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Background: We hypothesized that epidermal growth factor receptor (EGFR) mutations could be detected 
in early-stage lung adenocarcinoma using radiomics.
Methods: This retrospective study included consecutive patients with clinical stage I/II lung 
adenocarcinoma who underwent curative-intent pulmonary resection from March–December 2016. Using 
preoperative enhanced chest computed tomography, 3,951 radiomic features were extracted in total from the 
tumor (area within the tumor boundary), tumor rim (area within ±3 mm of the tumor boundary), and tumor 
exterior (area between +10 mm outside the tumor and tumor boundary). A machine learning-based radiomics 
model was constructed to detect EGFR mutations. The combined model incorporated both radiomic and 
clinical features (gender and smoking history). The performance was validated with five-fold cross-validation 
and evaluated using the mean area under the curve (AUC).
Results: Of 99 patients (mean age, 66±11 years; female, 66.6%; clinical stage I/II, 89.9%/10.1%), EGFR 
mutations in the surgical specimen were detected in 46 (46.5%). A median of 4 (range, 2 to 8) radiomic 
features was selected for each validation session. The mean AUCs in the radiomics and combined models 
were 0.75 and 0.83, respectively. The two top-ranked features in the combined model were the radiomic 
features extracted from the tumor exterior and the tumor, indicating a higher impact of radiomic features 
over relevant clinical features.
Conclusions: Radiomic features, including those in the peri-tumoral area, may help detect EGFR 
mutations in lung adenocarcinomas in preoperative settings. This non-invasive image-based technology 
could help guide future precision neoadjuvant therapy.
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Introduction

Molecular targeting therapy has revolutionized the 
landscape of the treatment of advanced-stage lung 
adenocarcinoma (1-5). Genetic mutations in the epidermal 
growth factor receptor (EGFR) domain are now established 
biomarkers to predict the treatment response using the 
EGFR tyrosine kinase inhibitor (TKI). The incidence 
of these mutations is approximately 50% in the Asian 
population and fifteen% in the Caucasian population (6). 
In the adjuvant settings, osimertinib, a third-generation 
EGFR-TKI, has recently been shown to prolong disease-
free survival in patients with completely resected non-
squamous non-small cell lung cancer (NSCLC) with 
EGFR mutations (7). Currently, the efficacy of neoadjuvant 
osimertinib is being tested to further improve the prognosis 
for resectable primary non-squamous NSCLC harboring 
EGFR mutations (8). EGFR mutation is also a key exclusion 
criterion in a clinical trial with neoadjuvant immunotherapy 
(Impower 30, NCT03456063). For inclusion in these 
clinical trials, invasive tissue biopsy is mandatory at this 
moment. Although computed tomography (CT)-guided 
biopsy can be effective in the case of peripheral lung tumors, 
tissue biopsy can be challenging in patients with early-
stage operable lung cancers in clinical practice, where the 
sensitivity of the transbronchial tissue biopsy for peripheral 
tumors is around 57% (9) while that of the endoscopic 
ultrasound-guided needle aspiration of the mediastinum is 
around 89% (10). 

Validated clinical predictors of EGFR mutations are 
reported (gender, smoking, ethnicity). A prediction model 
based on these three factors performed reasonably with area 

under the curve (AUC) of 0.75 (11), which could be further 
improved. Radiomics is defined as the quantitative analysis 
of multiple high-throughput data derived from medical 
imaging examinations. Previously, radiomic features, in 
combination with clinical or pathological data, can be used 
to develop models that predict tumor characteristics in the 
field of lung cancers (12). 

We hypothesized that EGFR mutations could be 
detected by radiomics of primary early-stage resectable lung 
adenocarcinoma using preoperative CT. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2683/rc).

Methods

Patient selection

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Review Board of the 
Cancer Institute Hospital (No. 2021-GA-1064) on June 
28, 2021, and the patient consent requirement was waived 
because of its retrospective nature. This retrospective study 
included consecutive patients with clinical stage I/II lung 
adenocarcinoma who underwent curative-intent pulmonary 
resection from March 2016 to December 2016. Patients 
with pure ground-glass opacity or lobar atelectasis or 
those who received preoperative treatment were excluded. 
Patients who underwent only non-contrast CT or CT taken 
more than 2 months before surgery were also excluded. 
EGFR gene mutation status was analyzed from paraffin-
embedded surgical specimens using a polymerase chain 
reaction (PCR) kit (cobas® EGFR Mutation Test v2, Roche, 
Basel, Switzerland) targeting exons 18, 19, 20, and 21. The 
overall workflow of this study is shown in Figure 1. 

The segmentation 

All patients underwent contrast-enhanced chest CT using 
Discovery CT750 HD (GE Healthcare, Chicago, IL, USA). 
The acquisition parameters were as follows: tube voltage, 
120 kVp; tube current, 100–649 mA; exposure time, 400–
699 ms; milliampere-seconds, 50–329.9 mAs, slice thickness, 
1.25 mm (Table S1). In axial CT images under lung field 
view, tumor boundary was segmented into slices containing 
primary tumor using Eclipse software ver. 8.6 or ver. 10.0 
(Varian Medical Systems, Palo Alto, CA, USA). We then 
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created volume of interests (VOIs) as follows (Figure 1): the 
tumor (VOI within the tumor boundary), tumor rim (VOI 
within ±3 mm of the tumor boundary), and tumor exterior 
(VOI between +10 mm outside the tumor and the tumor 
boundary). The demarcation of the tumor rim and tumor 
exterior areas was calculated using the automated function 
of the software. If the created VOI went outside the lungs 
(i.e., the VOI partially included mediastinum or chest wall), 
the contour was manually modified to fit within the lung 
field. 

