

TGFBR1 0.02628822

HES6 0.026094211

TGFB1 0.026006626

GOLGA2 0.025942691

GHDC 0.025767253

WTAP 0.025103408

GSDMD 0.02419907

GUSB 0.024128359

CYB5R3 0.023177287

MAGEF1 0.023152326

SYAP1 0.022540284

SLC38A5 0.022433217

MCM2 0.022196407

RTN4 0.021069441

MAFF 0.020695304

FNBP4 0.020363354

PSAT1 0.019667722

ARHGAP29 0.01859355

CHMP5 0.018396141

CD109 0.018370657

SAE1 0.018175123

PUM2 0.017946844

ANO6 0.017709732

IPO9 0.017702399

TNIP1 0.01745877

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

LAPTM4B −0.004413844

PRDX2 −0.004693262

SLC22A18 −0.00470786

CYB5B −0.00500726

PRKCZ −0.005328095

IGSF3 −0.005849043

ERP29 −0.005982709

RPS18 −0.006011407

KIF5B −0.006309243

AP2B1 −0.006360396

SPIRE1 −0.006815129

IRAK1 −0.00695366

LPCAT3 −0.00799526

CCNB1IP1 −0.00806399

RPS28 −0.008142391

CLIC4 −0.008265078

UNC13B −0.009548794

ARHGAP21 −0.010145058

NRAS −0.010344558

MYL12A −0.010957177

CABC1 −0.011429478

CKB −0.011443354

TFG −0.0117612

BTF3 −0.011766326

ATHL1 −0.011953832

SMARCD2 −0.012226032

BAT2 −0.012854295

RPL9 −0.012874824

ATF6B −0.013189555

COBLL1 −0.013254689

TGFBR2 −0.013435888

CCDC47 −0.013680079

GBP3 −0.013936651

VWA1 −0.014001641

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

DEF8 0.006858562

ELOVL5 0.006762684

NFIX 0.006750099

MAP1S 0.006531209

GLTP 0.005668953

HSPA1B 0.005262617

SURF4 0.005211659

TMEM106B 0.005012405

HR 0.004917522

ATOH8 0.004234544

RXRA 0.003809947

BCL9 0.003490803

MTMR3 0.003296681

GOLPH3 0.002587358

RHEB 0.002064214

CYFIP1 0.001686961

WBSCR22 0.0012452

NDN 0.000731356

CBX1 0.000396352

TSKU 0.000355837

OLA1 9.93E−05

SEC11A 3.87E−05

LMBR1 −0.000257917

RALB −0.000790209

CPNE1 −0.000876725

EIF1 −0.001085181

HNRNPA3 −0.00119446

SNX30 −0.001462602

MXD4 −0.001550677

DDX17 −0.001758997

MDC1 −0.001947092

SNN −0.003317511

GPR116 −0.003493555

SMG7 −0.003980306

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

RAF1 −0.027736061

WIPI1 −0.027825138

CLMN −0.027856652

CRELD1 −0.0279438

GNB4 −0.028291925

CERK −0.028322649

PLEKHG4 −0.028333032

NAGLU −0.028679814

CHD7 −0.028934513

LASP1 −0.029179397

KAT2B −0.03025785

PHF10 −0.03044976

TRIM26 −0.031257552

BAIAP2L1 −0.031640993

SLC6A6 −0.0318446

LAP3 −0.032119672

C14orf147 −0.032932233

RGS3 −0.033292326

MSL1 −0.033626781

CDH3 −0.033715721

ZC3H15 −0.033864524

NID1 −0.033926048

SELM −0.034511258

OAT −0.03490598

MXRA7 −0.034935448

MICALL1 −0.036654621

TGFBI −0.036719332

CDC42EP4 −0.03689641

PPIC −0.036911223

RRAS −0.038003268

COASY −0.038211104

WDR46 −0.038339238

FADS2 −0.038479982

XPO6 −0.040258807

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

PTP4A1 −0.01433804

TMEM8B −0.014942868

HEBP1 −0.015682821

SOD3 −0.015693624

NR1D1 −0.015990961

FOXO1 −0.016082349

RAB32 −0.016466656

STXBP2 −0.016960306

TOP2B −0.017124383

WFDC2 −0.017529991

AUTS2 −0.018320643

CDCA7L −0.019269484

TRAF4 −0.019329704

EMD −0.020966912

NT5E −0.021106556

KIAA0114 −0.02136284

BRP44 −0.02167878

VWF −0.02247171

TUBB6 −0.023098405

KIF13A −0.023113696

ZNF185 −0.023218593

DBNDD2 −0.023256556

FXYD6 −0.023258567

RDBP −0.023456228

VAMP3 −0.023808528

CEBPG −0.024574337

C13orf23 −0.024595323

ST6GALNAC2 −0.024782139

PDIA3P −0.025981466

GALNT2 −0.026150768

RPL22 −0.026237191

ANXA6 −0.026695156

UACA −0.026806383

SH3GLB1 −0.02773001

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

CISH −0.057345796

CAPN2 −0.05738308

ADAMTS1 −0.057389454

ATP5G3 −0.057841547

STOML2 −0.057904155

GM2A −0.058118052

C1orf9 −0.058571428

SEMA5A −0.05870784

UBE2D2 −0.059462263

CALR −0.06083565

SLC39A7 −0.060907386

CD97 −0.06165926

SLC11A2 −0.062257361

TIMM17B −0.062804166

APOLD1 −0.063116755

FAM198B −0.063272058

NME4 −0.063512399

GIT1 −0.064421909

ELF1 −0.065827339

PTK7 −0.066277901

NOMO1 −0.066736764

