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Background: Diagnostic models based on gene signatures of nasopharyngeal carcinoma (NPC) were 
constructed by random forest (RF) and artificial neural network (ANN) algorithms. Least absolute shrinkage 
and selection operator (Lasso)-Cox regression was used to select and build prognostic models based on 
gene signatures. This study contributes to the early diagnosis and treatment, prognosis, and molecular 
mechanisms associated with NPC.
Methods: Two gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) 
database, and differentially expressed genes (DEGs) associated with NPC were identified by gene expression 
differential analysis. Subsequently, significant DEGs were identified by a RF algorithm. ANN were used 
to construct a diagnostic model for NPC. The performance of the diagnostic model was evaluated by 
area under the curve (AUC) values using a validation set. Lasso-Cox regression examined gene signatures 
associated with prognosis. Overall survival (OS) and disease-free survival (DFS) prediction models were 
constructed and validated from The Cancer Genome Atlas (TCGA) database and the International Cancer 
Genome Consortium (ICGC) database.
Results: A total of 582 DEGs associated with NPC were identified, and 14 significant genes were identified 
by the RF algorithm. A diagnostic model for NPC was successfully constructed using ANN, and the validity 
of the model was confirmed on the training set AUC =0.947 [95% confidence interval (CI): 0.911–0.969] and 
the validation set AUC =0.864 (95% CI: 0.828–0.901). The 24-gene signatures associated with prognosis 
were identified by Lasso-Cox regression, and prediction models for OS and DFS of NPC were constructed 
on the training set. Finally, the ability of the model was validated on the validation set.
Conclusions: Several potential gene signatures associated with NPC were identified, and a high-
performance predictive model for early diagnosis of NPC and a prognostic prediction model with robust 
performance were successfully developed. The results of this study provide valuable references for early 
diagnosis, screening, treatment and molecular mechanism research of NPC in the future.
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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most 
prevalent cancers and has an uneven geographical 
distribution. The disease is particularly prevalent in East 
and Southeast Asia. The incidence of NPC in East Asia is 
extremely high, with an annual incidence of approximately 
30 cases per 100,000 people (1), compared with less than  
1 case per 100,000 people in the United States and Europe (2).  
Due to the hidden anatomical location and obscure 
symptoms, most patients cannot be diagnosed early. A study 
has reported that 70–80% of patients are already at a locally 
advanced stage when they are diagnosed (3), and this poses a 
serious threat to the life and health of the patients. Therefore, 
searching for gene signatures is needed for early diagnosis, 
survival prediction, and recurrence monitoring, optimizing 
medical interventions in NPC. It is of great significance to 
improve the quality of life and prolong the survival time of 
patient.

In recent years, the development of microarray technology 
and the development and wide application of RNA 
sequencing technology have facilitated the identification 

of various disease-associated gene signatures, which has 
greatly facilitated the research related to gene signatures 
and mechanisms, and provided a solid foundation for the 
establishment of diagnostic models related to NPC gene 
signatures (4). Currently, Chen et al. (5) have screened seven 
key NPC genes by constructing protein interaction networks 
through gene differential expression analysis, and Liu et al. (6) 
have also screened key genes and signaling pathways by the 
same method, which has contributed to the diagnosis of NPC. 

Although the identified gene signatures can be used 
as diagnostic and predictive tools for NPC, due to the 
complex structure of NPC gene signatures, traditional 
diagnostic prediction models are not effective enough for 
NPC screening and early detection (7). Previous studies 
mostly used conventional logistic regression algorithms to 
construct diagnostic models, but their decision surfaces are 
linear and cannot be used to solve non-linear problems, 
with the disadvantage of being easily underfitted and 
less accurate, not being able to address multiple types of 
features or variables well (8,9). The main difficulty faced 
in building diagnostic models using gene expression data is 
how to find the meaningful classification features (10). The 
random forest (RF) algorithm has shown good performance 
in processing high-dimensional data, generalizing well, 
and maintaining accuracy for a large number of missing  
features (11). RF has a significant advantage over logistic 
regression algorithms for filtering features (12). The 
artificial neural network (ANN) is a deep learning algorithm 
that can be optimized by iteratively adjusting the weights of 
the connected neurons until global optimization is achieved, 
which is a significant advantage in the training of binary 
classification models (13). ANN have been used to construct 
breast cancer diagnostic models and in the imaging of lymph 
node metastases (14,15). In the field of NPC, ANN have 
been used to construct prediction models for radiotherapy 
complications of NPC (16). These previous studies provide 
a valuable reference for the application of ANN.