The radiomics feature extraction 

Prior to feature extraction, all CT images were resampled 
to an isotropic grid of 1×1×1 mm3 using B-splines to 
consistently calculate the three-dimensional features. 
The Laplacian of Gaussian (LoG) filter (σ =0.5, 1.0, 1.5, 
2.0, and 2.5 mm) and wavelet filter that computes eight 
decompositions (HHH, HHL, HLH, HLL, LHH, LHL, 
LLH, LLL) per level were used for transforming CT 
images. A total of 3,951 radiomic features, including 108 
original features (first-order statistics, n=18; shape, n=15; 
texture, n=75) and 1,209 filtered features (LoG, n=465; 

wavelet, n=744), were extracted from each VOI (n=1,317×3) 
using PyRadiomics version 3.0.1 (13). The texture features 
were categorized as gray-level co-occurrence matrix (n=24),  
gray-level run length matrix (n=16), gray-level size zone 
matrix (n=16), gray-level dependence matrix (n=14), and 
neighboring gray-tone difference matrix (n=5). The bin 
width was set to 25 Hounsfield units (14).

The feature selection and model building

To assess the inter-observer reproducibility for VOI 
segmentations, segmentation of the tumor was performed 
using 30 randomly selected patients by two physicians 
with experience in lung cancer diagnostics (KH and RS) 
(15,16). Then, the interclass correlation coefficient (ICC) 
of >0.8 calculated between two physicians was considered 
a reproducible feature. To eliminate redundant features, 
Spearman’s correlation coefficient (SCC) among the 
features of all possible two combinations was calculated, and 
features showing an SCC of ≥0.85 were excluded. 

Prior to model building, each feature was standardized 
using Z-scores. The machine learning-based radiomics 
model [using the Boruta algorithm (17-19) (BorutaPy 

Figure 1 Study design. A: radiomic features were extracted from the preoperative enhanced CT scan. B: an interclass correlation coefficient 
>0.8 between two physicians was considered reproducible features. Features showing an Spearman’s correlation coefficient ≥0.85 were 
excluded. C: machine learning-based models were created for prediction of EGFR mutations. D: AUC was calculated through five-fold 
cross-validation to evaluate predictive performance. EGFR, epidermal growth factor receptor; CT, computed tomography; AUC, area under 
the curve.
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version 0.3) for feature selection and Random Forest 
(Scikit-learn version 1.0.2) for prediction] was constructed 
to detect EGFR mutation. Suitable hyperparameters  
for Random Forest were determined by Optuna version 
2.10.0 (20), while those for Boruta were empirically 
determined. The tuned hyperparameters by Optuna were 
max_depth, max_leaf_nodes, min_samples_leaf, and n_
estimators. The meanings of these parameters are described 
in Kursa et al. (17). The number of maximum iterations 
to select the optimal features for Boruta was set to 500. 
The combined model incorporated both radiomic as well 
as clinical features (gender and smoking history). Gender 
and smoking history were selected as these are clinically 
validated predictor of EGFR mutation (21). As this study 
was performed in monotonous population (Asians), 
ethnicity was not included. Other clinical variables in this 
study were not included to avoid overfitting. The current 
study is based on TRIPOD Type 1b (22).

Assessment of performance of the models and statistical 
analyses

The performance was validated with non-nested five-fold 
cross-validation, and the mean area under the receiver 
operating characteristic (ROC) curve was used for 
evaluating the prediction models. Accuracy, recall, precision, 
specificity, and F1 score were also calculated. Comparison 
of the clinical characteristics was performed for continuous 
and categorical variables using t-test or Mann-Whitney test, 
and Fisher’s exact test, respectively. A comparison of AUCs 
was performed using Delong’s test. Statistical analyses were 
performed using R software and GraphPad Prism version 8 
(GraphPad Software Inc., La Jolla, CA, USA). All P values 
were two-sided, and P<0.05 was considered statistically 
significant. 

Results

Clinical characteristics of patients

The patient characteristics are summarized in Table 1. 
This study enrolled 99 patients (mean age, 66±11 years; 
female, 66.6%; clinical stage I/II 89.9%/10.1%). There 
was no lung cancer that invaded mediastinum or chest wall. 
EGFR mutations in the surgical specimen were detected 
in 46 (46.5%) patients. Compared to wild type, patients 
with EGFR mutation included significantly more female 
(female: EGFR wild group, 54.7% vs. EGFR mutation 

group, 78.3%; P=0.02) and less smoking history (current 
or previous) (smoking history: EGFR wild group, 60.4% 
vs. EGFR mutation group, 19.6%; P=0.01) as expected. 
Further, a significant difference in the histologic subtype 
(P=0.005) between the groups existed. In the EGFR wild 
group, the most common histologic subtype was the 
papillary type (39.6%), followed by the solid subtype 
(30.2%). In the EGFR mutant group, the most common 
histologic subtype was the papillary type (71.7%), followed 
by the adenocarcinoma in situ (AIS)/minimally invasive 
adenocarcinoma (MIA) pattern (13.0%). There were no 
significant differences in mode of surgery and nodal status 
between the groups.

Among the EGFR mutant patients, 26 (54.2%) presented 
exon 21 L858R, 19 (39.5%) had exon 19 deletions, and 1 
(2.1%) exhibited exon 21 L861Q as an uncommon mutation. 
Of 26 patients with exon 21 L858R mutation, two (4.2%) 
had de novo exon 20 T790M as well. 

Feature selection and diagnostic performance

After assessing the ICC, 1,317 features extracted from 
VOI of the tumor were reduced to 1,267 features (in total, 
3,955 features were reduced to 3,901 features). Further, 
3,901 features were reduced to 453 robust radiomic features 
using SCC analysis (Table S2). Of 453 features that cleared 
the ICC and SCC, a median of 4 (range, 2 to 8) radiomic 
features from each validation session were selected using 
the Boruta algorithm. 