TRIM47 −0.068284061

PURB −0.068406362

BAK1 −0.068698233

SCRN2 −0.069026122

CORO7 −0.069467822

PTEN −0.069512183

SLC39A10 −0.070002984

PIK3R1 −0.070371231

THBS1 −0.070565654

JHDM1D −0.07084167

PIGS −0.071583087

PTP4A3 −0.07162628

PLCE1 −0.071852887

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

CBS −0.040436944

P4HA2 −0.040516737

TP53I11 −0.040963114

CPNE2 −0.041063973

PER3 −0.042268341

FLOT2 −0.04245193

MOGS −0.043317534

MEPCE −0.043440585

IK −0.043984375

UBP1 −0.044100347

POLDIP2 −0.045119453

RAB20 −0.04546407

SYNPO −0.046583199

SREBF1 −0.046636772

DDB1 −0.047282074

VASP −0.047463586

ProSAPiP1 −0.048404754

CTR9 −0.048547135

KCTD10 −0.05021229

SH3BP4 −0.050842515

FERMT3 −0.051149121

SLC2A4RG −0.051497112

LIMD1 −0.051648348

SEPT11 −0.051733494

TMEM87A −0.051892977

RHOB −0.053096316

HLA-F −0.054014581

GALC −0.054115181

IDH3G −0.054639863

SLFN11 −0.054945433

CDC16 −0.056489981

GRAMD1A −0.056871659

TAPBPL −0.056949825

ACADM −0.057122018

Table S2 (continued)
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Table S2 (continued)

Predictor Coefficient value

COL4A1 −0.072707057

RAP2A −0.072733308

PCIF1 −0.073744716

TP53INP1 −0.074066594

RAPH1 −0.074366176

DUS1L −0.074762256

BMI1 −0.07703215

PDIA3 −0.078121799

COL17A1 −0.07873817

AEN −0.079981193

SLC39A8 −0.081255312

NRBP1 −0.081584261

INTS10 −0.081838736

RMND5A −0.082888045

HES1 −0.084381521

PPP1R3B −0.086304276

PRDX1 −0.087152088

NNT −0.089377209

CAPNS1 −0.090180193

PLIN2 −0.091672262

C11orf95 −0.093546732

EIF2AK4 −0.093723433

FLOT1 −0.09394406

IRS1 −0.094171528

DDX27 −0.094357701

PPT1 −0.094385778

EXTL3 −0.096233924

DAZAP2 −0.096820772

PRDX5 −0.098132458

PDZK1IP1 −0.099555814

THNSL2 −0.10147727

YARS −0.10168223

LAMA1 −0.102704687

IGF2R −0.102987157

Table S2 (continued)

Table S2 (continued)

Predictor Coefficient value

CHST3 −0.104077894

GLYR1 −0.107735232

ALKBH7 −0.109885778

TMEM64 −0.110595607

PHC2 −0.111057907

GLCE −0.111719993

PBRM1 −0.112828642

RGMB −0.120761461

GPCPD1 −0.125270358

PPM1H −0.125579953

DGAT2 −0.126890155

INPP5D −0.127119869

INPPL1 −0.127660696

OXR1 −0.132848307

SLC39A11 −0.135392652

SPOCK1 −0.137435566

NKIRAS2 −0.137814176

SPRY4 −0.148713899

TMEM132A −0.150682888

ERBB2IP −0.156661288

ECM1 −0.157230177

EPDR1 −0.157640704

NEO1 −0.161370461

GSPT1 −0.16385327

RHOA −0.165882881

EIF4EBP2 −0.174006524

SH3BGRL −0.178800121

GALNT10 −0.178853545

CASK −0.184428293

IER2 −0.191224485

TBC1D5 −0.21945529

PLCB4 −0.232494231

VAV3 −0.235682487

EGR1 −0.266768911

CRYZ −0.27413205

IQSEC1 −0.280122156
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Table S3 Gene ontology test result

PANTHER Pathways
Homo sapiens - 

REFLIST (20,595)
Predictor 

genes (544)
Predictor genes 

(expected)
Predictor genes 

(over/under)
Predictor genes 
(fold enrichment)

Predictor genes 
(raw P value)

Predictor  
genes (FDR)

Insulin/IGF pathway-
protein kinase B 
signaling cascade 
(P00033)

39 7 1.03 + 6.8 1.61E-04 4.49E-03

PI3 kinase pathway 
(P00048)

57 9 1.51 + 5.98 4.65E-05 1.94E-03

Endothelin signaling 
pathway (P00019)

85 8 2.25 + 3.56 2.74E-03 5.09E-02

Integrin signalling 
pathway (P00034)

193 18 5.1 + 3.53 9.57E-06 7.99E-04

Apoptosis signaling 
pathway (P00006)

118 11 3.12 + 3.53 5.12E-04 1.22E-02

T cell activation 
(P00053)

86 8 2.27 + 3.52 2.93E-03 4.90E-02

CCKR signaling map 
(P06959)

172 15 4.54 + 3.3 1.05E-04 3.51E-03

Inflammation mediated 
by chemokine and 
cytokine signaling 
pathway (P00031)

255 20 6.74 + 2.97 3.26E-05 1.81E-03

Gonadotropin-
releasing hormone 
receptor pathway 
(P06664)

231 15 6.1 + 2.46 1.87E-03 3.89E-02

Unclassified 
(UNCLASSIFIED)

17,977 435 474.85 − 0.92 2.64E-06 4.40E-04

FDR, false discovery rate; CCKR, cholecystokinin receptors; IGF, insulin-like growth factor.


