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The review by Ladbury and colleagues is non-systematic in 
nature and serves to provide examples of how explainable 
artificial intelligence (XAI), specifically SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME), can be applied to almost all 
stages of oncologic patient care including cancer diagnosis, 
patient prognostication, and optimal selection of treatment (1-3). 
However, it is also important to discuss its limitations and 
caveats, especially given its increasing use in oncology. 

To demonstrate the applicability of XAI in cancer 
diagnosis, the authors highlighted a study by a group 
from Seoul National University Hospital that developed 
a model to guide patient selection for prostate biopsy 
based on the model-predicted likelihood of a patient 
having prostate cancer (4). This would help minimize 
unnecessary invasive procedures. Although the authors 
were able to train an extreme gradient-boosting algorithm 
with excellent discriminatory ability [area under the curve 
(AUC): 0.945], the algorithm was essentially a black box 
method. This is a barrier to clinical implementation since 
clinicians are unlikely to base decisions on a model’s output 
without knowing how the predictions were made. To 
mitigate this issue, the researchers used SHAP to provide 
a mathematically based reasoning of how the model 
yielded its output. Specifically, they calculated the SHAP 
value of each predictor, which reflects the association 
of the predictor with the probability of having prostate 
cancer and therefore the need for biopsy. As noted above, 

the discriminatory ability of the algorithm was excellent. 
However, the calibration of the model was problematic, with 
the model underestimating the risk of prostate cancer by as 
much as 25% on visual estimation. This was not discussed 
or acknowledged by the authors in the manuscript, but is 
of high clinical importance as several patients with high 
risk of prostate cancer may not have undergone biopsy if 
the models’ recommendations were followed. Thus, we call 
for increased attention to calibration, as this study shows 
that excellent discriminatory ability does not necessarily 
equate to good calibration. Unfortunately, poor calibration 
is a known weakness of several machine learning (ML) 
based models, and most studies fail to report this statistical 
property (5). 

Aside from diagnosis, patient prognostication is another 
important aspect of oncologic care for both the physician 
and the patient. XAI certainly has a place in prognostication, 
given the well-known accuracy-interpretability trade-off; 
accurate models suffer from limited interpretability (“black 
box” models) while interpretable models are limited by lack 
of accuracy. Although XAI has been utilized to “explain” 
these highly accurate black box models, it is only as good as 
the model that it attempts to explain, and as demonstrated 
by the example above, the model with the highest AUC 
is not always the best model. “Black box” models tend to 
be more flexible and thus prone to overfitting, which can 
hinder generalizability.

This brings us to the use of inherently interpretable 
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vs. explainable (e.g., SHAP or LIME) methods. Some 
inherently interpretable models such as decision trees may 
have comparable discriminatory performance to complex 
(and opaque) models. The authors of the review referenced 
a study by our group that used a novel type of decision 
tree, or the optimal classification trees (OCTs), to predict 
prognosis in patients with resected pancreatic ductal 
adenocarcinoma (PDAC) (6,7). In that study, the AUCs 
of the 1-year OCT vs. 1-year XGBoost were comparable 
at 0.638 vs. 0.654, respectively. Similarly, the AUCs of the 
3-year OCT vs. 3-year XGBoost were remarkably close 
at 0.675 vs. 0.690, respectively. To assess whether the 
OCT-determined cut-offs for the prognostic factors were 
internally valid, we performed an analysis of interactions 
with the SHAP method in independently devised XGBoost 
prognostic models. The same cut-offs were identified, 
which attests to the usefulness of both OCT and SHAP 
in capturing interactions between prognostic factors. It 
also suggests that SHAP can be used as a complementary 
internal validation method. Another study that exemplifies 
the complementary use of XAI and other methodologies 
comes from a group at the City of Hope Medical Center. 
They studied a cohort of patients with prostate cancer and 
used SHAP to model and visualize previously unknown 
but clinically important nonlinear relationships among 
predictors of mortality (8). Importantly, they replicated 
their results using conventional regression methods. This 
is significant because regression methods can only capture 
interactions if previously specified, which is problematic 
if we want to derive new knowledge. Furthermore, 
testing widely for interactions in linear models can lead to 
erroneous results. Thus, XAI can screen for interactions 
which can then be verified by linear regressions models. 