Most previous studies have used only a limited number 
of gene signatures to construct prognostic prediction 
models, and most of them have focused on gene signatures 
that affect overall survival (OS) (17-19). The efficacy 
of predictive models for OS and disease-free survival 
(DFS) based on multiple gene signatures have not been 
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investigated. The effect of DFS-related gene signatures on 
prognosis has also not been discussed. Further studies are 
also needed to explore the mutations in prognosis-related 
gene signatures.

Therefore, in this study, an NPC diagnostic model 
was constructed based on the advantages of RF and ANN 
algorithms. The least absolute shrinkage and selection 
operator (Lasso) and Cox regression algorithm constructed 
prognostic models for OS and DFS. Finally, the mutation 
status of gene signatures that were significantly associated 
with prognosis was analyzed. It contributes to the early 
screening and treatment of NPC, and the study of its 
molecular mechanisms. The goal is to improve the quality 
of life and prolong the survival time of patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2700/rc).

Methods

Data acquisition and planning

Microarray datasets GSE53819 (18 patients, 18 controls) 
and GSE13597 (15 patients, 13 controls) containing NPC 
patients and controls from Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/; accessed 
27 October 2022) were selected for the construction and 
validation of diagnostic models. GSE53819 and GSE13597 
are the microarray dataset based on the GPL6480 platform 
(Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F). GSE53819 was used for differentially 
expressed genes (DEGs) screening and RF for feature 
screening and as a training set to calculate gene weights 
and develop diagnostic model using ANN. Then, we used 
the independent dataset GSE13597 for external validation 
of our model. RNA-sequencing (RNA-Seq) expression 
(level 3) profiles and corresponding clinical information 
for NPC were downloaded from The Cancer Genome 
Atlas (TCGA) database (https://portal.gdc.com/; accessed 
2 February 2023) and International Cancer Genome 
Consortium (ICGC) database (https://icgc.org/; accessed 2 
February 2023). Converting counts data to transcripts per 
million (TPM) and normalizing the data, keeping samples 
with clinical information at the same time. Finally, there 
are 503 samples in TCGA and 134 samples in ICGA were 
then utilized for further analysis. The TCGA dataset is 
the training set for the construction and training of the 
prognostic model, and the ICGC dataset is used for the 

validation of the prognostic model (Figure 1). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of DEGs

The GSE53819 raw data file of the GEO database was 
downloaded using the GEOQuery package (version 2.54.1) 
in R statistical language (version 4.2.1). Remove the 
probes of multiple molecules corresponding to one probe. 
When the probe corresponding to the same molecule 
encountered, only the probe with the largest signal value 
will be saved. Next, we normalized the data using the 
NormalizeBetweenArrays function of the limma package 
(version 3.42.2) in R and analyzed the DEGs between the 
two groups, and the genes that met threshold |log2[fold 
change (FC)]| >2, false discovery rate (FDR) <0.01 and P.adj 
<0.05 were considered as highly valid DEGs (20,21). 

Screening for key genes by random forest

The randomForest package (version 4.7) in R was used 
to construct the RF model for screening DEGs. In the 
random forest screener, the number of decision trees was 
initially set to 500 respectively. the error rate of each of the 
1–500 decision trees was calculated and the optimal number 
of trees was determined by the number of trees with the 
best stability and the lowest error rate, which represents 
the constructed model with higher accuracy and small 
and stable model error (22). Subsequently, based on the 
selected parameters, the Gini coefficient method was used 
to obtain the dimensional importance values of all variables 
from the constructed random forest model. The DEGs 
with importance values greater than 1 were screened as 
significant genes for NPC and used for subsequent model 
construction and validation.

