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Biological effects of prostaglandin E2-EP4 antagonist (AAT-008) in 
murine colon cancer in vivo: enhancement of immune response to 
radiotherapy and potential as a radiosensitizer
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Background: Prostaglandin E2 (PGE2) promotes tumor growth and metastasis by acting on a family of four 
receptors (EP1–4). We investigated the radiosensitizing effects of a newly developed antagonist of PGE2-EP4 
(AAT-008) in mouse colon cancer cells in vivo and explored the mechanism using flow cytometry (FCM).
Methods: CT26WT cells grown in Balb/c mice were used. AAT-008 at doses of 0, 3, 10, and 30 mg/kg/day 
was orally administered once or twice daily for up to 19 days. On day 3, the tumors were irradiated at 9 Gy 
in the radiotherapy (RT) group. Tumor sizes were measured every other day. For the first FCM series, AAT-
008 (10 mg/kg/day) was administered from day 0 to 18 and RT (9 Gy) was given on day 3. The population 
of effector T cells (Teff), defined as CD45+CD8+CD69+, in the tumors was investigated on day 19. For the 
second FCM series, AAT-008 (30 mg/kg/day) was administered from day 0 to 12. The populations of Teff 
and regulatory T cells (Treg), and the ratio of Teff/Treg were investigated on day 13.
Results: The growth delay effect of AAT-008 administered alone (3–30 mg/kg/day) appeared minimal. In 
the first growth delay experiment where AAT-008 was administered once daily, the combined effect of AAT-
008 (30 mg/kg/day) and RT appeared additive. In the second growth delay experiment where AAT-008 was 
administered twice daily, the combined effect appeared additive at 3 and 10 mg/kg/day and supra-additive at 
30 mg/kg/day. In the first FCM series, the mean Teff proportions in the tumors were 43% and 31% in the 
10 mg + RT and 0 mg + RT groups, respectively. Notably, 67% Teff was observed in responsive mice in the 
10 mg + RT group. In the second FCM series, the mean Treg proportion and Teff/Treg ratio in the 0 mg + 
RT and 30 mg + RT groups were 4.0% and 1.5%, respectively (P=0.04) and 10 and 22, respectively (P=0.04).
Conclusions: AAT-008 potentially enhances the radiosensitivity of colon cancer cells, apparently by 
stimulating the immune system against the cancer cells.
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Introduction

Radiotherapy is an important treatment modality for various 
malignant tumors, but recurrences after radiotherapy are 
often encountered and some tumors are resistant to the 
combination with chemotherapy and/or molecular-targeted 
therapy. Radiotherapy activates anti-tumoral immune 
responses against tumors, and effector CD8+ T cells (Teff) 
play an important role (1). The theory of cancer-immunity 
cycle, i.e., release of tumor-derived antigen by radiotherapy, 
antigen presentation for dendritic cells (DC), priming and 
proliferation of Teff, infiltration of Teff to tumors, and 
killing tumor cells by Teff, provides the rationale for the 
immunological effect of radiotherapy (2,3). Therefore, 
combination of radiotherapy and drugs activating the 
cancer-immunity cycle may be a promising strategy (4).

Prostaglandin E2 (PGE2) is an eicosanoid produced 
by cyclooxygenases. Some studies including a clinical trial 
demonstrated the radiosensitizing effect of cyclooxygenase-2 
inhibitors (5,6). These studies suggested that PGE2 receptors 
were related to the radiosensitizing effect. To our knowledge, 
however, published data that indicate which subtype of PGE2 
receptors (EP1–4) plays the role remain scarce (7).

The relationship between PGE2 and cancer progression 
has been reported via malignancy signaling with a subtype 
of PGE2 receptor EP4 (3,8-10). The PGE2 receptor EP4 
expresses on the surface of immune cells in addition to 
tumor cells and the signaling takes part in the regulation 
of anti-tumoral immune responses, e.g., inhibition of DC 
recruitment in and around the tumor. The DCs promote 
the production of Teff and infiltration of Teff into the 

tumor, while the EP4 signal activates the regulatory T cells 
(Treg) (3). As a result, the EP4 signal weakens anti-tumoral 
immune responses by blocking some points of the cancer-
immunity cycle induced by radiotherapy.