The predictive performance of radiomics and combined 
models are summarized in Table S3. In the training sets, the 
mean AUC of the radiomics and combined models were 0.78 
(range, 0.64–0.94) and 0.74 (range, 0.70–0.80), respectively. 
In the validation set, the combined model showed 
acceptable predictive performance with a mean AUC of 0.83 
(range, 0.74–0.95), which tended to be higher than that of 
the radiomics model (mean AUC, 0.75; range, 0.65–0.82). 
However, Delong’s test revealed that the difference in AUC 
did not reach statistical significance (P=0.052). The ROC 
of each validation set in the radiomics and combined model 
are presented in Figure 2.

Importance of features selected using machine learning 
models

A total of 15 radiomic features from the radiomics model 
and 17 features, including two clinical features, from the 
combined model were selected through a five-fold cross-
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Figure 2 Receiver operating curves of each validation session in each model. The mean AUCs of five cross-validation sessions in the 
radiomics and combined models were 0.75 (range, 0.65–0.82) and 0.83 (range, 0.74–0.95), respectively. AUC, area under the curve.

Table 1 Clinicopathological characteristics of patients in EGFR wild group and EGFR mutation group

Variables Total (n=99) EGFR wild type (n=53) EGFR mutation (n=46) P value

Age (years) 66±11 67±10 63±11 0.06

Gender: female (%) 65 (66.6) 29 (54.7) 36 (78.3) 0.02

Smoking: yes (%) 41(41.4) 32 (60.4) 9 (19.6) 0.01

Clinical stage (%) 0.76

Stage IA 80 (80.8) 42 (79.2) 38 (82.6)

Stage IB 9 (9.1) 4 (7.5) 5 (10.9)

Stage IIA 4 (4.0) 3 (5.7) 1 (2.2)

Stage IIB 6 (6.1) 4 (7.5) 2 (4.3)

Mode of surgery (%) 0.36

Sublobar resection 14 (14.1) 9 (17.0) 5 (10.9)

Lobectomy 83 (83.8) 42 (79.2) 41 (89.1)

Pneumonectomy 2 (2.0) 2 (3.8) 0 (0.0)

Pathological diagnosis (%) 0.09

pN0 83 (83.8) 43 (81.1) 40 (87.0)

pN1 8 (8.1) 7 (13.2) 1 (2.2)

pN2 8 (8.1) 3 (5.7) 5 (10.9)

Histology (%) 0.005

AIS/MIA 12 (12.1) 6 (11.3) 6 (13.0)

Papillary 54 (54.5) 21 (39.6) 33 (71.7)

Lepidic 14 (14.1) 10 (18.9) 4 (8.7)

Solid 19 (19.2) 16 (30.2) 3 (6.5)

Values are presented as n (%) or mean ± SD. EGFR, epidermal growth factor receptor; AIS, adenocarcinoma in situ; MIA, minimally 
invasive adenocarcinoma; SD, standard deviation. 

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0         0.2         0.4         0.6         0.8         1.0
False positive rate

Radiomics model Combined model

model_1 
model_2 
model_3 
model_4 
model_5 

model_1 
model_2 
model_3 
model_4 
model_5 

False positive rate
0.0         0.2         0.4         0.6         0.8         1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Tr
ue

 p
os

iti
ve

 r
at

e



Omura et al. EGFR mutations in lung adenocarcinoma by machine learning842

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):837-847 | https://dx.doi.org/10.21037/tcr-22-2683

validation session. The selected radiomic and clinical 
features and the coefficients in each cross-validation session 
are listed in Table S4. 

Figure 3 represents the ranking of each selected radiomic 
feature based on the average coefficient through five sessions 
in the radiomics model. Figure 4 shows the rankings of 
radiomic and clinical features in the combined model. Each 
feature was converted to a percentage value relative to the 
average coefficient of the top-ranked feature in each model. 
It was noted that the average coefficient of two of the 
radiomic features (wavelet-LHL_firstorder_90Percentile 
from the tumor exterior and wavelet-HHH_gldm_
DependenceVariance from the tumor) were superior to 

those of the relevant clinical features (gender and smoking 
history) in the combined model, suggesting that the 
radiomic features might have a higher impact on detecting 
EGFR mutations over the clinical features.

Significance of top-ranked radiomic features

Representative images showing the top three and bottom 
three cases in the two features that were ranked above 
clinical features in the combined model are demonstrated in 
Figure 5. The first order describes the distribution of voxel 
intensities within the image region. A voxel intensity of 90 
percentile in the tumor exterior was selected in this feature. 

Figure 3 Ranking of features selected using Boruta algorithm in the radiomics model (each number represents a percentage of coefficient of 
the selected feature with reference to the top-ranked feature). HHH, HLL, HHL, LHH, LHL, HLH: wavelet filter. 
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Figure 4 Ranking of features selected using Boruta algorithm in the combined model (each number represents a percentage of the 
coefficient of the selected feature with reference to the top-ranked feature). HHH, HHL, LHH, LHL, HLH: wavelet filter. 
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Dependence variance measures the variance in dependence 
size in the image (within the tumor in this feature). No 
apparent recognizable pattern was observed, particularly in 
these images, indicating that radiomics could detect subtle 
changes unrecognizable to human eyes.