Construction of diagnostic models by ANNs

Based on the previous screening of DEGs, the expression 
data of DEGs was transformed into a “gene score” based 
on their expression levels, and normalized the data using 
the min-max method. For example, if the expression value 
of a down-regulated gene in a sample is higher than the 
median expression value of that gene in all samples, the 
expression value is 0, otherwise it is 1. Similarly, if the 
expression value of an up-regulated gene is higher, its 
expression is 1, otherwise it is 0. The neuralnet package 

https://tcr.amegroups.com/article/view/10.21037/tcr-22-2700/rc
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(version 4.2) in R was used for ANN model construction, 
which has input, hidden, and output layers, and the number 
of hidden neuron layers should be two-thirds of the number 
of input layers. Based on the previous DEGs of 14, we set 
the number of hidden layers to 9 and the output layer to 2 
nodes (NPC/Normal). Then, the formula of NeuralNPC 
was constructed to evaluate the classification score of NPC 
by multiplying the weight score by the expression level 
of each gene to calculate the classification score (23,24). 
Finally, the pROC package (version 1.17.0.1) in R was 
used to calculate the accuracy of the diagnostic prediction 
performance of the models constructed in this study (25).

( )Neural NPC Gene expression Neural network weight= ×∑
	

[1]

Validation of the diagnostic model by area under the curve

The external dataset GSE13597 was used as a validation set 
for external validation of the accuracy of the constructed 
ANN model for NPC diagnosis. The R package pROC was 
used to plot the receiver operating characteristic (ROC) 
curves for each dataset and its diagnostic performance was 

evaluated by areas under the curve (AUC).

Construction of a prognostic model based on gene 
signatures

Univariate Cox regression analysis was used to evaluate 
the association between genes and NPC prognosis. DEGs 
that were significantly associated with NPC (P<0.05) were 
considered as candidate genes (26). Subsequently, the glmnet 
package in R was used to filter and remove genes that might 
result in overfitting the model by the Lasso algorithm. 
Finally, multivariate Cox analysis was applied to identify 
the optimal prognosis-related genes for the model. Risk 
scores were calculated based on a linear combination of Cox 
coefficients and gene expression. The following formulate 
was used for the analysis (27):

1
Risk score Gene expression Coefficient

=
= ×∑n

i
	 [2]

The median was used as a cut-off value to divide all 
NPC patients in the training set into two groups: high-
risk group and a low-risk group. A high-risk score indicates 
that a low survival rate for NPC patients. Survival analysis 
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Figure 1 Flowchart of this study. GEO, Gene Expression Omnibus; ICGC, International Cancer Genome Consortium; NPC, 
nasopharyngeal carcinoma; TCGA, The Cancer Genome Atlas. 
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was performed using the Survival  package and the 
survminer package. ROC analysis for OS and DFS was 
used to evaluate the accuracy of the prognostic model. The 
survivalROC package was used to perform ROC analysis and 
AUC >0.60 was considered a valid predictive value. Risk 
score distribution plots between low- and high-risk groups, 
survival status scatter plots, and heat maps were also used to 
evaluate the model. Log-rank analysis was used to compare 
the predictive accuracy of the model and risk score (28).

Validation of the prognostic model

A sample of 134 patients from the ICGC database was 
used to validate the accuracy of the prognostic risk model. 
Survival analysis and time-dependent ROC analysis were 
used to validate the model. Risk score distribution plots, 
survival status scatter plots and heat maps were also used to 
evaluate the model.

Prognostic gene signature mutation

To further explore the value of prognostic gene signatures, 
the cBioPortal online website (http://www.cbioportal.org/; 
accessed 4 February 2023) was used to analyze the mutation 
profile of prognostic gene signatures in patients (29).