In recent years, an antagonist of PGE2-EP4 (AAT-
008, Figure 1) was newly developed for possible use in 
clinics (11). We hypothesized that activating the cancer-
immunity cycle using AAT-008 would potentiate anti-
tumoral effect by radiotherapy. The primary purpose of 
the present study was to investigate the biological effects 
of AAT-008 as a radiosensitizer in the treatment of mouse 
colon cancer (CT26WT) cells in vivo. The secondary 
purpose was to explore the radiosensitizing mechanism by 
examining Teff and Treg in the tumor using flow cytometry 
(FCM). We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-1857/rc).

Methods

Tumor line, mouse, and drugs

CT26WT cells (a mouse colon cancer line) purchased from 
the American Type Culture Collection were used throughout 
the study (12). For in vivo studies, 6-week-old female Balb/
c mice purchased from Nihon SLC Co. Ltd. (Hamamatsu, 
Japan) were bred under semi-sterilized conditions. 
CT26WT cells were cultured in a humidified atmosphere 
at 37°C and 5% CO2 with Nissui’s Roswell Park Memorial 
Institute medium containing 10% fetal bovine serum. AAT-
008 was provided by AskAt Inc., Nagoya, Japan. For oral 
administration in vivo, the drug was dissolved in 0.5% methyl 
cellulose. All animal experiments were performed under 
project licenses (Nos. H29M-10 and 30-012-007) granted by 
the Animal Ethics Committees of Nagoya City University and 
Osaka University, respectively, in compliance with Japanese 
Fundamental Guidelines for Proper Conduct of Animal 
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Figure 1 Chemical structure of AAT-008.
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Tumor growth delay assay

Exponentially growing 5×105 CT26WT tumor cells 
cultured in vitro were injected into the right hind legs of 
7-week-old Balb/c mice. Treatments were initiated when 
the mean tumor diameter reached approximately 10 or 
15 mm for tumor growth delay assay (day 0). The tumor-
bearing mice were randomly allocated to various treatment 
groups, with differing tumor volumes evenly distributed 
among the groups. AAT-008 at doses of 3, 10, and  
30 mg/kg/day was administered orally once daily in the 
first experiment and twice daily in the second experiment 
until termination of tumor size measurement (from day 0 
to up to day 18). The counterpart groups of mice received 
oral vehicle (methyl cellulose) administration with the 
same schedules. The tumors were locally irradiated at  
9 Gy on day 3 for the radiotherapy (RT) group using an X‐
ray machine (210 kVp, 10 mA with a 2‐mm Al filter; Chubu 
Medical Co., Matsusaka, Japan) at a dose rate of 2.2 Gy/min  
as described previously (Figure S1) (13-15). On the day 
of irradiation, AAT-008 was administered 3 hours before 
irradiation to avoid any radioprotective effect caused by 
oral vehicle administration (16). In the tumor growth delay 
assay, 6 or 12 mice were used for each group. The three 
dimensions of each tumor were measured every other day 
using a caliper, and the tumor volumes were calculated as 
V = π/6 × products of the three dimensions as described in 
detail previously (13-15). The tumor doubling times were 
calculated from these data.

Flow cytometry

We conducted two series of flow cytometric analysis. The 
mean tumor size was 6–7 mm on day 0 and 8–11 mm on day 
13–19. For the first series, the dose of AAT-008 was fixed at 
10 mg/kg/day, and AAT-008 was administered twice a day 
from day 0 to day 18. Radiation (9 Gy) was given on day 3. 
Six mice were scheduled to be used for each group, but mice 
that weakened due to oral gavage and those with a tumor 
that was too large were excluded before analysis for humane 
endpoint. Each tumor was surgically removed on day 19, and 
the population of effector T cells (CD45+CD8+CD69+: Teff) 
in the tumor was investigated as described previously (17).  
Briefly, tumor cells digested by collagenase IV (Sigma 
Aldrich; Tokyo, Japan) with DNAse were incubated in 
Hanks’ balanced salt solution to prepare a single cell 

