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Background: Both metastasis and immune resistance are huge obstacle in lung adenocarcinoma (LUAD) 
treatment. Multiple studies have shown that the ability of tumor cells to resist anoikis is closely related to the 
metastasis of tumor cells.
Methods: In this study, the risk prognosis signature related to anoikis and immune related genes (AIRGs) 
was constructed by cluster analysis and the least absolute shrinkage and selection operator (LASSO) 
regression by using The Cancer Genome Atlas (TCGA) Program and the Gene Expression Omnibus 
(GEO) database. Kaplan-Meier (K-M) curve described the prognosis in the different groups. Receiver 
operating characteristic (ROC) was applied to evaluate the sensitivity of this signature. Principal component 
analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), independent prognostic analysis, and 
nomogram were utilized to assess the validity of the signature. In addition, we used multiple bioinformatic 
tools to analyze the function between different groups. Finally, mRNA levels were analyzed by quantitative 
real-time PCR (qRT-PCR).
Results: The K-M curve showed a worse prognosis for the high-risk group compared to that for the low-
risk group. ROC, PCA, t-SNE, independent prognostic analysis and nomogram showed well predictive 
capabilities. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
revealed that differential genes were mainly enriched in immunity, metabolism, and cell cycle. In addition, 
multiple immune cells and targeted drugs differed in the two risk groups. Finally, we found that the mRNA 
levels of AIRGs were remarkably different in normal versus cancer cells.
Conclusions: In short, we established a new model about anoikis and immune, which can well predict 
prognosis and immune response.

Keywords: Anoikis; immune; signature; The Cancer Genome Atlas (TCGA); lung adenocarcinoma (LUAD)

Submitted Nov 04, 2022. Accepted for publication Mar 07, 2023. Published online Mar 27, 2023.

doi: 10.21037/tcr-22-2550

View this article at: https://dx.doi.org/10.21037/tcr-22-2550

903

Introduction

Lung cancer, a common heterogeneous malignant tumor 
like other malignancies, is usually classified as small cell 
lung cancer and non-small cell lung cancer (adenocarcinoma 
and squamous carcinoma) (1-3). Among them, lung 

adenocarcinoma (LUAD) is the most common type of lung 
cancer pathology. In recent years, targeted therapy and 
immunotherapy play an important role in the treatment of 
LUAD as a result of the development of precision therapy.

Anoikis, as a form of programmed cell death, is 
characterized by the loss of cell adhesion to the extracellular 

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-22-2550


Zhang et al. An anoikis and immune related signature888

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):887-903 | https://dx.doi.org/10.21037/tcr-22-2550

matrix (ECM) or the improper adhesion resulting in rapid 
apoptosis of normal epithelial cells (4-6). In contrast to 
normal cells, tumor cells have to develop strong resistance 
to anoikis in order to keep cancer cells alive in metastasis 
and proliferation (7-10). Tumor cells can survive in an 
inappropriate ECM only after the tumor cells initiate the 
anti-anoikis feature. Several publications have reported that 
anoikis-related genes (ARGs) play major roles in tumor 
resistance and development (11,12).

The development of tumor cells is not only dependent on 
the accumulation of mutations in the tumor cells themselves, 
but also tightly linked to the ECM, immune cells and 
mesenchymal cells in the tumor microenvironment (13,14). 
Different types of immune infiltration may suggest different 
effects of immunotherapy (15). Therefore, understanding the 
various molecular changes in tumor immunity is crucial for 
targeted therapy and immunotherapy. Traditional treatment 
modalities, although being well-developed, still have significant 
limitations due to the individual variability of the oncology 
patients (16). Therefore, there is a need to develop more 
accurate risk assessment signatures to provide more precise 
clinical interventions for different patients. In recent years, 
the explosion of sequencing data and bioinformatics have 
opened up the possibility of precision therapy. More and more 
predictive signatures are being developed to provide ideas for 
clinical immunotherapy and targeted therapies (17-19).

