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Background: Gastric cancer (GC) is a common malignancy. A mounting body of evidence has 
demonstrated the correlation between GC prognosis and epithelial-mesenchymal transition (EMT)-related 
biomarkers. This research constructed an available model using EMT-related long noncoding RNA (lncRNA) 
pairs to predict the survival for GC patients.
Methods: The transcriptome data along with clinical information on GC samples were derived from The 
Cancer Genome Atlas (TCGA). Differentially expressed EMT-related lncRNAs were acquired and paired. 
Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were 
applied to filter lncRNA pairs, and the risk model was built to investigate its effect on the prognosis of GC 
patients. Then, the areas under the receiver operating characteristic curves (AUCs) were calculated and the 
cutoff point for distinguishing low- or high-risk GC patients was identified. And the predictive ability of this 
model was tested in the GSE62254. Furthermore, the model was evaluated from the perspectives of survival 
time, clinicopathological parameters, infiltration of immunocytes, and functional enrichment analysis.
Results: The risk model was built by using the identified twenty EMT-related lncRNA pairs, and it was 
not necessary to know the specific expression level of each lncRNA. Survival analysis pointed out that GC 
patients with high risk had poorer outcomes. Additionally, this model could be an independent prognostic 
variable for GC patients. The accuracy of the model was also verified in the testing set.
Conclusions: The new predictive model constructed here is composed of EMT-related lncRNA pairs, 
with reliable prognostic values, and can be utilized to predict the survival of GC.
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Introduction

Gastric cancer (GC) is an important health concern 

globally; it is the fifth most commonly diagnosed tumor 

and the fourth main reason for cancer-involved deaths, 
accounting for 769,000 deaths worldwide in 2020 (1). GC 
is a heterogeneous disease characterized by differences in 
epidemiology and histopathology across countries (2). In 
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addition to the endoscopic treatment of a few very small 
tumors, partial or total gastrectomy with lymph node 
dissection is the most effective treatment for GC (3). 
However, because most early-stage GCs have no symptoms, 
patients are usually not diagnosed until the advanced stage 
of the disease (4). Thus, there is an urgent need to explore a 
novel prognostic assessment model for GC.

Long noncoding RNAs (lncRNAs) are considered to 
be a kind of RNA molecule with length greater than 200 
nucleotides, lacking the ability to code proteins (5). Compared 
with protein-coding genes, lncRNAs consist of fewer exons 
and are in a relatively low abundance (6). LncRNAs critically 
function in cell differentiation, apoptosis, transcriptional 
regulation, and tumor microenvironment (TME) (7,8). At 
present, the literature has used lncRNAs to build models 
to predict the prognosis of GC patients (9). Besides, some 
studies associated with cancer has reported lncRNAs play a 
significant role in regulating epithelial-mesenchymal transition 
(EMT). For instance, lncRNA SNHG6 could regulate ZEB1 
through sponging miR-101-3p to induce EMT in colorectal 
cancer (10). In thyroid cancer, lncRNA TUG1 can promote 
the formation of EMT (11). Other research reveals that 
ANCR modulates EMT inducer’s stability to block tumor 
growth and metastasis (12). Therefore, developing an 
EMT-related lncRNA evaluation system has an important 
clinical significance.

Compared with the cancer diagnostic model constructed 
by a single gene, the model constructed by a combination 
of two biomarkers has better accuracy (13). In this 
study, paired differentially expressed lncRNAs that were 
significantly related to prognosis were selected. Based on 
these lncRNA pairs, a prognostic model was established 

and its predictive ability in GC was verified. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2751/rc).

Methods

Data acquisition

The RNA-sequencing profiles together with corresponding 
clinical data for GC patients from The Cancer Genome 
Atlas (TCGA) dataset (https://portal.gdc.cancer.gov/) were 
obtained and used as the training set. Patients without 
clinical data were excluded, and 371 GC samples were 
defined finally for analysis. GSE62254, which contained 
300 patients with GC and their clinicopathological data, 
was extracted from Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/) as the testing set. A list of 
1,184 EMT-related genes was downloaded by accessing 
the dbEMT2 website (http://dbemt.bioinfo-minzhao.org/
download.cgi) (14). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Pairing differentially expressed lncRNAs

