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Background and Objective: Animal microorganisms have been proposed as a cause of human cancers 
associated with farming, agricultural occupation or residence, and related downstream exposures. Several 
studies have described uveal melanoma (UvM) as a farming-associated cancer. A possible suspect is the 
animal microorganism Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of 
paratuberculosis in dairy cows. This microbe is transmitted to humans through various means, including 
contact with animal faeces, contaminated dust and soil, organic fertilizers, and as workers in slaughterhouses/
animal processing facilities. The objective of the current manuscript was to examine the putative association 
between Mycobacterium avium sub-species paratuberculosis and non-solar UvM.
Methods: Online data sources (PubMed, Scopus, Cochrane Library, and Google) published in English 
between 1980 to present were searched for key words pertaining to MAP exposure, farming-related 
occupations and activities, and locations with or in the vicinity of dairy cattle.
Key Content and Findings: While higher than expected rates of eye cancer have been suggested among 
dairy farmers, with MAP being ubiquitous in their environment, the involvement of MAP in the aetiology of 
non-solar UvMs (which account for ~97% of UvM cases) remains uncertain.
Conclusions: Alternative explanations exist and future cause-and-effect research is needed to answer this 
hypothesis. A precautionary approach to exposure continues to be a prudent strategy.
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Introduction

Uveal melanoma (UvM), also known as intraocular or 
ocular melanoma, is a rare eye cancer that is distinct from 
cutaneous melanoma (CM). While both UvM and CM 
are believed to originate from melanocytes, ultraviolet 
radiation (UVR) does not have a dominant etiologic role 
in UvMs that are located in the posterior region of the eye 
(1,2). The latter area is largely void of sunlight owing to 
the filtering effect of the cornea, lens, and vitreous (3). This 
is in contrast to the UV-associated mutational spectrum 
that characterizes CM, iris cancer (directly exposed to UV-
radiation), and epithelial melanomas on the surface skin 
tissue surrounding the eye (4).

At the molecular level, UvMs are predominately devoid 
of dipyrimidine site C>T transitions and rarely have 
mutations in the promoter region of the human telomerase 
reverse transcriptase (TERT) gene, both of which are 
attributable to UVR exposure (5). Similar to melanomas 
presenting in various mucous tissue and non-sun-exposed 
areas of the body, the etiologic basis of non-solar UvM is 
unknown.

Several studies have shown an increased rate of eye 
cancer in farmers (6-12). Zoonoses, infectious diseases that 
are caused by pathogenic microorganisms and transmitted 
from animals to humans, have been proposed as possible 
causes of farming and agriculture associated cancers  
(13-15). One study showed the highest rate in dairy farmers 
in particular, although the exact location within the eye was 
not mentioned (6).

Mycobacterium avium subspecies paratuberculosis (MAP) 
causes Johne’s disease or paratuberculosis, a chronic 
enteropathy of dairy and beef cattle and other ruminants 
(16-19). MAP is a long-suspected cause of Crohn’s disease 
(20-25). MAP has been implicated in a wide range of 
autoimmune and neurodegenerative diseases (26-30) and 
three types of human cancer (31-33).

The literature on the possible relationship between MAP 
and Crohn’s disease has focused on MAP being transmitted 
to humans through the ingestion of MAP organisms present 
in vegetables, raw milk (34,35), and MAP organisms that 
survive pasteurization (36) and are present in retail milk and 
other retail dairy products (37-39). However, this route of 
exposure is negligible compared with more concentrated 
and direct fecal-borne transmission. MAP is heavily 
excreted in an infected animal’s feces or manure (17,40). 
In the case of UvM, near-field exposure to contaminated 

airborne dust and soil, manure splatter, flies and other 
insect carriers, and finger-to-eye contact with fecal material 
containing the pathogen are believed to be the predominant 
modes of zoonotic spread among farmers and agricultural  
workers (41). Particularly concerning are subclinical 
shedders, animals that appear healthy but are shedding 
MAP in their manure (42). Overall, >60% of infected 
cattle will go undetected, even with the most sensitive 
fecal culture techniques (42). Other considerations include 
inadequately ventilated animal housing units and poor 
waste removal systems, increasing the exposure to animal 
excrement and MAP.