Although experimental studies of ARGs and immune-
related genes (IRGs) are gradually gaining more attention in 
recent years, studies using these genes as prognostic factors 
to construct risk signature have not yet emerged (20,21). 
Therefore, we integrated anoikis and immune related genes 
(AIRGs) to construct a reliable and clinically meaningful 

risk-prognostic signature through effective bioinformatics 
tools. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-22-2550/rc).

Methods

Data acquisition and analysis

Data and clinical information of LUAD patients were taken 
from The Cancer Genome Atlas (TCGA) Program and the 
GSE68465 from the Gene Expression Omnibus (GEO) 
(22,23). The sample selection criteria are as follows: (I) patients 
need to have complete survival information, including survival 
time and survival state. (II) Patients have complete clinical 
information. (III) Total sample size in each dataset >500. ARGs 
and IRGs were obtained from GeneCards and immPorts, 
respectively (24). Anoikis and immune-related regulators 
(AIRRs) were obtained from the online site Venny2.1. 
Functional protein associated networks were mapped by 
STRING online database. Differential expression of AIRRs 
were analyzed by the R “limma” package.

Clustering analysis

Based on the differential expression of AIRRs, the clustering 
analysis was performed by “consensusClusterPlus” 
to identify the different patterns of AIRRs (25). The 
differential genes were then analyzed by “limma” package.

Risk signature construction

Using the TCGA database as the training set and 
GSE68465 as the validation set, overall survival (OS) 
related genes were ascertained by univariate Cox regression, 
and overfitting was avoided by least absolute shrinkage 
and selection operator (LASSO) regression. Subsequently, 
patients were divided into two risk groups according to 
median risk score. K-M survival curves were plotted for 
both data sets using the “survival” package. Time-dependent 
receiver operating characteristic (ROC) curves were plotted 
by the “timeROC” package. Principal component analysis 
(PCA) and t-distributed stochastic neighbor embedding 
(t-SNE) were plotted by the “Rtsne” package in R.

Model verification

Independent prognostic analysis was performed by the 
“survival” package. The expression of AIRRs in the two 
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groups were illustrated by the “limma” and the “pheatmap” 
package. The “rms” package was utilized to construct a 
prognostic nomogram and to evaluate the accuracy between 
the predicted and actual OS of the nomogram.

Function enrichment analysis

Gene Ontology (GO) enrichment of differential genes 
were analyzed by the “GOplot” package to illustrate 
the biological function of differential genes. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment was demonstrated by gene set enrichment 
analysis (GSEA) to describe distinct signal pathway between 
the two risk groups.

Estimation of tumor mutation burden (TMB) and 
immune cell infiltration

The data of TMB in LUAD was download by TCGA. 

TMB was assessed for both risk groups. Meanwhile, the 
differential expression of different immune cells in the 
two risk groups was assessed by single-sample gene set 
enrichment analysis (ssGSEA) and CIBRSORT. In addition, 
the relationship between 10 AIRGs and immune infiltrating 
cells was evaluated by TIMER online database (26).

Drug sensitivity

Half maximal inhibitory concentration (IC50) of 
chemotherapeut i c  drugs  and  t a rge ted  drugs  by 
“pRRophetic” R package was evaluated (27).

Survival analysis of AIRGs and differential genes 
expression authentication 

The survival curves of AIRGs were illustrated by Kaplan-
Meier (K-M) plotter (28). By quantitative real-time PCR 
(qRT-PCR), the expression of 9 AIRGs on BEAS-2b (lung 
normal cell line) and A549 and PC-9 (two lung cancer 
cell lines) was validated. Total mRNA was extracted by 
TRIzol and reverse transcription PCR by Prime Script 
RT Master. Subsequently, the cDNA was tested by qRT-
PCR. The relative mRNA expression was calculated by  
2−ΔΔCT. All primers are shown in Table 1. Primers for the 
gene ANXA2P2 were not found.