DEG enrichment analysis

Enrichment analysis of the DEGs was conducted by using 
GSEA software (version 3.0) from the GSEA (http://
software.broadinstitute.org/gsea/index.jsp; accessed 5 
February 2023). Samples were divided into high (≥50%) 
and low (<50%) expression groups based on their 
expression levels. The c2.cp.v7.2.symbols.gmt (Curated) 
subset from molecular signature dataset (http://www.
gsea-msigdb.org/gsea/downloads.jsp; accessed 5 February 
2023) was downloaded to analyze relevant pathways and 
molecular mechanisms. Based on gene expression profiles 
and phenotypic groupings, the minimum gene set was 
set at 5 and the maximum gene set was set at 800, with 
1,000 resampling performed. Statistical significance was 
considered when the P value was <0.05 and the FDR was 
<0.25 (30).

Statistical analysis

The random forest algorithm was used for gene signatures 
screening, the ANN algorithm was used for model 

construction, and the absolute partial derivative of the 
error function <0.01 terminated the training. DFS and OS 
were calculated using Kaplan-Meier curves, and statistical 
differences were determined by log-rank test. The effects 
of various variables on DFS and OS were assessed by 
univariate and multivariate Cox regression models. Hazard 
ratio (HR) and 95% confidence interval (CI) were generated 
using Cox models. ROC analysis was performed to compare 
the predictive accuracy of gene signatures. P<0.05 was set as 
a statistically significant difference.

Results

Identification of the DEGs in the NPC

Based on previously set thresholds, a total of 582 DEGs 
were identified, including 156 upregulated DEGs and 426 
downregulated DEGs, in 18 patients and 18 controls in the 
GSE53819 dataset. Using the limma package and visualized 
them with the ggplot2 (version 3.3.3) package and the 
ComplexHeatmap (version 2.2.0) package. Volcano maps and 
heat maps were plotted (Figure 2). These 582 DEGs with 
significant characteristics were applied as candidate genes in 
the subsequent analysis.

Random forest screens key genes associated with NPC

The 582 DEGs were applied to the random forest model, 
and the optimal number of trees (n=27) was determined 
by calculating the error rate for each of the 1–500 trees  
(Figure 3A). The Gini coefficient method measures the 
importance of all variables according to the reduction 
in mean square error and model accuracy, and the 15 
important gene signatures were output in (Figure 3B). 
Finally, the 14 DEGs with MeanDecreaseGini >1 (PLAU, 
HSPA4L, HOXA9, HEATR7B1, SHISA3, AFF3, HOXC8, 
C13orf30, PON3, PPP1R36, PIP, PCDHA11, CCDC39, 
CR2) was selected as important gene signatures for 
subsequent analysis. We visualized these 14 DEGs in the 
samples and plotted the expression heat map in the samples 
(Figure 3C).

Construction and validation of NPC diagnostic models 
based on ANNs

The first step was data preprocessing of the normalized 
data, converting the expression of previously screened key 
genes into gene scores of 0 or 1. The analysis was performed 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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using an ANN to calculate optimized weights for all genes. 
Then, an ANN diagnostic model containing 14 input layers, 
9 hidden layers and two output layers was constructed and 
the ANN was visualized (Figure 4). The entire training was 
performed in 6,782 steps with a termination condition of 
absolute partial derivative of the error function <0.01. After 
the training set model was built, we plotted the AUC for 
evaluating the classification performance of the model. The 
model had an AUC of 0.947 (95% CI: 0.911–0.969) in the 
training dataset (Figure 5A) and an AUC of 0.864 (95% CI: 

0.828–0.901) in the validation dataset (Figure 5B), indicating 
that the ANN model has a good performance in diagnosing 
NPC. The above results indicated that a diagnostic 
prediction model for NPC was successfully constructed 
using differential gene expression between NPC and normal 
samples.