The sizable numbers of MAP organisms in dairy cattle 
feces have not been appreciated. Two milliliters of manure 
from a dairy cow infected with MAP can contain 1 million 
MAP organisms, enough to cause infection in a dairy  
calf (17). An adult dairy animal infected with MAP excretes 
12–14 gallons of such heavily contaminated manure per day, 
or over 23,000 infectious doses of MAP (43).

Large dairy farms, known as confined animal feeding 
operations, may contain 10,000 animals (44). Approximately 
70% of all dairy herds (45,46), and 100% of dairy farms in 
the United States containing over 200 animals (47) have at 
least one sub-clinically infected animal with high excretion 
of MAP in its feces, and within herd prevalence rates can 
reach 100% (48). Regions of a country with multiple large 
farms can house over 100,000 dairy animals. The manure 
output of one such region in the USA was described as 
“equal to the sewage output of the New York City metro 
system” (49).

MAP excreted in infected animals’ feces can resist various 
environmental conditions such as heat, cold, dryness, 
and acidic conditions (lower pH) (50-52), and remain in 
soil (51), dirt and dust (53), in a state of nonreplicating 
persistence, even when other environmental bacteria are 
present in the environment. MAP is diffusely present in 
the soil in countries where MAP infections of domestic 
ruminants is longstanding, “at a higher rate and wider 
distribution than expected” (54). MAP is present in natural 
bodies of water contaminated with manure runoff (55,56).

In this narrative review of the literature, we assessed 
MAP as a possible zoonotic pathogen, examined sources of 
MAP exposure, and explored routes of transmission from 
animals to humans. The aim was to present a balanced 
philosophical perspective of the hypothetical association 
between MAP exposure and non-solar UvM (herein simply 
called UvM unless indicated otherwise). We present the 
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following article in accordance with the Narrative Review 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-2540/rc).

Methods

Based on the several articles documenting an increased 
rate of eye cancer in farmers (6-11), and particularly dairy 
farmers (6), a review of the English-language literature 
from January 1980 to present was conducted to investigate 
whether there was supporting evidence for MAP excreted 
in an infected animal’s feces as a risk factor for UvM. We 
searched PubMed, Scopus, the Cochrane library, and 
Google on key words to identify locations, occupations, 
and activities associated with an increased rate or clusters 
of UvM. We then sought papers illustrating possible 
connections of these occupations, activities, and locations 
with dairy cattle. In addition, we deliberately sought 
connections between occupations with an increased 
risk of UvM and possible MAP exposure. Studies that 
used well validated assays such as qPCR and Elisa were 
specifically targeted when addressing MAP-shedders in this  
analysis (57).

The screening of the literature was independently 
conducted  by  two authors  (ESP and JTE) ,  wi th 
disagreements mediated by a third author (YC). A summary 
content of the information was compiled by a fourth author 
(CJ), who also hand-searched the reference lists of the 
screened articles for relevant papers that were missed in the 
initial search. The search strategy is summarized in Table 1.

Synthesis of the literature

The circumstantial evidence for the possible association of 
MAP with UvM

We were able to consistently correlate increased rates and 
clusters of UvM with possible exposure to MAP. Farmers 
and agricultural workers are exposed to aerosolized 
microorganisms present in feces or manure (41). Specifically, 
dairy farmers are exposed to large numbers of MAP organisms 
as described above, that are readily aerosolized from manure, 
and coat indoor surfaces of dairy farms (58-60).

The excretion of MAP in an infected dairy animal’s feces 
and the subsequent contamination of underlying soil and 
nearby water may explain the increased rates of UvM in 
particular geographic areas and some of the clusters of UvM 
reported in the literature as described below.

Five cities in Lower Mainland and southeastern 
Vancouver Island in British Columbia have the highest 
rates of UvM in Canada (61). This is a region with a great 
concentration of dairy cattle, approximately 140,000 
animals (62,63). In the United States, the incidence for 
UvM increases disproportionately at higher latitudes (less 
sun exposure), with the latter region being relatively more 
populated with dairy farms (64). However, it is important to 
note that lower latitudes are not devoid of dairy farms and 
the occurrence of UvM.