Statistical analysis

Most of the plots and statistical analyses were performed 
using R x64 4.1.2. T-test was used to evaluate the 
differential expression of individual genes. A P value less 
than 0.05 was defined as a statistically significant difference.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Acquisition of differential AIRRs

The GeneCards and immPorts databases were used to acquire 
434 and 1,793 ARGs and IRGs, respectively (available online: 
https://cdn.amegroups.cn/static/public/tcr-22-2550-1.xlsx, 
https://cdn.amegroups.cn/static/public/tcr-22-2550-2.xlsx). 
One hundred and nine genes were defined as AIRRs by Venn 

Table 1 Primers of mRNAs in prognosis signature

Gene name Primer sequences 

GAPDH Forward: CAGGAGGCATTGCTGATGAT

Reverse: GAAGGCTGGGGCTCATTT

ABCA3 Forward: GGACCTCCTTAGCCCTGTC

Reverse: TCTTCGAGCACCCCTTCAAC

ADH1B Forward: GGGCCATTGTGATTGAAG

Reverse: TGTGGGGCATTTTATTTGA

TCN1 Forward: GGAAGCACACAATGGCACTC

Reverse: GGCGGTTGAGTAGTTCCCAT

TNS4 Forward: CCCAGTGTCTGATGTCAGCTAT

Reverse: CTGGAGGAAGAGTTGGCTGG

DSG2 Forward: TGCTGCTTCTCCTGATCTGC

Reverse: ATCCTCTCCCTCCCGAAGAG

FRS3 Forward: ATGTGAGCCCCAGGTGT

Reverse: CCCCATGGTGTCAGAGCAG

UNC13B Forward: TCCTACCTCCCAGCGAT

Reverse: TCACCGTCTGAGCGAAC

STC1 Forward: AGCCTCTTGGAAATCAGGT

Reverse: TGGCTTAGTTGGGTTTGC

HLA-DQB2 Forward: TGTGCTACTTCACCAACGG

Reverse: TGTTCCAGTCCTCGATGC
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plot (Figure 1A) (available online: https://cdn.amegroups.cn/
static/public/tcr-22-2550-3.xlsx). Protein interaction networks 
showed a strong correlation between AIRRs (Figure 1B). 
Eighty-five differential genes were identified between normal 
lung tissue and LUAD (Figure 1C). Finally, the expression of 
10 AIRRs was shown by box line plots (Figure 1D).

Clustering construction

The LUAD patients were clustered by the expression of 
AIRRs and the best clustering results were obtained at K=2 
(Figure 2A-2C). The prognosis of cluster 2 was significantly 
worse than the corresponding cluster (Figure 2D). In 
addition, the heat map revealed that multiple AIRRs were 
upregulated in cluster 1. And the clustering results showed 
significant correlation between T-stage, gender, and age 
(Figure 2E). In conclude, a close correlation between the 
expression of AIRRs and LUAD was demonstrated.

Developing a risk-prognosis signature

One hundred and thirty-three AIRGs with significant 
differences were found in C1 and C2. Fifteen genes were 
significantly associated with OS by univariate analysis 
(Figure 3A). By LASSO regression analysis, 10 AIRGs 
associated with OS were identified (Figure 3B,3C). K-M 
curves demonstrated a disappointing prognosis in the high-
risk group in the GEO and TCGA datasets, respectively 
(Figure 3D,3E). ROC curves showed well predictive function 
of predictive models for OS (Figure 3F,3G). Meanwhile, the 
higher the risk score, the worse the prognosis (Figure 3H-3K). 
Finally, the PCA and t-SNE showed that patients were 
appropriately divided into two categories (Figure 3I-3O).