Discussion

In this study, we demonstrated the feasibility of predicting 
EGFR mutations in early-stage operable adenocarcinomas 
using radiomic features with a mean AUC of 0.75 in the 
validation settings. Although this was not statistically 
different, mean AUC improved up to 0.83 by combining 
with established clinical predictive factors of EGFR 
mutations (gender and smoking history). To quantify the 
contribution of these clinical variables more clearly, we 
further created the Clinical model and the all-combined 
model which includes all clinical variables (age, gender, 
smoking history, and clinical stage) and radiomic features 
(Table S5). Consequently, the mean AUC of the clinical 
model was identical to that of the radiomics model (0.77 
vs. 0.75). However, the predictive performance in the all-
combined model was limited (i.e., the mean AUC of 0.82), 
implying the selection of gender and smoking history for 
the Combined model is reasonable. We utilized a machine 
learning model to select important features and generate a 
predictive model out of a large number of features extracted 
from radiological images. Classically, the existence of air 
bronchogram or ground glass opacity is a known semantic 

CT feature associated with EGFR mutations (23). However, 
subtle changes in the portion of ground glass opacity 
may not be distinguishable to the human eye. Radiomics 
can translate these tiny changes into the probability of 
mutation. Other unknown semantic or unrecognizable 
features, as suggested in Figure 3, were also integrated into 
the computation.

Previous studies have shown the possibility of EGFR 
mutation status in NSCLC utilizing CT images (24-29).  
However, only few of them comprised the surgical 
population. In this study, we focused on the preoperative 
CT images from early-stage NSCLC, aiming for potential 
usage in neoadjuvant settings. Given the ongoing research 
and the rapid evolution in clinical practice of advanced-
stage NSCLC, as well as the adjuvant setting driven by 
EGFR-TKI (7,30) and immunotherapy (31), neoadjuvant 
precision medicine can plausibly become a reality with 
preoperative treatment guided by actionable biomarkers. 
EGFR mutation should play a pivotal role in this setting, 
considering its prevalence, the existence of a series of 
effective EGFR-TKIs (1-5), and its association with a low 
response rate to immunotherapy (32). However, biopsies 
for relatively small peripheral targets in early-stage operable 
patients can be challenging. Occasionally, the quantity 
or quality of samples is not enough for DNA testing. 
Moreover, even in the liquid biopsy (ctDNA), there is the 
possibility of false-negative result in NSCLC (33), thereby 
considering the tissue-based analysis for EGFR mutations 
as the reference standard (34). Our radiomics-based non-

Figure 5 Left side: representative images of top three ranked cases in two radiomic features which was ranked above relevant clinical 
features in the combined model. Allow indicates cases with higher-ranked feature within EGFR mutation+. Right side: cases with bottom 
three ranked cases in each radiomic feature. Allow indicates cases with lower-ranked feature within EGFR mutation−. LHL, HHH: wavelet 
filter. EGFR, epidermal growth factor receptor.

EGFR mutation+ EGFR mutation−

Top three ranked cases in each feature 
for prediction of EGFR mutation

Tu
m

or
 w

av
el

et
 H

H
H

  
gl

dm
_d

ep
en

de
nc

ev
ar

ia
nc

e
E

xt
er

io
r 

w
av

el
et

 L
H

L 
fir

st
or

de
r 

90
 p

er
ce

nt
ile

Bottom three ranked cases in each feature
for prediction of EGFR mutation

https://cdn.amegroups.cn/static/public/TCR-22-2683-Supplementary.pdf


Omura et al. EGFR mutations in lung adenocarcinoma by machine learning844

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):837-847 | https://dx.doi.org/10.21037/tcr-22-2683

invasive prediction of EGFR mutations could help guide the 
choice of preoperative treatment in this setting as additional 
information to the existing methods. Potentially, integration 
with other non-invasive predictive measures such as liquid 
biopsy (35) can decrease the need for biopsies in the future. 

Several potential benefits of radiomic biomarkers exist 
in the neoadjuvant setting. First, this could avoid biopsy-
related complications. Although transbronchial and trans-
thoracic biopsies are considered established procedures, 
rare but serious complications hampering curative 
operations can still occur (36,37). Second, our technology 
could save time by skipping biopsy and waiting time for 
results. Waiting time before surgery can impact long-term 
outcomes (38); hence, saving this time could benefit patients 
from not just avoiding complications but also potentially 
improving the oncological outcomes.

Our f indings  suggested the importance of  the 
peritumoral region to detect EGFR mutations. There are 
several explanations. First, the peritumoral region may 
have detected the skewed field of the lung parenchyma or 
broncho-vasculature structures, possibly due to the related 
mutation status of the tumor. Also, cancerous islets, known 
to be found adjacent to tumors (39), may be subtle changes 
to the human eye field but could have been detected as a 
radiomic feature. Second, manual demarcation may have 
missed some tumor edge which could have been picked as 
the peritumoral region. The top-ranked radiomic feature 
in the combined model and the second-ranked feature in 
the radiomics model were from the tumor exterior region, 
suggesting the importance of the signal outside the visible 
tumor margin for predicting the mutation profile. 

There are several limitations to this study. First, this 
is a single institutional retrospective study with relatively 
small sample size. Although we performed cross-validation 
according to TRIPOD guidelines (22), our findings need 
further validation with a large sample set. Moreover, 
because it is well-known that an EGFR mutation profile 
can differ across ethnicities (40), our model may perform 
differently in other regions or ethnicities. Therefore, the 
models should be further validated in a multi-national and 
multi-ethnicity study. Second, although we focused only 
on adenocarcinomas considering the clinically proven 
utility of EGFR-TKIs against the disease and relative rarity 
and uncertainty of the predictive value of the treatment 
efficacy of squamous cell lung carcinoma EGFR mutation 
(in fact recommendation of the EGFR mutation testing 
for squamous cell carcinoma is somewhat mixed among 

society guidelines), we are aware that adenocarcinoma can 
be confirmed only after invasive biopsy at this moment. 
Nevertheless, adenocarcinoma is the most relevant type 
of NSCLC, and this prediction model perhaps could be 
combined with the radiomics prediction model of the 
histological type of NSCLC. Besides, sometimes biopsy of 
a tumor only provides histology diagnosis but not enough 
sample for molecular testing result in daily practice. Our 
image biomarker may be useful in that situation. Third, 
we utilized manual demarcation of the tumor boundary 
to extract radiomic features that can be a source of errors. 
Although we performed ICC to diminish inter-observer 
variability, this could have affected the results as radiomics 
is sensitive to slight changes. Incorporating automated 
detection technology could reduce the inter-observer 
variation. Fourth, we chose non-nested cross validation 
for evaluating the prediction performance, thus optimal 
hyperparameters for Random Forest were not tuned using 
independent validation sets. Finally, we did not consider 
other machine-learning techniques other than Random 
Forest for prediction. Jia et al. used Random Forest classifier 
to predict EGFR mutations using radiomic features and 
clinical variables (29), and demonstrated that relatively 
higher predictive performance was observed (AUC =0.828), 
which is consistent with our results (AUC =0.83).

