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Ovarian carcinoma represents a major burden of women’s 
morbidity and mortality. It consists of various histological 
subtypes and among them, high-grade serous carcinoma 
(HGSC) is most common in the United States (1). Effective 
approaches to treat HGSC of the ovary, fallopian tube, 
and peritoneum remain challenging. Within the last 
two decades, there has been significant progress in our 
understanding of the molecular landscape in HGSCs and 
its precursor lesions, due to genomic changes (e.g., gene 
sequence changes, copy number variations) as well as 
transcriptomic or proteomic alterations (1-8). Despite these 
advancements, direct translation of the results from those 
studies to benefit women with HGSC awaits to be realized 
as the 10-year survival rate is less than 15% (3). This has led 
investigators to incorporate more comprehensive analyses 
using the data generated from sophisticated techniques in 
order to better characterize the disease and develop risk 
strata that are reliable and relevant to clinical application. 
The report by Hollis and colleagues is a timely one aiming 
at better understanding clinical phenotypes, progression, 
and survival patterns among HGSC molecular subtypes 
(9). Through a multiomic approach, they identified protein 
markers, compared transcriptomic subtype profiles, and 
studied homologous recombination repair (HRR) pathway-

related mutations and copy number changes to determine 
if molecular characters can distinguish different clinical 
subtypes of HGSC. 

There are several implications from integrated omic 
studies including this new report. They validate the 
importance of genomic instability in HGSC initiation 
and progression, promise clinically meaningful molecular 
classifications, and emphasize the emerging roles of 
tumor microenvironment with specific focus on tumor 
immunogenicity in HGSC development and response to 
treatment. However, there are several challenges ahead 
in applying the results of multiomic biomarker studies to 
clinical practice. 

This report integrates an HRR-centric algorithm that 
classifies HGSC tumors according to prognosis. The authors 
compare overall survival (OS) of patients with tumors of 
the following features: mutation in BRCA1 (BRCA1m), 
BRCA2 (BRCA2m), amplification of CCNE1 (CCNE1g), 
mRNA overexpression of genes located in chromosome 
11q13.5 (region harboring EMSY, termed EMSY-overxp 
in this study) and HRR wildtype (HRRwt) (9). As expected, 
the BRCA2m group had the best OS while CCNE1g 
and HRRwt groups had the worst OS (9). Interestingly, 
the authors found a survival advantage in groups without 
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BRCA1/2m, but with mRNA transcript overexpression 
of EMSY in chromosome 11q13.5 (9). EMSY encodes a 
protein that binds and inactivates BRCA2 proteins (10,11). 
It is intuitive that EMSY may likely function to contribute 
to HRR deficiency but whether EMSY is over-expressed 
in HGSC tissue at the protein level is certainly unclear. 
In fact, chromosome 11q13.5 harbors several other genes 
of which Rsf-1, just adjacent to EMSY, has been reported 
to be amplified and overexpressed at the protein levels in 
chromosome 11q13.5 amplified HGSCs and their precursor 
lesions, serous tubal intraepithelial carcinomas (12). Rsf-1 
protein is involved in ISWI chromatin remodeling and Rsf-
1 amplification was associated with shorter OS compared to 
those without (12). 

The results from this report support an association 
between HRR genotype and immune-rich phenotype on 
a basis of transcription analysis. Although similar findings 
have been previously reported, the authors provide more 
details on such correlation. HGSCs with either BRCA2m 
or BRCA1m were associated with the Tothill C2 and 
immunoreactive The Cancer Genome Atlas (TCGA) 
subtypes (9). These authors also find three canonical 
pathways (i.e., polo-like kinase, BRCA1-mediated DNA 
response, and G2/M DNA damage checkpoints) are highly 
associated with and may contribute to the high levels of 
chromosomal disruption in HGSC (13). Another major 
finding from this study is that the results show immune 
cell infiltration burden as a prognosis marker. The authors 
find that higher proportion of CD3+ tumor infiltrating 
lymphocytes (TILs) were associated with prolonged survival 
and better response to chemotherapy, and this correlated 
with genomic variants BRCA1/2m as well as with the 
Tothill and TCGA transcriptomic subtypes, C2 and IMR, 
respectively (9). Although understanding the TME as it 
relates to the immunogenicity of HGSC is encouraging, 
application of these concepts clinically has been challenging 
since their response rates to immunotherapies have been 
modest (14,15). In the study, over half of the HGSC tumors 
were HRRwt (57%), with or without CCNE1g (9). The 
authors’ HRR-centric algorithm confirms that both HRRwt 
and CCNE1g are associated with worse OS and response to 
chemotherapy when compared to the HRR-deficient cases (9). 
Notably, the anti-angiogenic agent bevacizumab confers 
the most progression-free survival (PFS) benefit to HRRwt 
patients as well as those that would be trascriptomically 
classified as PRO or C5 subtype, corresponding to the 
TCGA and Tothill subtypes, respectively (9). Taken 
together, there seems to be reliable, clinically translatable 