suspension. Anti-mouse CD16/32 antibody (Biolegend, 
San Diego, CA, USA) was added to block Fc receptors. 
Then anti-mouse rat CD45-FITC, anti-mouse rat CD69-
PE, and anti-mouse rat CD8-APC antibodies (Clone 53-
6.7; eBioscience, San Diego, CA, USA) were reacted on ice 
for 30 min in the dark. The stained cells were analyzed with 
a FACS Verse™ (Beckton Dickinson, Franklin Lakes, NJ, 
USA) flow cytometer. Analysis was performed using FlowJo 
ver. 10 (Tommy Digital Biology, Tokyo, Japan).

For the second FCM series, the dose of AAT-008 was 
fixed to 30 mg/kg/day to increase the immune responses. 
AAT-008 was administered twice daily from day 0 to 12, 
and the tumors were removed on day 13. Five mice were 
scheduled for use in each group. To analyze Treg, the anti-
mouse rat CD4-APC antibody (RM4-5, eBioscience, CA, 
USA) was reacted on ice for 30 min in the dark. The cells 
were then fixed, permeabilized using FOXP3/Transcription 
Factor Staining Buffer Set (eBioscience), and reacted with 
anti-FoxP3-PE antibody (clone: FJK-16s, eBioscience, 
CA, USA). The population of Teff and the ratio of Teff/
Treg cells [forkhead box protein p3 (FoxP3+), CD4+] were 
investigated using the tumor cells on day 13. The FCM 
procedure was the same as in the first series.

Statistical analysis

All data represent the mean ± standard error. In the tumor 
growth delay assay, differences in tumor doubling times 
between the AAT-008 alone and no treatment groups and 
between the combination therapy (AAT-008 + RT) and 
RT alone groups were evaluated using Williams’ multiple 
comparisons test. To estimate whether the combined 
effects of RT and AAT-008 were additive, supra-additive 
(synergistic), or sub-additive, two-way analysis of covariance 
was used. In the flow cytometry, Student’s t-test with 
Bonferroni correction was used to evaluate the differences 
in cell populations between the combination therapy 
and RT alone groups, or between the vehicle alone and 
AAT-008 groups. The software R Version 4.0.3 (The R 
Foundation for Statistical Computing, Vienna, Austria) was 
used to perform statistical analyses. Differences with a P 
value <0.05 were considered significant.

Results

Tumor growth delay assay

Figure 2 shows the results of the first growth delay assay to 
test the effects of AAT-008 alone given once daily at doses 
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of 10 and 30 mg/kg/day and in combination with radiation 
(9 Gy). The mean tumor size on day 0 was 15 mm. The 
mean tumor doubling times in mice receiving vehicle,  
10 mg/kg AAT-008, and 30 mg/kg AAT-008 were 5.9, 
6.3, and 6.9 days, respectively, in the unirradiated group 
and 8.8, 11.0, and 18.2 days, respectively, in the irradiated 
group. The growth delay effect seemed minimal when 10 or  
30 mg/kg/day of AAT-008 was given alone. However, the 
growth delay effects of RT plus 30 mg/kg/day of AAT-008 
were significant compared with RT alone (P<0.05). The 
combined effect was considered additive at the AAT-008 
dose of 30 mg/kg/day.

Figure 3 shows the results of the second growth delay 
assay to test the effects of AAT-008 given alone twice daily 
at doses of 3, 10, and 30 mg/kg/day and in combination with 
radiation (9 Gy). The mean tumor size on day 0 was 10 mm. 
The mean tumor doubling times in mice receiving vehicle, 
3 mg/kg AAT-008, 10 mg/kg AAT-008, and 30 mg/kg  
AAT-008 were 4.0, 4.4, 4.6, and 5.5 days, respectively, in 
the unirradiated group and 6.1, 7.7, 16.5, and 21.1 days, 
respectively, in the irradiated group. The growth delay effect 
of AAT-008 (30 mg/kg/day) administered alone was mild but 
statistically significant (P<0.05). The growth delay effects 
of RT plus AAT-008 (especially at 10 and 30 mg) were 
significant compared with RT alone (P<0.05). The combined 
effect was considered additive at the AAT-008 doses of 3 and 
10 mg/kg/day, and supra-additive at 30 mg/kg/day.