Conclusions

Radiomic features may help detect EGFR mutations in lung 
adenocarcinomas in preoperative settings. Important signals 
even outside the recognizable tumor boundary may exist. 
This non-invasive image-based technology in detecting 
actionable mutations could help guide future precision 
neoadjuvant therapy.
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Table S1 Acquisition parameters

Patient Manufacturer Model name
Slice thickness 

(mm)
kVp (KV)

Tube current 
(mA)

Exposure time 
(ms)

Milliampere-seconds 
(mAs)

1 GE Medical Systems Discovery CT750 HD 1.25 120 195 500 97.5

2 GE Medical Systems Discovery CT750 HD 1.25 120 317 699 221.6

3 GE Medical Systems Discovery CT750 HD 1.25 120 406 400 162.4

4 GE Medical Systems Discovery CT750 HD 1.25 120 288 500 144.0

5 GE Medical Systems Discovery CT750 HD 1.25 120 115 600 69.0

6 GE Medical Systems Discovery CT750 HD 1.25 120 149 699 104.2

7 GE Medical Systems Discovery CT750 HD 1.25 120 175 600 105.0

8 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

9 GE Medical Systems Discovery CT750 HD 1.25 120 274 699 191.5

10 GE Medical Systems Discovery CT750 HD 1.25 120 153 500 76.5

11 GE Medical Systems Discovery CT750 HD 1.25 120 356 500 178.0

12 GE Medical Systems Discovery CT750 HD 1.25 120 152 600 91.2

13 GE Medical Systems Discovery CT750 HD 1.25 120 219 600 131.4

14 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

15 GE Medical Systems Discovery CT750 HD 1.25 120 133 500 66.5

16 GE Medical Systems Discovery CT750 HD 1.25 120 484 500 242.0

17 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

18 GE Medical Systems Discovery CT750 HD 1.25 120 129 500 64.5

20 GE Medical Systems Discovery CT750 HD 1.25 120 296 500 148.0

21 GE Medical Systems Discovery CT750 HD 1.25 120 400 600 240.0

22 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

23 GE Medical Systems Discovery CT750 HD 1.25 120 180 600 108.0

24 GE Medical Systems Discovery CT750 HD 1.25 120 162 500 81.0

25 GE Medical Systems Discovery CT750 HD 1.25 120 345 500 172.5

26 GE Medical Systems Discovery CT750 HD 1.25 120 183 500 91.5

27 GE Medical Systems Discovery CT750 HD 1.25 120 119 500 59.5

28 GE Medical Systems Discovery CT750 HD 1.25 120 467 699 326.4

29 GE Medical Systems Discovery CT750 HD 1.25 120 378 600 226.8

30 GE Medical Systems Discovery CT750 HD 1.25 120 219 500 109.5

31 GE Medical Systems Discovery CT750 HD 1.25 120 256 500 128.0

32 GE Medical Systems Discovery CT750 HD 1.25 120 276 699 192.9

33 GE Medical Systems Discovery CT750 HD 1.25 120 178 699 124.4

34 GE Medical Systems Discovery CT750 HD 1.25 120 210 500 105.0

35 GE Medical Systems Discovery CT750 HD 1.25 120 143 500 71.5

37 GE Medical Systems Discovery CT750 HD 1.25 120 421 500 210.5

38 GE Medical Systems Discovery CT750 HD 1.25 120 472 500 236.0

39 GE Medical Systems Discovery CT750 HD 1.25 120 115 500 57.5

40 GE Medical Systems Discovery CT750 HD 1.25 120 205 699 143.3

41 GE Medical Systems Discovery CT750 HD 1.25 120 419 500 209.5

42 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

43 GE Medical Systems Discovery CT750 HD 1.25 120 248 500 124.0

44 GE Medical Systems Discovery CT750 HD 1.25 120 283 500 141.5

45 GE Medical Systems Discovery CT750 HD 1.25 120 210 500 105.0

46 GE Medical Systems Discovery CT750 HD 1.25 120 570 500 285.0

47 GE Medical Systems Discovery CT750 HD 1.25 120 356 500 178.0

48 GE Medical Systems Discovery CT750 HD 1.25 120 455 500 227.5