knowledge gained when the status of the HRR pathway (or 
related genes) in HGSC tumors is discerned. 

The paper also concludes that use of immunohistochemistry 
can provide reliable and specific (2,16,17) approach to 
help outcome prediction. In this report, the authors find 
that loss of RB engendered significantly better OS and 
more favorable response to chemotherapy, and that it was 
especially prevalent in HRR-deficient variants of HGSC (9). 
Additionally, this report now classifies PTEN-loss and RB-
loss as non-mutually exclusive, with a co-occurrence rate 
of more than 20% (9). Whether the co-loss of both tumor 
suppressors is associated with any clinical sign awaits further 
study in a large HGSC cohort. A long-standing challenge in 
applying immunostaining in clinical setting is the concern 
of the specificity and sustainable source of the antibody, 
interpretation of the staining pattern, the intra-tumoral 
heterogeneity and, most importantly, whether a single or 
a small set of staining markers whould have the power for 
clinical correlation when tested in a large independent 
cohort. 

We propose that future success in the application of 
multiomic characterization of HGSC will depend on 
several factors, many of which rely on a reproducible 
and facile workflow to diagnose and characterize varying 
clinical profiles. DNA and protein are considered relatively 
stable markers and are easier to reproduce (18). However, 
compared to DNA and protein, RNA expression has 
historically been considered a less stable marker due to 
biodegradation by RNase, an enzyme highly present in the 
everyday environment (18). Additionally, formalin-fixed 
paraffin embedded (FFPE) specimens, when compared 
to fresh frozen tissue, are associated with fragmented and 
chemically modified nucleic acids, which can potentially 
add challenges and introduce bias when assaying RNA, 
if fresh frozen tissue isn’t available (19). And, while more 
sophisticated transcriptomic analysis platforms have been 
increasingly available, the overall cost and turnaround time 
have limited our broader clinical use (20). This calls for 
improvements in technique, which may include having less 
coverage and more shallow reads to broaden throughput 
and surveillance of the transcriptome (20). This approach 
could potentially lower costs and increase accessibility. 
Integration of reliable and affordable transcriptome 
profiling combined with profiling known stable markers 
(DNA and protein) has potential for robust combinational 
approach to predicting HGSC prognosis and treatment 
response. 

We would be remiss to mention the implications of 
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a more granular precision medicine without also taking 
into consideration the potential effects of next-generation 
“-omic” profiling on disparate populations, especially those 
which are historically underserved. Studies have shown that 
adherence to the National Comprehensive Cancer Network 
(NCCN) treatment guidelines is a key determinant to 
survival disparities seen in minority populations (21). In 
fact, there were no differences in survival based on race 
or socioeconomic status after controlling for adherence 
to NCCN treatment guidelines (22). What this tells us 
is that guideline adherence differences between specific 
populations will undoubtedly perturb their access 
to multiomic diagnostics. Additional considerations 
include biases in big data, with scoring systems at risk of 
introducing new forms of discrimination, most of which 
are attributable to human bias (23). The populations from 
which samples are taken, inappropriate length of surveyed 
time, and neglect of relevant variables within the diagnostic 
algorithm can be sources of bias. Historically, differential 
access to skilled technology became the impetus for the 
“Digital Divide,” whereby social status (age, gender, race, 
income, and level of education) directly determines one’s 
likelihood of access (24). To ensure an equitable distribution 
of multiomic profiling opportunities for all patients, 
in addition to public health initiatives, we encourage 
continued diversity, equity, and inclusion (DEI) initiatives 
across institutions to increase awareness. Furthermore, 
we encourage patient recruitment of diverse populations, 
implementation of mandated data sharing, and intentional 
consideration of heterogenous populations in the design of 
technology and data management. 
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