A recent report describes three clusters or “geospatial 
accumulations” of UvM in the United States (65). The first 
mentioned cluster ranged from 5 to 22 cases (65), located 
in a predominately rural region (66). Three of the cases 

Table 1 The search strategy summary

Item Specification

Search date November 2022

Time frame January 1980 to present

Data sources PubMed, Scopus, Cochrane Library, Google

Terms Uveal melanoma; intraocular melanoma; eye cancer; Mycobacterium avium sub-species paratuberculosis (MAP); dairy 
cattle; farming; agricultural occupation or residence; contaminated dust and soil; organic fertilizers; slaughterhouses; 
animal processing facilities; zoonosis; fecal-borne transmission; infectious disease clusters

Inclusion criteria Full-length, peer-reviewed manuscripts; English language sources; relevant lay press articles published by established 
media outlets

Exclusion criteria Non-English language†; abstracts; editorials

Selection process Two authors independently screened data sources. A third author mediated the process when disagreements occurred
†, unless translated.

https://tcr.amegroups.com/article/view/10.21037/tcr-22-2540/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-2540/rc
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attended a high school that was built in 2001 (66), but was 
previously “farmland and open fields” (66). The type of 
farms in the area were dairy farms (67). Conceivably, this 
cluster was related to the dense contamination with MAP 
of the ground underlying the high school, ground that went 
from being heavily MAP contaminated, but unoccupied, to 
the site of the school.

The second United States cluster consisted of 14 cases 
along the northern stretch of the Susquehanna River in the 
state of New York (65). This stretch of the Susquehanna 
River houses a dense concentration of dairy cattle, over 
110,000 animals (68). On a related note, increased rates and 
clusters of MAP-associated illnesses, e.g., Crohn’s disease 
and ulcerative colitis (69), have previously been reported 
in relation to the presence of possibly MAP-infected dairy 
cattle, sheep, and non-domestic ruminant animals adjacent to 
rivers and streams. These clusters have occurred in Cardiff, 
United Kingdom (56,70), Spokane, Washington (71-73), 
Northport, Washington (74-77), Plains, Montana (78), 
and Forest, Virginia (79). The concentration of MAP from 
natural bodies of water, first by floating to the top of the body 
of water owing to MAP’s hydrophobic cell wall, and then 
by the scavenging bubble - jet drop bursting mechanism, 
has previously been described (78). In particular, the area 
of British Columbia described above consists of an island 
surrounded on two sides by narrow straits, across from a 
section of land with multiple lakes and rivers.

The third United States cluster occurred at a regional 
university, with the reported number of cases ranging from 
6 (65) to 36 (80). Three of the women lived in the same 
dormitory room, suggesting exposure to a common source 
of aerosolized MAP, perhaps the shower water (81,82). An 
idiopathic inflammatory bowel disease (IBD) cluster has 
previously been described in three college roommates (83).  
Although the beef and dairy industries have had a 
historic economic presence (84) and collocation near the 
university (85), the association with MAP exposure is 
circumspect. One case was involved in “the reconstruction 
of dormitories” (65), possibly related to the generation 
of MAP contaminated dirt and dust when two residence 
halls were built in the mid-1990s (86). However, it is not 
clear if, and to what degree MAP exposure occurred, as the 
individual was not tested for the presence of this organism.

The increased rate of UvM in male athletes and 
sportsmen (87) is consistent with the presence of MAP 
in the soil in countries where MAP infection of domestic 
ruminants is longstanding (54). The increased rates 
of glioblastoma (32) and amyotrophic lateral sclerosis 

(28,88) in outdoor athletes associated with possibly MAP 
contaminated soil has previously been discussed.

There is an increased rate of UvM in welders and metal 
workers (10,89-93). UVR has been proposed as the cause 
of the increased rate of UvM in welders (89). However, 
UVR, either UVA, UVB, or UVC, is unable to reach the 
choroidal layer of the eye and has not been consistently 
correlated with UvMs (93,94). A possible explanation may 
be the presence of MAP in metalworking fluid, which is 
known to be contaminated with bacteria (95), including 
mycobacteria (96-99). Aerosolization is a known mechanism 
of increasing the concentration of mycobacteria present in  
liquid (100-102).