49 GE Medical Systems Discovery CT750 HD 1.25 120 229 500 114.5

50 GE Medical Systems Discovery CT750 HD 1.25 120 314 500 157.0

51 GE Medical Systems Discovery CT750 HD 1.25 120 499 500 249.5

52 GE Medical Systems Discovery CT750 HD 1.25 120 649 500 324.5

53 GE Medical Systems Discovery CT750 HD 1.25 120 196 500 98.0

54 GE Medical Systems Discovery CT750 HD 1.25 120 342 500 171.0

55 GE Medical Systems Discovery CT750 HD 1.25 120 198 500 99.0

56 GE Medical Systems Discovery CT750 HD 1.25 120 228 500 114.0

57 GE Medical Systems Discovery CT750 HD 1.25 120 308 500 154.0

58 GE Medical Systems Discovery CT750 HD 1.25 120 239 500 119.5

59 GE Medical Systems Discovery CT750 HD 1.25 120 219 500 109.5

60 GE Medical Systems Discovery CT750 HD 1.25 120 444 500 222.0

61 GE Medical Systems Discovery CT750 HD 1.25 120 292 500 146.0

62 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

63 GE Medical Systems Discovery CT750 HD 1.25 120 444 500 222.0

64 GE Medical Systems Discovery CT750 HD 1.25 120 130 500 65.0

65 GE Medical Systems Discovery CT750 HD 1.25 120 118 500 59.0

66 GE Medical Systems Discovery CT750 HD 1.25 120 469 500 234.5

67 GE Medical Systems Discovery CT750 HD 1.25 120 184 500 92.0

68 GE Medical Systems Discovery CT750 HD 1.25 120 472 699 329.9

69 GE Medical Systems Discovery CT750 HD 1.25 120 290 500 145.0

70 GE Medical Systems Discovery CT750 HD 1.25 120 530 500 265.0

71 GE Medical Systems Discovery CT750 HD 1.25 120 141 500 70.5

72 GE Medical Systems Discovery CT750 HD 1.25 120 121 500 60.5

73 GE Medical Systems Discovery CT750 HD 1.25 120 126 500 63.0

74 GE Medical Systems Discovery CT750 HD 1.25 120 175 500 87.5

75 GE Medical Systems Discovery CT750 HD 1.25 120 186 500 93.0

76 GE Medical Systems Discovery CT750 HD 1.25 120 305 500 152.5

77 GE Medical Systems Discovery CT750 HD 1.25 120 148 500 74.0

78 GE Medical Systems Discovery CT750 HD 1.25 120 102 500 51.0

79 GE Medical Systems Discovery CT750 HD 1.25 120 129 500 64.5

80 GE Medical Systems Discovery CT750 HD 1.25 120 246 500 123.0

81 GE Medical Systems Discovery CT750 HD 1.25 120 458 500 229.0

82 GE Medical Systems Discovery CT750 HD 1.25 120 119 500 59.5

83 GE Medical Systems Discovery CT750 HD 1.25 120 464 500 232.0

84 GE Medical Systems Discovery CT750 HD 1.25 120 225 500 112.5

85 GE Medical Systems Discovery CT750 HD 1.25 120 320 500 160.0

86 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

87 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0

88 GE Medical Systems Discovery CT750 HD 1.25 120 116 500 58.0

89 GE Medical Systems Discovery CT750 HD 1.25 120 292 500 146.0

90 GE Medical Systems Discovery CT750 HD 1.25 120 468 500 234.0

91 GE Medical Systems Discovery CT750 HD 1.25 120 201 500 100.5

92 GE Medical Systems Discovery CT750 HD 1.25 120 101 600 60.6

93 GE Medical Systems Discovery CT750 HD 1.25 120 133 500 66.5

94 GE Medical Systems Discovery CT750 HD 1.25 120 359 500 179.5

95 GE Medical Systems Discovery CT750 HD 1.25 120 361 600 216.6

96 GE Medical Systems Discovery CT750 HD 1.25 120 183 500 91.5

97 GE Medical Systems Discovery CT750 HD 1.25 120 316 500 158.0

98 GE Medical Systems Discovery CT750 HD 1.25 120 404 500 202.0

99 GE Medical Systems Discovery CT750 HD 1.25 120 287 500 143.5

100 GE Medical Systems Discovery CT750 HD 1.25 120 146 500 73.0

101 GE Medical Systems Discovery CT750 HD 1.25 120 100 500 50.0
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Table S2 The list of robust radiomic features