Validation of prognostic signature

Risk score could be treated as an independent prognostic 
factor for survival by univariate and multifactor independent 
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Figure 1 Expression of AIRRs in LUAD and normal tissues. (A) Venn plot showing 434 ARGs, 1,793 IRGs and 109 AIRRs. (B) PPI 
network showing the correlation of AIRRs. (C) Differential expression is shown by heat map. (D) Boxplot showing 10 AIRRs in LUAD and 
normal tissues. ns, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. AIRR, anoikis and immune related regulator; LUAD, lung 
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prognosis, which further illustrated the reliability of the 
constructed model (Figure 4A-4D). Meanwhile, the heat 
map illustrated the expression of 10 AIRGs in the two 
risk groups. Among them, TCN1, ANXA2P2, TNS4, 
DSG2, STC1 were highly expressed in the high-risk group  
(Figure 4E,4F). In addition, the nomogram plots were 
constructed to predict OS at different time points  

(Figure 4G-4J). These results indicated that the model 
constructed was meaningful.

Functional enrichment analysis

GO enrichment mainly indicated that the differential 
genes were mainly related to human immune response, 
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Figure 4 Validation of OS signature. (A-D) Univariate and multifactorial independent prognostic analysis in two datasets. (E,F) Heat map 
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antimicrobial humoral response, and cell-cell junctions 
(Figure 5A,5B). KEGG enrichment showed that genes 
in the high risk group were mainly enriched in cell 
cycle, homologous recombination and P53 signaling 
pathway, while genes in the low risk group were primarily 
enriched in α-linolenic acid, arachidonic acid and asthma  
(Figure 5C,5D).

Immune microenvironment analysis

In the same cancer species, different immune cell infiltration 
can lead to different treatment outcomes. Therefore, 
the immune cell infiltration and immune function were 
analyzed in two risk groups. The results showed that there 
were significant differences in activated dendritic cells 
(aDCs), B cells, macrophages and mast cells among the two 
different risk groups. Higher abundance of aDCs, B cells, 

immature dendritic cells (iDCs), etc. in the low-risk group 
(Figure 6A-6F). These results provided some theoretical 
basis for clinical immunotherapy. The TMB was analyzed in 
different risk groups as TMB was associated with immune 
escape in tumor patients. The results indicated that the 
higher the risk score, the higher the TMB (Figure 7A-7C). 
In contrast, Tumor Immune Dysfunction and Exclusion 
(TIDE) scores were negatively correlated with risk scores 
(Figure 7D). In addition, the relationship between 10 AIRGs 
and B cells, CD8+ T cells, macrophages, CD4+ T cells also 
were described by TIMER database (Figure 8A-8J).

Drug sensitivity analysis of prognostic signature

Targeted drugs are one of the main treatment options for 
LUAD. Drug sensitivity testing is essential for patients who 
require targeted therapy. The IC50 of the various drugs 
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Figure 5 Function enrichment in TCGA database. (A) Bubble map showing GO enrichment. (B) Circle graph showing GO. (C) KEGG 
enrichment in the high-risk group. (D) KEGG enrichment in the low-risk group. BP, biological progress; CC, cellular component; MF, 
molecular function; FC, fold change; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.



Translational Cancer Research, Vol 12, No 4 April 2023 895

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):887-903 | https://dx.doi.org/10.21037/tcr-22-2550

Figure 6 Immuno-infiltration analysis. (A) Boxplot showing immune cell infiltration in GEO. (B) Boxplot showing the difference in immune 
function in GEO. (C) Boxplot displaying immune cell infiltration in TCGA. (D) Boxplot displaying Boxplot displaying immune cell infiltration 
in TCGA. (E) Violin diagram showing differences in immune cells. (F) Heat map showing variations in immune cells. *, P<0.05; **, P<0.01; 
***, P<0.001. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; aDC, activated dendritic cell; iDC, immature dendritic 
cell; NK cells, natural killer cells; pDC, plasmacytoid dendritic cell; APC, antigen-presenting cell; CCR, chemokine receptors; HLA, human 
leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon; TIL, tumor infiltrating lymphocytes; Treg, regulatory T cell.
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Figure 7 TMB and TIDE in TCGA database. (A) The mutation rate of different genes in the high-risk group. (B) Mutation rate of different 
genes in the low-risk group. (C) Variability of TMB in the two risk groups. (D) The TIDE score between two groups. ***, P<0.001. TMB, 
tumor mutation burden; TIDE, Tumor Immune Dysfunction and Exclusion; TCGA, The Cancer Genome Atlas.

differed significantly across the two risk groups, include Akt 
inhibitor, PARP inhibitor, Lck inhibitor, VEGFR inhibitor, 
AMPK inhibitor and JNK inhibitor (Figure 9A-9H). These 
results can provide guidance to clinical targeted drug 
administration.