Prognostic gene signatures model construction

Predictive models for DFS and OS were constructed in 
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Volcano map of DEGs, red is up-regulated gene expression, blue is down-regulated gene expression. DEGs, differentially gene expressions; 
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Figure 3 Identification of key genes in NPC using RF. (A) Effect of number of decision trees on error rate, X-axis is the number of decision 
trees and Y-axis is the error rate. (B) Output of Gini coefficient method in RF model, X-axis is the importance index and Y-axis is the gene 
name. (C) Visual heat map of gene expression of 14 key genes between two groups of samples, group1 is normal control group and group2 is 
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this study. The OS prediction model included 637 patients, 
which were divided into a training set (n=503) and a 
validation set (n=134) based on different sources of data sets 
from different centers. The DFS prediction model included 

289 patients divided into training set (n=230) and validation 
set (n=59) for construction and validation, respectively. 
The univariate Cox analysis screened 87 gene signatures, 
followed by the selection of the optimal parameter, “lambda.
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min”, through Lasso regression with 1,000 iterations. 
Twenty-four gene signatures were found to be significantly 
associated with OS by Lasso regression, as shown in  
(Figure 6). To further filter these 24-gene signatures, 3 gene 
signatures were found to be significantly associated with 
DFS by multivariate Cox. Based on the previous risk score 
formula, patients were divided into a high-risk group (OS: 
n=251; DFS: n=115) and a low-risk group (OS: n=252; DFS: 
n=115). Time-dependent ROC and Kaplan-Meier curves 
were used to evaluate the predictive potential of patients in 
the training set at 1-, 3-, and 5-year OS (Figure 7) and DFS 
(Figure 8). The AUC shows the predictive effect of our 

model in the training set

Validation of the prognosis prediction model based on gene 
signatures

The validation set data was also evaluated using the 
calculated risk score, which divided patients into high-risk 
(OS: n=67; DFS: n=29) and low-risk (OS: n=67; DFS: n=30) 
groups. The predictive ability of the prediction models was 
evaluated using time-dependent ROC and Kaplan-Meier 
curves for 1, 3, and 5 years of survival in the validation 
set for both OS and DFS (Figures 9,10). The results 
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Figure 7 Kaplan-Meier survival analysis, risk score analysis and time-dependent ROC analysis of 24-gene signatures in the OS training 
dataset. 1-year, AUC =0.751, 95% CI: 0.698–0.804; 3-year, AUC =0.769, 95% CI: 0.716–0.823; 5-year, AUC =0.731, 95% CI: 0.649–0.813. 
AUC, area under the curve; CI, confidence interval; HR, hazard ratio; OS, overall survival; ROC, receiver operating characteristic.
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Figure 8 Kaplan-Meier survival analysis, risk score analysis and time-dependent ROC analysis of 3 gene signatures in the DFS training 
dataset. 1-year, AUC =0.718, 95% CI: 0.608–0.827; 3-year, AUC =0.753, 95% CI: 0.648–0.857; 5-year, AUC =0.632, 95% CI: 0.438–0.825. 
AUC, area under the curve; CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; ROC, receiver operating characteristic. 
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Figure 9 Kaplan-Meier survival analysis, risk score analysis and time-dependent ROC analysis of 24-gene signatures in the OS validation 
dataset. 1-year, AUC =0.719, 95% CI: 0.674–0.764; 3-year, AUC =0.746, 95% CI: 0.699–0.792; 5-year, AUC =0.709, 95% CI: 0.640–0.778. 
AUC, area under the curve; CI, confidence interval; HR, hazard ratio; OS, overall survival; ROC, receiver operating characteristic.
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showed that the high-risk group had shorter survival times 
compared to the low-risk group, and the prediction model 
had a robust predictive effect.

Mutation characteristics and gene set enrichment analysis

cBioPortal was used to explore the mutational profile 
of the 24-gene signatures (Figure 11). Amplification of 
SHANK2 was observed in 25% of the samples, while both 
amplification and deep deletion of STAR were found in 8% 
of the samples. MOGAT2 and CCBE1 were found to have 
amplification and deep deletion in 4% of samples. The 
other genes showed no significant mutational changes in 
the sample. GSEA enrichment analysis showed that genes 
in the high-risk and low-risk groups were enriched in the 
phosphoinositide 3-kinase (PI3K)/Akt signaling pathway 
and extracellular matrix organization (Figure 12).