Flow cytometry

In the first FCM series, the mean Teff proportions in the 
irradiated tumors were 43% and 31% in the 10 mg + RT 
(n=4) and 0 mg + RT groups (n=5), respectively. Notably, 
≥60% Teff was observed in responsive mice (n=2) in the 
10 mg + RT group (Figure 4). In the second FCM series 
(Figure 5, Figure S2), the mean Treg proportions in the 
irradiated tumors were 4.0% and 1.5% in the 0 mg + RT 
(n=5) and 30 mg + RT groups (n=5), respectively (P=0.04). 
The corresponding Teff/Treg ratios were 10 and 22, 
respectively (P=0.04).

Discussion

To the best of our knowledge, this is the first study to 
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Figure 2 Growth curves for CT26WT tumors (mean, 15 mm) 
after oral administration of vehicle, AAT-008 (10 or 30 mg/kg/day,  
once a day until termination of tumor size measurement: from 
day 0 to up to day 18, open symbols), and vehicle or AAT-008 plus 
radiation (R) with 9 Gy on day 3 (closed symbols). Bars represent 
standard errors of 6 mice.
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Figure 3 Growth curves for CT26WT tumors (mean, 10 mm) after 
oral administration of vehicle, AAT-008 (3, 10, or 30 mg/kg/day,  
twice daily until termination of tumor size measurement: from 
day 0 to up to day 18, open symbols), and vehicle or AAT-008 plus 
radiation (R) with 9 Gy on day 3 (closed symbols). Bars represent 
standard errors of 12 mice.
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Figure 4 Population of effector T cells (Teff) in the tumors after 
administration of vehicle, AAT-008 (10 mg/kg/day, twice daily 
from day 0 to day 18), vehicle plus radiation (RT, 9 Gy), and AAT-
008 plus RT. The filled circles indicate that in responded mice. RT, 
radiotherapy.
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evaluate the radiosensitizing ability of AAT-008. Based on 
the results, AAT-008 has potential as a radiosensitizer. Since 
AAT-008 has a high binding selectivity and a potent binding 
affinity for EP4 receptor (11), it was assumed that this effect 
was obtained via EP4 receptor. In the first growth delay 
experiment, the combined effect of RT and AAT-008 was 
not sufficient, so in the second experiment we used smaller 
tumors and AAT-008 was administered twice daily; the 
combined effect appeared to be supra-additive at the dose 
of 30 mg/kg/day and it appeared that at least 10 mg/kg/day 
is required to obtain a sufficient tumor growth delay effect 
when combined with radiotherapy in this murine colon 
cancer model. Our data also suggest that the immune system 
was stimulated by AAT-008 against the cancer cells when 
combined with radiotherapy. 

A few recent studies have demonstrated that radiation 
enhances antitumor immune response through several 
mechanisms, including induction of damage associated 
molecular patterns and activation of the type-I interferon 
pathway (18,19). The enhanced immune response was 
highly dependent on total radiation doses to tumors and 
fractionation schedules as well as tumor types (18-21). 
Because the primary purpose of the present study was 
to investigate the radiosensitizing effect of AAT-008 on 
irradiated tumor growth, we employed a radiation dose 
that did not control the tumors. Additionally, extremely 
high dose irradiation in a single fraction (e.g., 30 Gy) 
will not induce the type-I interferon pathway and recruit 
adequate numbers of Teff due to severe vascular damage 
and degradation of inflammatory cytokines (18). Therefore, 
we used 9 Gy in a single fraction in all experiments. 

Previous clinical reports demonstrated that neoadjuvant 
chemoradiotherapy increased the proportion of CD8+ T 

cells in the whole lymphocytes in other tumors (22,23). A 
recent preclinical study using a pancreatic ductal carcinoma 
mouse model demonstrated that local irradiation at 16 Gy 
in a single fraction and three fractions of 8 Gy increased 
not only Teff but also Treg in irradiated tumors, indicating 
that radiation altered the tumor immune microenvironment 
to immune evasion as well as immune activation (24). 
Similarly, in a colon cancer mouse model, radiation at  
12 Gy in  a  s ingle  fract ion c lear ly  promoted the 
accumulation of Treg (25). These findings suggest that an 
additional strategy to reduce Treg and increase Teff is likely 
to enhance the radiosensitizing effect.