No. Feature name

1 GTVp_original_shape_VoxelVolume

2 GTVp_original_shape_Compactness1

3 GTVp_original_shape_Flatness

4 GTVp_original_firstorder_10Percentile

5 GTVp_original_firstorder_90Percentile

6 GTVp_original_firstorder_Energy

7 GTVp_original_firstorder_Entropy

8 GTVp_original_firstorder_InterquartileRange

9 GTVp_original_firstorder_Maximum

10 GTVp_original_firstorder_Minimum

11 GTVp_original_firstorder_Range

12 GTVp_original_glcm_ClusterShade

13 GTVp_original_glcm_Contrast

14 GTVp_original_glcm_Correlation

15 GTVp_original_glcm_Idmn

16 GTVp_original_glcm_Imc1

17 GTVp_original_glrlm_LongRunLowGrayLevelEmphasis

18 GTVp_original_glszm_SizeZoneNonUniformityNormalized

19 GTVp_original_gldm_LargeDependenceLowGrayLevelEmphasis

20 GTVp_original_gldm_SmallDependenceHighGrayLevelEmphasis

21 GTVp_log-sigma-0-5-mm-3D_firstorder_10Percentile

22 GTVp_log-sigma-0-5-mm-3D_firstorder_90Percentile

23 GTVp_log-sigma-0-5-mm-3D_firstorder_Kurtosis

24 GTVp_log-sigma-0-5-mm-3D_firstorder_Maximum

25 GTVp_log-sigma-0-5-mm-3D_firstorder_Mean

26 GTVp_log-sigma-0-5-mm-3D_firstorder_Minimum

27 GTVp_log-sigma-0-5-mm-3D_firstorder_Skewness

28 GTVp_log-sigma-0-5-mm-3D_glcm_Correlation

29 GTVp_log-sigma-0-5-mm-3D_glcm_Imc1

30 GTVp_log-sigma-0-5-mm-3D_glrlm_LongRunHighGrayLevelEmphasis

31 GTVp_log-sigma-0-5-mm-3D_glrlm_RunEntropy

32 GTVp_log-sigma-0-5-mm-3D_glszm_SizeZoneNonUniformityNormalized

33 GTVp_log-sigma-0-5-mm-3D_glszm_ZoneEntropy

34 GTVp_log-sigma-0-5-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis

35 GTVp_log-sigma-1-0-mm-3D_firstorder_Kurtosis

36 GTVp_log-sigma-1-0-mm-3D_firstorder_Maximum

37 GTVp_log-sigma-1-0-mm-3D_firstorder_Minimum

38 GTVp_log-sigma-1-0-mm-3D_firstorder_Skewness

39 GTVp_log-sigma-1-0-mm-3D_glcm_Correlation

40 GTVp_log-sigma-1-0-mm-3D_glcm_Idmn

41 GTVp_log-sigma-1-0-mm-3D_glcm_Imc1

42 GTVp_log-sigma-1-0-mm-3D_glcm_MCC

43 GTVp_log-sigma-1-0-mm-3D_glrlm_LongRunHighGrayLevelEmphasis

44 GTVp_log-sigma-1-0-mm-3D_glrlm_RunEntropy

45 GTVp_log-sigma-1-0-mm-3D_glszm_SizeZoneNonUniformityNormalized

46 GTVp_log-sigma-1-0-mm-3D_gldm_DependenceEntropy

47 GTVp_log-sigma-1-5-mm-3D_firstorder_Kurtosis

48 GTVp_log-sigma-1-5-mm-3D_firstorder_Minimum

49 GTVp_log-sigma-1-5-mm-3D_glcm_Autocorrelation

50 GTVp_log-sigma-1-5-mm-3D_glcm_Imc1

51 GTVp_log-sigma-1-5-mm-3D_glszm_GrayLevelNonUniformityNormalized

52 GTVp_log-sigma-1-5-mm-3D_glszm_SizeZoneNonUniformityNormalized

53 GTVp_log-sigma-2-0-mm-3D_firstorder_Minimum

54 GTVp_log-sigma-2-0-mm-3D_glcm_Autocorrelation

55 GTVp_log-sigma-2-0-mm-3D_glrlm_RunEntropy

56 GTVp_log-sigma-2-0-mm-3D_glszm_SizeZoneNonUniformityNormalized

57 GTVp_log-sigma-2-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis

58 GTVp_log-sigma-2-0-mm-3D_ngtdm_Complexity

59 GTVp_log-sigma-2-5-mm-3D_firstorder_Minimum

60 GTVp_log-sigma-2-5-mm-3D_firstorder_Range

61 GTVp_log-sigma-2-5-mm-3D_glcm_Autocorrelation

62 GTVp_log-sigma-2-5-mm-3D_glszm_LowGrayLevelZoneEmphasis

63 GTVp_log-sigma-2-5-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis

64 GTVp_wavelet-LLH_firstorder_10Percentile

65 GTVp_wavelet-LLH_firstorder_90Percentile

66 GTVp_wavelet-LLH_firstorder_Kurtosis

67 GTVp_wavelet-LLH_firstorder_Maximum

68 GTVp_wavelet-LLH_firstorder_Mean

69 GTVp_wavelet-LLH_firstorder_Minimum
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Table S3 Performance of radiomics model and combined model in prediction of EGFR mutation

Random Forest
Radiomics model Combined model

S1 S2 S3 S4 S5 Mean S1 S2 S3 S4 S5 Mean

Training set (mutation+) 79 (37) 79 (37) 79 (37) 79 (36) 80 (37) 79 (37) 79 (37) 79 (37) 79 (36) 80 (37)

Validation set (mutation+) 20 (9) 20 (9) 20 (9) 20 (10) 19 (9) 20 (9) 20 (9) 20 (9) 20 (10) 19 (9)

Training

Accuracy 0.65 0.79 0.87 0.61 0.94 0.77 0.75 0.80 0.76 0.72 0.71 0.75

Recall 0.97 0.81 0.97 0.94 0.92 0.92 0.78 0.78 0.62 0.69 0.51 0.68

Precision 0.57 0.75 0.80 0.54 0.94 0.72 0.71 0.78 0.88 0.74 0.88 0.76

Specificity 0.36 0.76 0.79 0.33 0.95 0.64 0.71 0.81 0.88 0.74 0.88 0.81

F1 0.72 0.78 0.88 0.69 0.93 0.80 0.74 0.78 0.71 0.69 0.62 0.71

AUC 0.67 0.79 0.88 0.64 0.94 0.78 0.75 0.80 0.75 0.72 0.70 0.74

Validation

Accuracy 0.65 0.80 0.65 0.80 0.79 0.74 0.75 0.85 0.80 0.95 0.84 0.84

Recall 0.89 1.00 0.67 1.0 0.78 0.87 0.67 0.89 0.67 1.00 0.78 0.80

Precision 0.57 0.69 0.60 0.71 0.78 0.67 0.75 0.80 0.86 0.91 0.88 0.84

Specificity 0.46 0.64 0.64 0.60 0.80 0.63 0.82 0.82 0.91 0.90 0.90 0.87

F1 0.70 −0.82 0.63 0.83 0.78 0.75 0.71 0.84 0.75 0.95 0.82 0.81

AUC 0.67 0.82 0.65 0.80 0.79 0.75 0.74 0.85 0.79 0.95 0.84 0.83

EGFR, epidermal growth factor receptor; AUC, area under the curve. 
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Table S4 Selected features and coefficient in each prediction models