Discussion

NPC is a prevalent malignancy in East and Southeast 
Asia, and patients with early detection often have a good 
prognosis (31). Therefore, early prediction and diagnosis 
of NPC can inform and improve the success rate of early 

interventions for the treatment of NPC. Considering the 
lack of effective methods for early screening and diagnosis 
of NPC due to the lack of obvious early symptoms, as well 
as the lack of characteristic disease markers that can be used 
in clinical practice, it is important to develop predictive 
models for early diagnosis and screening and prognosis of 
NPC based on gene signatures (32).

With  the  deve lopment  o f  var ious  sequenc ing 
technologies as well as public databases, it is now possible 
to use publicly available disease data for studies related to 
the diagnostic identification and prognostic gene signature 
of diseases. Advances in computer science and technology 
have enabled the use of methods such as machine learning 
and deep learning applied to the study of bioinformatics and 
imaging analysis, a technical field that shows great potential 
(33-35). In the present study, we further explore diagnostic 
NPC gene signature at the molecular level, and machine 
learning approaches have shown great advantages in key 
gene selection and classification, which have been previously 
studied using random forest algorithms and ANNs in areas 
such as heart failure (36). 

The problem we face is the binary classification problem 
of whether a patient has NPC or not, and deep learning 
is the most widely used machine learning method in 
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Figure 10 Kaplan-Meier survival analysis, risk score analysis and time-dependent ROC analysis of 3 gene signatures in the DFS validation 
dataset. 1-year, AUC =0.682, 95% CI: 0.530–0.834; 3-year, AUC =0.679, 95% CI: 0.515–0.843; 5-year, AUC =0.697, 95% CI: 0.423–0.972. 
AUC, area under the curve; CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; ROC, receiver operating characteristic.
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medical research, providing a good processing model for 
developing complex, automatic and objective algorithms 
for analyzing high-dimensional and multimodal biomedical 
data (37). RF has a very high predictive accuracy and can 
provide information about the importance of variables for 
classification (38). ANN differs from traditional regression 
analysis in that neural networks can analyze nonlinear 
data due to their data processing capabilities. With the 
selection of appropriate input and output layers, functional 
relationships with infinitely close correlations between the 
input and output layers can be discovered by learning and 

debugging large amounts of clinical data through network 
models (39). The network model is trained by providing 
the neural network with input and output layers and the 
connection weights can be adjusted during iterations to 
match the output with the actual output until the desired 
result is obtained (40). Based on these advantages, we 
chose a random forest combined with an ANN approach 
to construct a diagnostic prediction model for NPC. 
The prognostic survival information was a continuous 
classification problem and required multiple hidden layers 
in ANN, but using too many hidden layers would result 
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Figure 11 The mutation information of 24 prognostic genes in cBioPortal online website.
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in a large computational burden and negatively affect 
the accuracy of the model (41). Therefore, ANN was 
not selected to build the prediction model. The Lasso-
Cox regression algorithm has been applied in continuous 
variable classification problems and has achieved satisfactory 
results in the construction of prognostic models. Therefore, 
Lasso-Cox regression was used to construct prognostic 
prediction models based on risk scores (42).

In this study, DEGs associated with NPC were identified 
by differential gene expression analysis. subsequently, 14 
key DEGs were identified by the RF algorithm, and a 
diagnostic model for NPC was developed by the ANN 
model. Among our screened DEGs, we found that PLAU, 
HOXA9, HSPA4L, and HOXC8 were highly expressed 
in NPC patient samples and lowly expressed in normal 
control samples. PPP1R36, PIP, PCDHA11, CCDC39, CR2, 
C13orf30, PON3, HEATR7B1, SHISA3 and AFF3, on the 
other hand, were lowly expressed in NPC patient samples 
and highly expressed in control samples (Figure 3C).