EP4 antagonists stimulate CD8+ T cell infiltration to 
tumors and reduce Treg (3). Thus, we hypothesized that 
AAT-008 may improve the antitumor effect with RT. A 
clinical study demonstrated that patients with high CD8+ 
T cell infiltration either pre-RT or post-10 Gy exhibited 
positive associations with overall survival, progression-free 
survival, and local control rates (26). In 115 patients with 
cervical cancer, a high number of Treg and a low CD8+ 
T cell/Treg ratio in the intraepithelial tumor-infiltrating 
lymphocytes were reported to be poor prognostic factors (27). 
Similarly, our results demonstrated that addition of AAT-
008 to radiation enhanced the local antitumor response with 
increased CD8+ T cell/Treg ratios.

The combination of chemoradiotherapy and immune 
checkpoint inhibitors (ICI) is now a standard treatment 
in locally-advanced non-small cell lung cancer (28). 
Results from some ongoing clinical studies of combined 
radiotherapy and ICI in the treatment of colorectal cancer 
are awaited (29). However, the targets of ICI are limited in 
the cancer-immunity cycle. PGE2-EP4 antagonists such 
as AAT-008 were effective on other points of the cancer-
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immunity cycle: stimulating dendritic cells and CD8+ 
T cell infiltration to the tumor, inhibiting suppressive 
immune cells, and rescuing CD8+ T cell functions (3). 
Thus, AAT-008 is expected to enhance the therapeutic 
effects of combined radiotherapy and ICI. AAT-008 has 
been developed for clinical use, and further investigation 
including clinical trials is warranted. EP4 is reported to play 
critical roles in hematopoiesis and blood cell trafficking 
(9,30). However, no hematological safety concerns were 
observed regarding AAT-008 in in vivo safety and toxicity 
studies (data not shown). Similar safety evidence of a 
selective EP4 antagonist (grapiprant/Galliprant® for animal 
health) was also demonstrated in field studies using dogs 
with disease (31). Recently, other EP4 antagonists have 
been developed (32,33). AAT-008 has a great binding 
potency for EP4 receptors and has more than 1,000-fold 
higher selectivity than other prostaglandin receptors (11). 
We assumed that AAT-008 was useful to bring out the 
effectiveness via suppression of EP4 receptors compared 
to other EP4 antagonists. Moreover, AAT-008 is ready to 
be used in clinical situations. These are the benefits to use 
AAT-008 compared to other EP4 antagonists.

A limitation of the present study is that only one tumor 
cell line was used. The results could be different with 
other cell lines. Another issue is that other immunologic 
mechanisms could also be related to the radiosensitizing 
ability. Further investigation would be warranted using more 
detailed flow cytometry analysis, transgenic mouse models, 
and additional cancer models including human cancer cell 
lines. To strengthen the evidence of radiosensitivity, further 
investigations using lower radiation doses are desirable. In 
this study, some mice were weakened due to oral gavage and 
excluded for humane endpoint. We could reduce the stress 
to mice using a novel oral gavage technique (34).

Conclusions

AAT-008 has the potential to enhance radiosensitivity in the 
treatment of colon cancer cells, by stimulating the immune 
system against the cancer cells.
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Supplementary

Figure S1 The device to fix mice for irradiation. During irradiation, the head, trunk, and left leg of mice are shielded by lead plates, while 
the tumor-bearing right leg fixed with adhesive tapes is not shielded. Although the mice are different from those used in this study, the same 
device was used.
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Figure S2 Representative dot plots showing effector T cells (Teff) and regulatory T cells (Treg) in the second flow cytometric analysis. (A) 
Dot plots using isotype control, (B) Dot plots showing CD8+ CD69+ cells in CD45+ cells in each treatment group, (C) Dot plots showing 
CD4+ FoxP3+ cells in CD45+ cells in each treatment group. RT, radiotherapy.