The survival analysis and experimental validation of 
differential genes

By K-M plotter, high expression of ANXA2P2, DSG2, FRS3, 
STC1, TCN1, TNS4 predicted a worse prognosis, while 
in contrast, ABCA3, ADH1B, HLA-DQB2 and UNC13B 
demonstrated a better prognosis (Figure 10A-10J). Finally, 
the mRNA levels of different genes in the three cell lines 
were analyzed by qRT-PCR. The results showed that all 
genes except TCN1 and TNS4 were down-regulated in 
expression in both tumor cell lines (Figure 11A-11I).

Discussion

Lung cancer, as one of the deadliest malignant tumors 
worldwide, has a number of subtypes (29). LUAD is the 
most general reason of cancer-related death among all lung 
cancer subtypes. Due to the unknown pathogenesis, the 
treatment of LUAD is unsatisfactory (30). Thus, finding 
new molecular markers should be seen as an urgent need.

Tumor metastasis is the leading cause of tumor-related 
death (31). Even though drug and surgical treatments are 
well developed, the five-year survival rate for patients with 
metastatic disease is still low (30). Currently, studies on 
tumor metastasis mainly focused on epithelial mesenchymal 
transformation of cancer cells, and neovascularization (32). 
However, the ECM also plays a particularly important 
role in the metastasis of tumors (33). Both fibroblasts and 
vascular endothelial cells in the tumor microenvironment 
produce a variety of cytokines that promote tumor 



Translational Cancer Research, Vol 12, No 4 April 2023 897

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):887-903 | https://dx.doi.org/10.21037/tcr-22-2550

Figure 8 Correlation between AIRGs and immune infiltrating cells. (A) ABCA3. (B) ADH1B. (C) ANXA2P2. (D) DSG2. (E) FRS3. (F) 
HLA-DQB2. (G) STC1. (H) TCN1. (I) TNS4. (J) UNC13B. TPM, transcripts per million; LAUD, lung adenocarcinoma; AIRG, anoikis 
and immune related gene.
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Figure 9 Drug sensitivity. (A) A.443654. (B) AKT.inhibitor.VIII. (C) AG.014699. (D) A.770041. (E) AMG.706. (F) AICAR. (G) AS601245. 
(H) ABT.888. IC50, half maximal inhibitory concentration.

migration and invasion (34-36). Meanwhile, various matrix 
proteins, collagen and other soluble molecules in the tumor 
microenvironment can also promote tumor metastasis.

The anti-anoikis behavior of tumors can promote 
tumor survival during metastasis (37). There is increasing 
evidences that anoikis plays an important role in the 
biological behavior of tumors (38,39). For example, bone 
morphogenetic proteins (BMPs) can promote anoikis 
resistance through upregulation of Notch signaling, and 
promote proliferation and metastasis of breast cancer (40). 
In non-small cell lung cancer, aberrant expression of the 
zinc finger protein (ZIC) family was associated with anoikis, 
and silencing ZIC2 reduced anoikis resistance in NSCLC 
cells. In addition, the number of circulating tumor cells 
and ZIC2 expression were positively correlated (41). Also, 
in gastric cancer, anoikis resistance interacts biologically 
with angiogenesis, thus promoting peritoneal metastasis of 
gastric cancer (42). Therefore, anoikis-related gene is a very 
important target for tumor-targeted therapy.