The increased rate of UvM in occupational cooks 
(89,103,104) and workers in the leather industry (10,105) 
and a cluster of three UvM cases in a rural community 
where a rendering plant was located (106) are consistent 
with the presence of MAP in an infected animal’s tissues and 
fluids, including blood (107-114).

Possible explanations for the racial difference in patients 
with UvM

An epidemiologic feature of UvM is their almost exclusive 
occurrence in non-Hispanic Whites and Hispanic Whites, 
in persons with white skin (115). Mackintosh proposed that 
the melanin and melanosomes conferring skin color develop 
as defenses against bacteria and fungi, in particular noting 
that “animal husbandry practices…will further determine 
local parasite pressures” (116). Hurbain and colleagues 
demonstrated that the individual melanosomes that are the 
predominant melanosome type in non-white skin function 
as antibacterial degradative organelles (117). In contrast, the 
melanosome clusters that are the predominant melanosome 
type in white skin have no effect on bacteria (117).

Choroidal tuberculomas, a rare location of miliary 
tuberculosis, are thought to result from hematogenous 
dissemination after entry of Mycobacterium tuberculosis 
organisms into the bloodstream at the level of the pulmonary 
alveoli (118). Miliary tuberculosis occurs at a much higher 
rate in black than white patients (119). The contrast 
with white-skinned UvM patients suggests that MAP 
organisms are getting to the uveal layer of the eye, not from 
hematogenous dissemination to the eye after the inhalation 
of aerosolized MAP organisms, but by the penetration of 
aerosolized MAP organisms through the white skin of the 
face and eyelid. MAP organisms may be able to penetrate 
white facial and eyelid skin more easily than non-white 
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facial and eyelid skin. Note that the aerosolized potentially 
MAP contaminated metalworking fluid is being sprayed 
right at a welder’s face. Depending on the sport, the faces 
of outdoor athletes are directly contacting possibly MAP 
contaminated soil and dirt within their playing fields. On the 
other hand, given the rarity of UvM, it is not likely that MAP 
readily penetrates either white or black skin, and that once 
it has penetrated through skin, there is a paucity of evident 
suggesting an ocular tropism.

A recent case report hinting that MAP organisms may 
be getting to the eye from the surface of the face describes 
an individual living on an animal farm (of “sharps and 
pigeons”, not dairy cattle) who developed a UvM in his left 
eye several years after “light blunt trauma” to that eye (120). 
Nontuberculous mycobacterial ocular infection is associated 
with surgery of and biomaterials in the cornea and  
sclera (121), but there are no other reports of UvM 
associated with trauma to the affected eye.

Once MAP organisms have penetrated through the 
white skin of the face and reached the uveal layer of the 
eye possibly within facial blood vessels, MAP organisms 
may be able to invade the choroidal melanocytes of the 
eyes of white-skinned persons more easily than the eyes of 
nonwhite-skinned persons. A frequently cited study (122) 
demonstrated that the eyes of persons with black skin have a 
significantly greater amount of protective choroidal melanin 
than the eyes of persons with white skin. The literature is 
not clear on the total choroidal melanin in persons of Asian 
descent, but the low incidence of UvM in Asians suggests 
a comparably large total choroidal melanin content as in 
persons with black skin (115).

Mackintosh’s hypothesis regarding melanin and 
melanosomes as antibacterial substances and organelles also 
may explain why UvMs often occur in persons with blue 
eyes. Larger individual melanosomes have more melanin 
than smaller ones and so are better antibacterial degradative 
organelles. Brown-eyed choroidal melanocytes have the 
greatest number of and largest individual melanosomes, 
blue-eyed choroidal melanocytes the least number of and 
smallest individual melanosomes (123).

Melanocytes are the malignant cell type in CMs and 
UvMs (124,125). Studies have demonstrated MAP’s ability to 
invade human macrophages (126), human enterocytes (127),  
human monocyte-derived dendritic cells (128), and human 
small intestinal goblet cells (129,130). However, the ability 
of MAP to invade human melanocytes and cause their 
proliferation has not been tested.