PLAU has been shown that its high expression can 
promote cell proliferation and epithelial mesenchymal 
transition in head and neck squamous cell carcinoma by 
regulating cell-matrix adhesion, tissue migration and 
extracellular matrix organization, and overexpression often 
has a poor prognosis (43). The potent oncogene miR-
497 can inhibit the cancer phenotype of NPC by targeting 
HSPA4L, which can inhibit the proliferation migration and 

induce apoptosis of NPC cells, and has potential targeted 
therapeutic implications (44). HOXA9 was found to have its 
overexpression correlated with NPC tumor development 
differentiation and prognosis, and controlled studies have 
now found that patients with high HOXA9 expression 
progress from nasopharyngitis to HOXC8 has been found 
to regulate glycolysis and regulate the expression of genes 
related to the tricarboxylic acid cycle and NPC (45,46). 
CCDC39 has been found to improve the prognosis of 
NPC patients by regulating immune cell mechanisms, 
but causes low expression of memory B cells which does 
not contribute to patient prognosis (47). Inflammatory 
and immune responses during Epstein-Barr virus (EBV) 
infection contribute to the development of NPC, and a 
5'-untranslated region (UTR) functional polymorphism of 
CR2 was found to be associated with EBV susceptibility (48).  
SHISA3  was found to promote NPC metastasis by 
decreasing the stability of SGSM1, and to cause this gene to 
be patients and SHISA3 was found to inhibit NPC invasion 
and metastasis (49).

Our study further validated the value of these key genes 
in NPC, and found that PPP1R36, PIP, PCDHA1, C13orf30, 
PON3, HEATR7B1, and AFF3 were found to have different 
roles in the mechanism, diagnosis, and prognosis of other 
cancers (50), but relevant studies in the field of NPC have 
not been conducted yet, which provides a direction for 
further research.

In the prognostic model, we were surprised to find that 
PLAU was significantly associated with both the diagnosis 
and prognosis of NPC. Dong et al. (51) have demonstrated 
that knockdown of MKLK can inhibit cell proliferation 
and epithelial mesenchymal transition caused by PLAU 
and reduce the invasion and metastasis of treatment-
induced radioresistant NPC cells. Indicated that PLAU 
is a potentially important target for improving patient 
prognosis. Three gene signatures were used to construct 
a DFS prediction model, with the results showing that 
they were down-regulated in the low-risk group and up-
regulated in the high-risk group. High expression of these 
3 genes may indicate a poor prognosis. Liu et al. (52) 
analyzed the RNA-Seq from peripheral blood mononuclear 
cells of NPC and revealed that ORL1 was significantly 
associated with radiation response and had a negative 
impact on prognosis in patients with high expression 
levels. Additionally, another study found that there was a 
positive numerical correlation between PD-L1 and OLR1. 
The positive numerical correlation between OLR1 and 
CD8+ may further supports the potential use of OLR1 as 
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a biomarker for immunotherapy (53). TIMP4 has yet to 
be studied in the context in NPC. However, it has been 
found to be involved in several processes in other cancers, 
including cell invasion and migration, cell proliferation 
and apoptosis, and angiogenesis (54). TIMP4 with high 
expression has been linked to poor prognosis in two studies 
of head and neck squamous cell carcinomas (55). Zhou  
et al. (56) discovered that CHGB promotes the development 
of NPC and is associated with advanced lymph node 
metastasis. Furthermore, CHGB was also identified as a 
poor prognostic significant genetic signature in a study. 