Features S1 S2 S3 S4 S5

Radiomics model

GTVp_log-sigma-2-5-mm-3D_firstorder_Minimum <0.0001 n.a n.a n.a n.a

GTVp_wavelet-HLL_firstorder_90Percentile <0.0001 n.a n.a n.a n.a

GTVp_wavelet-HHH_gldm_DependenceVariance 1 0.69 0.25 1 0.10

Rim_wavelet-HLH_glcm_Correlation <0.0001 n.a n.a n.a 0.15

Exterior_wavelet-LHL_firstorder_90Percentile <0.0001 0.23 n.a n.a 0.21

Exterior_wavelet-HHL_firstorder_Kurtosis <0.0001 n.a n.a n.a 0.064

Rim_log-sigma-2-0-mm-3D_glcm_Correlation n.a 0.088 n.a n.a n.a

GTVp_original_firstorder_Entropy n.a n.a 0.26 n.a n.a

GTVp_wavelet-LHH_glcm_Imc1 n.a n.a 0.20 n.a n.a

GTVp_wavelet-HHH_gldm_DependenceNonUniformityNormalized n.a n.a 0.29 n.a n.a

Exterior_wavelet-HHL_glcm_MCC n.a n.a n.a <0.0001 n.a

GTVp_log-sigma-1-0-mm-3D_gldm_DependenceEntropy n.a n.a n.a n.a 0.088

Rim_wavelet-LHL_glcm_Idmn n.a n.a n.a n.a 0.098

Exterior_wavelet-HHH_firstorder_Skewness n.a n.a n.a n.a 0.14

Exterior_wavelet-HHH_glcm_Correlation n.a n.a n.a n.a 0.15

Combined model

GTVp_log-sigma-2-5-mm-3D_firstorder_Minimum 0.037 n.a n.a n.a n.a

GTVp_wavelet-HLL_firstorder_90Percentile <0.0001 n.a n.a n.a n.a

GTVp_wavelet-HHH_gldm_DependenceVariance 0.059 0.26 0.17 0.33 0.20

Rim_wavelet-HLH_glcm_Correlation <0.0001 n.a n.a n.a <0.0001

Exterior_wavelet-LHL_firstorder_90Percentile 0.59 0.20 n.a n.a 0.40

Exterior_wavelet-HHL_firstorder_Kurtosis 0.0019 n.a n.a n.a 0.20

Sex 0.20 0.026 0.21 0.50 <0.0001

Smoking 0.12 0.25 0.13 <0.0001 <0.0001

Rim_log-sigma-2-0-mm-3D_glcm_Correlation n.a 0.26 n.a n.a n.a

GTVp_original_firstorder_Entropy <0.0001 <0.0001 0.083 <0.0001 <0.0001

GTVp_wavelet-LHH_glcm_Imc1 n.a n.a 0.17 n.a n.a

GTVp_wavelet-HHH_gldm_DependenceNonUniformityNormalized n.a n.a 0.25 n.a n.a

Exterior_wavelet-HHL_glcm_MCC n.a n.a n.a 0.17 n.a

GTVp_log-sigma-1-0-mm-3D_gldm_DependenceEntropy n.a n.a n.a n.a <0.0001

Rim_wavelet-LHL_glcm_Idmn n.a n.a n.a n.a <0.0001

Exterior_wavelet-HHH_firstorder_Skewness n.a n.a n.a n.a <0.0001

Exterior_wavelet-HHH_glcm_Correlation n.a n.a n.a n.a 0.2

Each coefficient was standardized so that the sum of the selected coefficients in each model was exactly 1. By performing the 
standardization, we were able to estimate and compare the importance of each feature by considering the average of five sessions. 
Not applicable (n.a.) was indicated when the feature was not selected in each session but was selected in other sessions, which was 
considered 0 when the average was calculated. HLL, HHL, LHL, HLH: wavelet filter. GTV, gross tumor volume; log, Laplacian-of-Gaussian. 
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Table S5 Performance of clinical model and all-combined model in prediction of EGFR mutation

Random Forest
Clinical model All-combined model

S1 S2 S3 S4 S5 Mean S1 S2 S3 S4 S5 Mean

Training set (mutation+) 79 (37) 79 (37) 79 (37) 79 (36) 80 (37) 79 (37) 79 (37) 79 (37) 79 (36) 80 (37)

Validation set (mutation+) 20 (9) 20 (9) 20 (9) 20 (10) 19 (9) 20 (9) 20 (9) 20 (9) 20 (10) 19 (9)

Training

Accuracy 0.72 0.73 0.57 0.71 0.66 0.68 0.76 0.79 0.77 0.70 0.78 0.76

Recall 0.78 0.65 0.62 0.78 0.81 0.73 0.73 0.84 0.70 0.69 0.70 0.73

Precision 0.67 0.75 0.54 0.65 0.60 0.64 0.75 0.74 0.79 0.66 0.79 0.74

Specificity 0.67 0.81 0.52 0.65 0.54 0.64 0.79 0.74 0.83 0.70 0.84 0.78

F1 0.73 0.70 0.58 0.71 0.69 0.68 0.74 0.79 0.74 0.68 0.74 0.76

AUC 0.73 0.73 0.57 0.71 0.67 0.68 0.76 0.79 0.79 0.70 0.77 0.74

Validation

Accuracy 0.80 0.85 0.75 0.80 0.63 0.77 0.70 0.85 0.80 0.95 0.79 0.82

Recall 0.78 0.89 0.78 0.80 0.67 0.78 0.67 1.00 0.67 1.00 0.89 0.84

Precision 0.78 0.80 0.70 0.80 0.60 0.74 0.67 0.75 0.86 0.91 0.73 0.78

Specificity 0.82 0.82 0.73 0.80 0.60 0.75 0.73 0.73 0.91 0.95 0.70 0.79

F1 0.78 0.84 0.74 0.80 0.63 0.76 0.67 0.86 0.86 0.95 0.80 0.81

AUC 0.80 0.85 0.75 0.80 0.63 0.77 0.70 0.86 0.79 0.95 0.79 0.82

EGFR, epidermal growth factor receptor; AUC, area under the curve. 