Although intermittently reported in the literature  

(131-133), it is important to rule out CM that has 
metastasized to the eye when studying UvM, as the former 
is predominantly associated with sun exposure (134). The 
differentiation of primary and metastatic melanoma poses 
difficulties, especially when the diagnosis of UvM may 
occur up to 15 years following the original skin diagnosis 
(135,136). In many cases, patients may be asymptomatic, 
suggesting an under ascertainment of CM that has 
spread to the eyes (137). On the other hand, mutations 
in the CDKN2A gene may represent a common genetic 
predisposition to both CM and UvM (138).

Possible animal models, the implications to humans, and 
the potential for therapy

Canine melanomas including UvM have been proposed 
as models of human melanomas (139). The proposed 
association between MAP and UvM suggests that canine 
UvMs may be good models for human UvM because canine 
UvMs also may be caused by MAP. Dogs manifest near-
field exposure by putting their noses and faces into MAP 
contaminated soil, with MAP organisms theoretically 
penetrating their facial skin. This is analogous to outdoor 
“athletes and sportsmen” (87) who place their faces into 
MAP contaminated soil, and dairy farmers exposed to 
aerosolized MAP contaminated feces spraying their face. 
The same is true for welders having aerosolized MAP 
contaminated metalworking fluid reaching their faces.

The proposed association implies that evidence of 
MAP infection may be present in human UvM lesions and 
patients. Researchers have developed methods of detecting 
MAP in human tissue (140), blood (141), and feces 
(142,143). These identification methods can be applied to 
human UvM patients. A similar methodology could also be 
developed to test for MAP in dogs with UvMs.

MAP-associated Crohn’s disease can be treated with 
anti-MAP antibiotics (144-149). The triple antibiotic drug 
formulation, known as RHB-104, has been observed to have 
important bactericidal action against MAP in the treatment 
of Crohn’s disease (150). However, the therapeutic effect 
may not be solely attributable to a decrease in MAP 
viability, as this antibiotic therapy also reverses pro-
inflammatory responses in lipopolysaccharide (LPS)-
induced macrophages.

Bacterial inflammation and UvM

A key mechanism of bacterial infection as a cause of cancer 
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is the induction of inflammation (151). Regions of persistent 
inflammation instigate regenerative cell division with an 
increased occurrence of point mutations, deletions, and/or 
translocations (152). This ‘disordered cell differentiation’ 
in the form of inflammation in turn prompts ‘a cycle of 
cell damage, repair, and compensatory proliferation,’ 
believed to underlie cancer development (152-154). The 
microenvironment of UvM in essence is an inflammatory 
phenotype, characterized by various lymphocytes, 
macrophages, heightened HLA class I/II expression, and 
the presence of Tregs, which may explain the lack of an 
efficient antitumor immune response (155). Additionally, 
the increased cellular production of macrophage-attraction 
molecules in UvM leads to an expanded population of 
myeloid immature cells that suppress immune responses and 
facilitate the development of new blood vessels needed to 
nourish tumor growth (156). MAP possesses these bacterial 
properties and has been proposed to cause the angiogenesis 
and lymphangiogenesis of Crohn’s disease (157).

MAP also is associated with small-bowel inflammation 
among cattle, with a trophic affinity for the mucosa of the 
distal small intestine (158,159). Indeed, there is a striking 
pathognomic similarity between human Crohn’s disease 
and paucibacillary Johne’s disease of dairy cattle (and 
related ruminants), with both regarded as inflammatory 
paratuberculosis attributable to MAP infection (22,160). 
While more than 90% of dairy herds in US farms have 
infected animals, MAP often remains undetected owing to 
the low sensitivity of diagnostic testing, especially in the 
case of early-stage disease (161). Farm animals such as dairy 
cows, sheep, and goats may serve as an unwitting reservoir 
for frequent and persistent MAP infections. In many cases, 
infected animals do not manifest clinical symptoms for 
years, yet shed MAP in their feces (162).