Aside from informing prognosis, predictive models have 
also been used in oncology to establish risk thresholds 
above which treatment is indicated. However, risk of an 
outcome (e.g., recurrence) cannot be the sole determinant 
of allocating a treatment, as high baseline risk does not 
necessarily equate to good treatment response. Conversely, 
patients with lower risk who respond well to a treatment 
may benefit from intervention. Thus, we need a composite 
measure of baseline risk and response to treatment to 
predict who will benefit most from a treatment and guide 
our treatment algorithm. Predicting who will benefit from 
a particular treatment is at the core of precision medicine, and 
we believe it is the most exciting and clinically important 
aspect of XAI use. The City of Hope group conducted 
a study that used XAI to identify subgroups of patients 

with completely resected stage III-N2 non-small cell lung 
cancer who may benefit from adjuvant radiotherapy (9). 
Specifically, they used SHAP to screen for non-linear 
interactions between number of positive lymph nodes and 
adjuvant radiotherapy, and assessed their impact on overall 
survival. They found that radiotherapy was associated 
with improved OS only in those with more than three 
positive lymph nodes. Importantly, they internally validated 
this finding by performing multivariable Cox regression 
analyses both in the entire cohort as well as in those with 
three or more positive lymph nodes. Of note, radiation 
was not independently prognostic in the overall analysis 
but was prognostic in the sub analysis of patients with a 
high number of positive lymph nodes. This highlights a 
fundamental limitation of Cox regression analysis, which is 
largely ignored in almost all clinical studies. Unfortunately, 
it appears that this limitation is shared by the SHAP feature 
importance plots, which also underestimated the importance 
of adjuvant radiotherapy. In fact, the mean SHAP value for 
radiotherapy was the lowest among all examined prognostic 
factors, which means that radiotherapy had on average 
the smallest contribution to the model’s prediction. This 
limitation may not be unique to this study, as a recent 
study by Dunn and colleagues showed that SHAP and 
XGBoost consistently underestimated the importance of 
key features while they assigned significant importance 
to irrelevant features (10). Importantly, the City of Hope 
group avoided this limitation by ignoring the results of the 
SHAP feature importance plots; instead, they employed 
SHAP dependence and interaction plots to screen for non-
linear interactions between number of positive lymph nodes 
and adjuvant radiotherapy. This idea was based on existing 
literature suggesting that the extent of nodal involvement 
is both prognostic of overall survival and predictive of 
response to adjuvant radiotherapy.

The findings by the City of Hope group are impressive 
but still have two main weaknesses. The first is the lack 
of external validation to demonstrate generalizability, 
which precludes clinical use. The second is that SHAP 
visualization can only test two factors at a time for an 
interaction (in this case, number of lymph nodes and 
receipt of radiation therapy). Thus, it is possible that there 
exist higher order interactions that cannot be visualized by 
SHAP, which means that this analysis may have the same 
limitations as the one-variable-at-a-time sub-group analyses 
of randomized controlled trials (RCTs) that compare groups 
of patients who differ systematically on a single variable; 
in reality, individual patients may differ from one another 
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across many variables simultaneously. 
Decision trees use numerous factors to split a cohort into 

several groups and thus could remedy the aforementioned 
deficiency of XAI. Our group has recently introduced a 
novel methodology called optimal policy trees (OPTs) (11). 
OPTs are globally optimal decision trees that are trained 
using a matrix of probabilities of what the outcome of 
interest (e.g., recurrence) would have been if a given patient 
was treated with all possible treatment options; one is 
the option that was used in reality, and all others are the 
counterfactuals. We recently tested this methodology by 
training OPTs to determine the optimal margin width in 
colorectal liver metastases and to assess whether optimal 
margin width should be individualized based on patient 
characteristics (12). Of note, we used SHAP analysis in that 
study to internally validate the OPT recommendations, 
and also externally validated our findings in an independent 
cohort. 

Collectively, XAI and interpretable AI (IAI) should be 
viewed as complementary and not competing analytical 
frameworks. In our opinion, IAI is more appropriate to 
estimate heterogeneity treatment effects (HTE) due to its 
granularity, while XAI has proved its value in internally 
validating IAI. In any case, it is important that external 
validations are also performed given the high stakes of 
making treatment recommendations in oncology. 
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