Five-year survival rates for LUAD patients have been 
improved significantly due to the rapid development of 
immunotherapy (43). However, the degree of response to 
immunotherapy varies from patient to patient due to individual 
heterogeneity (44,45). Different levels of immune cell 
infiltration and TMB often lead to contrary clinical outcomes 
compared to expectations (46,47). Therefore, there is an 

urgent need for integration of IRGs for precision therapy.
In our study, we present for the first time anoikis-

related and IRGs in LUAD. Stratified clustering by AIRRs 
was performed to classify LUAD patients in TCGA into 
C1 and C2 categories. Then, we performed prognostic 
modeling by differential genes significantly associated 
with OS in both clusters. Finally, ten differential genes 
were identified (HLA-DQB2, TCA1, ADH1B, ANXA2P2, 
TNS4, DSG2, ABCA3, FRS3, UNC13B, STC1). Among 
these genes, ADH1B, a metabolism-related gene, has 
been associated with immune regulation and therapeutic 
response in a variety of cancers (48-50). TNS4 can promote 
tumorigenicity in colorectal cancer cells, and inhibition 
of TNS4 can make colorectal cancer more sensitive to 
cetuximab (51). Meanwhile, high expression of TNS4 
suggested a worse prognosis for gastric cancer (52). DSG2 is 
an independent prognostic factor in multiple myeloma (53).  
Meanwhile, DSG2  promoted the proliferation and 
migration of LUAD cell lines and increased the resistance 
to Osimertinib (54). In glioblastoma, the cyclic RNA 
circPOSTN can promote neovascularization by regulating 
the miR-219a-2-3p/STC1 axis and promoting the 
expression of VEGFA (55). Meanwhile, ABCA3, FRS3 and 
other genes have also been reported in a variety of cancers 
(56,57). Therefore, more in-depth studies are need for these 
genes in LUAD. Subsequently, we verified the risk signature 
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by K-M curves, ROC curves, PCA, t-SNE, nomogram, and 
independent prognostic analysis. All these results indicated 
that the prognostic signature had good predictive function. 
Then, we enriched GO and KEGG for differential genes in 
different risk groups and found that these genes were mainly 
enriched in human immune response, immune receptor 
activation, cell cycle, and metabolic pathways, so we also 
analyzed immune cells, immune infiltration function, TMB, 
and immune escape for patients in two risk groups (58,59). 
The results showed that immune cells, such as aDCs, B 

cells, iDCs, mast cells, TIL, were different in the both 
risk groups. And the results demonstrated that TMB was 
significantly higher in high-risk patients than comparable 
patients, while the TIDE score was significantly lower than 
in low-risk patients, suggesting that high-risk patients may 
gain more benefit from immune blockade therapy (60-62).

A novel risk-prognosis signature was built to guide the 
clinical diagnosis and treatment of LUAD by using the 
TCGA database as internal validation and the GEO dataset 
for external validation. Meanwhile, the mRNA level of 
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Figure 10 OS curves in Kaplan-Meier plotter. (A) ABCA3. (B) ADH1B. (C) ANXA2P2. (D) DSG2. (E) FRS3. (F) HLA-DQB2. (G) STC1. 
(H) TCN1. (I) UNC13B. (J) TNS4. OS, overall survival; HR, hazard ratio.
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Figure 11 Relative mRNA expression in three cell lines. (A) ABCA3. (B) ADH1B. (C) FRS3. (D) STC1. (E) DSG2. (F) HLA-DQB2. (G) 
TCN1. (H) TNS4. (I) UNC13B. *, P<0.05; **, P<0.01; ****, P<0.0001. 

AIRGs was verified by qRT-PCR. However, our study still 
has significant limitations. Firstly, the data were all from 
public databases. Secondly, we only validated the mRNA 
level for AIRGs by three cell lines. Therefore, we will 
subsequently collect clinical data for further testing of the 
prognostic model. In addition, we will perform further in 
vitro and in vivo validation for AIRGs.

Conclusions

Based on the ARGs and IRGs, we established a 10-gene risk 
model and performed a simple experimental validation. The 
establishment of new biological markers is important for 
predicting prognosis and targeted therapy in LUAD.
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