The immediacy of humans with environmental MAP 
exposure, whether on a farm, in contact with contaminated 
soil, organic fertilizers, and/or agricultural runoff of fecal 
material, poses a risk for inflammatory-related cancers such as 
UvM. Exposure is further exacerbated owing to the spore-like 
resistance of MAP to disinfectants, chlorination (used to treat 
municipal water supplies), and pasteurization (159). While 
the organism has been detected in cow mammary glands, 
dairy products, and human breast milk, the levels for the 
most part are minute and relatively insignificant compared 
with direct fecal sources (which we again posit to primarily 
underlie UvM risk) (163). Overall, 80–90% of cancers are 
estimated to be caused by exogenous environmental factors 
including bacteria, with certain types of cancer more or less 

susceptible to specific exposures (164).
In addition to producing toxins that induce inflammation 

and disrupt normal cell growth, bacteria may play a role 
in directly damaging DNA, mimicking other known 
carcinogens and tumor promoters (165). Bacteria and 
similar microbes may act in a “hit-and-run” fashion with the 
initial cellular transformation occurring years prior to the 
presentation of cancer (166). Presumably by the time that 
the cancer first appears, the infection has long been cleared, 
making it difficult to establish a causal relationship.

Eye lysozyme levels and routes of infection have been 
explored as another mechanism of relevance to MAP. At the 
site of infection, lysozyme hydrolyses glycosidic bonds and 
degrades peptidoglycans in bacterial cell walls. Based on 
radial immuno-diffusion, increases in the level of lysozyme 
in inflammatory conditions such as sarcoidosis, latent 
tuberculosis, and syphilis have been observed in patients 
with ocular involvement (164). Comparable aspects could 
underlie the putative association of MAP and UvM.

Limitations

The association of MAP with UvM has not previously been 
proposed. There are, therefore, no studies documenting the 
presence of MAP organisms in UvM lesions. The studies 
mentioned in this perspective were observational in nature. 
As such, they are prone to various sources of epidemiologic 
bias (e.g., poor recall, residual confounding, collider effects, 
or the lack of adjustment for key outcome-related variables). 
Many of the studies were poorly powered to detect 
meaningful statistical differences or were inappropriately 
analyzed with respect to post hoc subsets of the data. 
Inconsistencies in the literature also may be explained 
by selection bias, misclassification error, and/or reverse 
causality.

The association between MAP exposure and UvM, 
while suggestive, is uncertain. Alternative and equally 
plausible explanations may underlie the association. For 
example, the article citing a link between UvM and the 
leather industry also mentions dry cleaning and glass 
manufacturing as possible occupations connected with this 
cancer (105). In the case of welder exposure to bacteria in 
water, a just as likely risk factor is intense light. Working 
outdoors and exposure to UV radiation likewise may 
explain risk attributable to farming and outside athletic 
activities. However, it is important to note again that sun 
exposure, in contrast to CM, is an unproven risk factor for 
UvMs presenting in the posterior region of the eye (9,167). 
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Chemical fertilizers, ammonium nitrate, and various 
military exposures are other plausible agents that may 
underlie risk and should be considered when interpreting 
findings (140-142). The reader is reminded that association 
does not prove causation.

While examples exist in the noninfectious disease 
epidemiologic literature of well-recognized clusters, 
discovery in other cases is usually attributable to chance. 
The artifactual construction of borders in time and 
space (104) and multiplicity concerns likely underlie the 
increased incidence of UvM in reported clusters (94). 
Clusters of UvM also may be attributable to familial 
cases BAP1 tumor predisposition syndrome (168-170). 
However, in comparison with somatic mutations, germline 
BAP1 mutations in the 3p21 chromosomal region occur 
infrequently in UvMs (171-173). Barring direct evidence of 
exposure within multiple clusters, one is advised to carefully 
interpret the reliability of evidence from MAP-UvM 
clusters.

Although UV radiation is the most likely cause of iris 
tumors located in the anterior region of the eye, this does 
not preclude MAP as a risk factor. However, if this bacteria 
is involved in the development of iris cancer, one would 
expect a relatively higher frequency than for posteriorly 
located UvMs, given the closer proximity of the former to 
surface of the eye (implying more direct exposure to the 
microbe). However, iris cancers only account for 3% of 
UvMs (174). In general, a spatial predilection for cancer 
is poorly understood, with tissue heterogeneity, genetics, 
sex, and race being possible underlying explanatory factors  
(175-178). A temporal causal dominance of UV radiation 
over MAP exposure also might explain the etiology of iris 
cancer, although supportive proof for this theory is not 
evident in the literature.