In this study, 4 prognostic gene signatures were found 
to have more significant mutations in the sample. SHANK2 
is a commonly amplified gene in human cancers. A 
knockdown of SHANK2 restores Hippo signaling in cancer 
cells, resulting in reduced cell proliferation (57). Xu et al. (58)  
found that no cancer cell mass was found in vivo after 
SHANK2 depletion. These findings further validate the role 
of SHANK2 in the Hippo signaling pathway and indicate 
that SHANK2 may be a promising target to improve patient 
prognosis and treatment. MOGAT2, a gene signature 
significantly associated with metabolism, was found to 
have a negative impact on prognosis in patients with 
hepatocellular carcinoma, and Blanc et al. (59) reported that 
MOGAT2 could be applied as a novel biomarker affecting 
the treatment of colorectal cancer metastases. CCBE1 is a 
noteworthy gene that is upregulated upon overexpression 
of FGF14, and when downregulated, it is linked to reduced 
OS and DFS in patients (60). The gene exhibits a deep 
deletion when downregulated in different cancer patients 
and is associated with poor prognosis. Our study confirms 
that this situation is also present in some NPC patients. 
Moreover, our findings provide further support for the 
potential therapeutic utility of inhibitors targeting FGF14 
in patients with NPC who exhibit CCBE1 downregulation. 
These newly established inhibitors hold promise as a 
promising therapeutic approach for these patients. STAR 
protein is an integral component in the regulation of 
cholesterol transport and steroid hormone biosynthesis. 
The role of the STAR protein in these processes has been 
well established in the literature (61). In our recent study, 
we observed significant mutations in the STAR gene. 
Manna et al. (62) have reported elevated expression levels of 
STAR in hormone-responsive breast cancer cells, and this 
upregulation has been linked to the growth and migration of 
these cells. Their findings suggest that amplification of the 
STAR gene may contribute to the decreased survival rates of 
patients diagnosed with this disease. These results highlight 

the importance of further investigating the potential of the 
STAR gene as a therapeutic target in the treatment of NPC. 

GSEA analysis revealed that genes associated with 
prognosis of NPC were mainly enriched in two pathways, 
PI3K/Akt and extracellular matrix organization. PI3K/
Akt is a classical pathway. Chen et al. (63) found that 
mutations in the PI3K/Akt/mTOR/AMPK signaling 
pathway are associated with a poor prognosis in patients 
with NPC. In another study, YBX3 was found to mediate 
the metastasis of NPC via the PI3K/Akt signaling pathway, 
and YBX3 was upregulated in various tumor cells, and this 
upregulation was associated with tumor cell proliferation 
and chemotherapy resistance (64). Xie et al. (65) also found 
that C2orf40 inhibited NPC cell metastasis and regulated 
chemoresistance and radioresistance by affecting the 
cell cycle and activating the PI3K/Akt/mTOR signaling 
pathway. Therefore, this signaling pathway is a potential 
therapeutic direction for NPC research. In several studies, 
extracellular matrix organization has been identified as 
one of the key pathways in NPC. Surprisingly, the PLAU, 
which was significantly associated with both diagnosis and 
prognosis in this study, promoted cancer metastasis and 
proliferation through the extracellular matrix pathway. 
Therefore, further researches on the mechanism of PLAU 
in NPC are needed, which may be a new target to improve 
the treatment and prognosis of NPC.

In this study, the diagnostic model based on machine 
learning and deep learning algorithms can effectively screen 
the occurrence of NPC at an early stage. It helps to provide 
a foundation for early intervention treatment of patients 
with NPC, making sure treatments such as radiotherapy 
are giving at the optimal stage. Additionally, patients 
were grouped according to risk scores, and a prognostic 
model was constructed to predict OS and DFS in high-
risk and low-risk patients. Some of these gene signatures 
used to construct the prognostic models were found to 
be potentially valuable, and some of them were found to 
be adjuvant to immunotherapy and radiotherapy, which 
could be potential therapeutic targets to improve patient 
prognosis. The OS and DFS prediction models based on 
patient risk scores and gene marker mutation analysis are 
also used to provide references for individualized treatment 
decisions such as surgery, chemotherapy or radiotherapy, 
as well as potential gene-targeted therapies possibility for 
patients with different risk levels.

There are limitations in this study. For several reasons, 
we did not perform in vivo or in vitro experiments to 
validate our diagnostic prediction model. However, the 
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model we developed was validated with the current sample 
size to obtain robust performance and clinical value, so we 
will further investigate our model in a clinical setting.

Conclusions

In this study, machine learning methods were used to 
construct a diagnostic and a prognostic prediction model 
for NPC based on gene signatures. This model serves as a 
valuable reference for the early diagnosis and prognostic 
evaluation of the disease and its potential molecular 
mechanisms and therapeutic applications. However, further 
research is necessary to investigate the mechanisms and 
roles associated with the relevant gene signatures to verify 
the roles of these gene signatures in NPC.
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