The intermixing eyelid, orbital, and intraocular 
cancers in studies of UvM is another potential limitation. 
While primary intraocular cancers in adult patients are 
predominately melanomas, eyelid and orbital malignancies 
may include lymphomas, keratinocyte carcinomas, and 
other histologic subtypes (179).

Conclusions

To date, there is a paucity of data to support a cause-and-
effect basis for MAP in the etiology of non-solar UvMs 
located in the posterior (dark) region of the eye. Neither 
animal nor human studies provide sufficient proof, vis-à-vis 
direct exposure, for such an association. MAP infection has 

never been observed in the posterior region of the eye nor 
‘conclusively’ proven to cause cancer in any organ system. 
Furthermore, the literature is largely void of evidence 
that MAP can persist in this immune privileged site and 
subsequently induce malignant mutations in effector cell 
types (i.e., melanocytes of the eye).

Oncologic inflammatory responses evoked by MAP 
likely are co-incidental versus inductive. Equating immune 
reactivity during tumorigenesis with chronic immune 
dysregulation remains dubious—with the latter being 
pathognomonic of the mucosal instability and uncontrolled 
immunological stasis in IBD. Unlike CM, UvM remain 
relatively resistant to immune checkpoint blockade drugs (3).  
A reverse causality explanation also cannot be ruled out, 
wherein UvM might induce inflammation antecedent to 
infection.

Doubts persist and a precautionary approach to 
MAP exposure continues to be a prudent strategy in the 
prevention of UvM. Conceivably, factors associated with 
UvM could interact in a multifactorial and synergistic 
fashion with MAP, to evoke or reinforce a carcinogenic 
effect. Genetics and metabolomics may play a contributory 
role, with UvMs manifesting driver mutations in GNAQ 
and GNA11, rather than BRAF mutations (146,180). 
Additionally, miR-155 (an endogenously expressed, 
noncoding RNA) is believed to function as a tumor 
promotor in UvM, potentially increasing cell proliferation 
and tumor invasion autonomous of solar exposure (181).

However, with the exception of tumors restricted to the 
iris (which account for only ~3% of cases) and those driven 
by germline MBD4 mutations, most UvMs are sporadic and 
have a low mutational burden (4,174). A unified UV-related 
pathogenetic basis for UvMs, comparable to CM, has yet 
to be elucidated for this cancer (182,183). Interestingly, 
ciliochoroidal UvMs are predominately associated with 
light-colored eyes and typically manifest A>T mutations, 
characteristic of a pigment dependent etiology (2).

Posteriorly located UvMs of the eye may be characteristic 
of non-sun exposed, primary gastric melanomas (184). 
Melanomas also are known to occur on the soles of feet, 
subungual areas, and various mucous membranes. These 
sites manifest divergent mutation patterns and other 
features that are independent of, or less susceptible, to solar 
radiation (185,186). Nonetheless, it remains difficult to 
believe that a bacterial infection invading from the outside 
environment would be able to affect the choroid, cause an 
inflammatory response, and be involved in the development 
of UvM without histologic evidence of granulomatous 



Translational Cancer Research, Vol 12, No 2 February 2023 405

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(2):398-412 | https://dx.doi.org/10.21037/tcr-22-2540

inflammation or mycobacteria. Additional study is needed 
to better delineate this possibility, in light of the extensive 
vascular supply of the choroid.

The association of MAP with non-solar UvMs remains 
an unanswered question. In this paper, we aimed to provide 
a thought-provoking synthesis of the literature, with the 
intent of generating future research ideas and questions. 
New directions and the development of novel approaches 
to this topic are welcome. This will aid the understanding 
of neoplastic disease etiology and further elucidate the 
role of bacterial infections on human health and life. 
However, until new proof is forthcoming, there is a paucity 
of methodologically rigorous evidence to support either a 
direct or indirect causal link between MAP exposure and 
UvM, as well as any other infectious agent.
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