The co-expression strategy was adopted between lncRNAs 
and EMT-related genes and the lncRNAs with correlation 
coefficient >0.4 and P value <0.001 were considered 
statistically significant. In order to explore differentially 
expressed lncRNAs, the “limma” R package was utilized 
and the screening criteria was set as P value <0.05 along 
with |log2[fold change (FC)]|>1. Then, every differentially 
expressed lncRNA was paired with each other and a 
specific score for each lncRNA pair was calculated. In the 
pairwise comparison, the output was 1 if the expression 
quantity of the first EMT-related lncRNA was greater than 
the following one in a specific lncRNA pair; otherwise, 
the output was 0. And some lncRNA pairs, in which the 
proportion of 0 or 1 was less than 20%, were deleted. 

Construction of the lncRNA pairs model

Univariate Cox analysis was employed to ascertain the 
potential prognostic associated lncRNA pairs in the training 
set. And the “glmnet” R package was also used to conduct 
the least absolute shrinkage and selection operator (LASSO) 
regression analysis after 1,000 iterations with 10-fold cross 
validation. Ultimately, 20 lncRNA pairs were identified 
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to establish the prognostic model, and each GC patient’s 
risk score was generated based on the following formula: 
risk score = (ExprlncRNApair-1 × CoeflncRNApair-1) 
+ (ExprlncRNApair-2 × CoeflncRNApair-2) + … + 
(ExprlncRNApair-n × CoeflncRNApair-n). Subsequently, 
the model’s receiver operating characteristic (ROC) curves 
of the training cohort in different years were drawn, and the 
optimal cutoff at the five-year ROC curve was selected to 
separate GC patients into different risk levels.

Validation of the prognostic model

In order to validate the established model, the above 
formula was applied to GC patients in the testing set and 
assigned them into high- or low-risk subgroups by using 
the same cutoff point obtained from the training set. 
Meanwhile, Kaplan-Meier analysis was employed to assess 
the survival differences between patients in the two risk 
subgroups in both the TCGA cohort and the GSE62254 
cohort. And time-dependent ROC curves of one, three, 
and five years for the testing cohort were used to detect 
the model’s predictive power. Moreover, to better clarify if 
the model had a good prognostic efficiency, univariate and 
multivariate Cox proportional-hazards analyses were used. 

Correlation between the model and clinical characteristics

The relations between risk score and clinical characteristics, 
such as age, gender, grade, stage, T stage, N stage, M 
stage, were analyzed. The “survivalROC” R package was 
performed to confirm this model’s efficiency. The results 
of box plots showed the differences in risk scores among 
different clinical groups. The clinical factors were also 
stratified to calculate for a broader utility of risk score in 
GC patients.

Investigation of immune infiltration

A file about different immune infiltrating cells for GC 
samples in the TCGA database was downloaded from the 
TIMER2.0 website (http://timer.cistrome.org/) to study the 
correlation between infiltration immune cell subtypes and 
different risk subgroups (15). And the datasets of immune 
infiltration included XCELL, TIMER, QUANTISEQ, 
MCPCOUNTER, EPIC, CIBERSORT-ABS,  and 
CIBERSORT. The results of spearman correlation analysis 
were indicated in the bubble chart. 

Functional enrichment analysis

To investigate the biological mechanisms involved in 
this risk model, the gene set enrichment analysis was 
implemented by using the package “fgsea” with 10,000 
permutations. The datasets related to Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were obtained from the Molecular Signatures Database 
(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (16) 
and they were compared in high- vs. low-risk groups. These 
enriched gene sets were selected with a threshold of false 
discovery rate (FDR)-adjusted P<0.05. 

Statistical analysis

The R software (version 4.0.5) was used to complete all 
data analyses and the correlations of the risk score with 
clinical variables were investigated via a chi-square test. The 
survival data analyses were carried out by Kaplan-Meier 
survival curves with log-rank test. And all graphs were 
drawn using R language. P value <0.05 was defined to be a 
statistically significant difference.

Results

Screening of EMT-related lncRNAs in GC

A total of 371 GC patients were chosen from the TCGA 
cohort as the training set, and GSE62254 with 300 GC 
samples became the testing set. The distribution of specific 
clinical features in these two sets is shown in Table S1. 
According to the obtained genes from the dbEMT2 website, 
the method of co-expression analysis was utilized to identify 
EMT-related lncRNAs. And following the standards of 
|log2FC| >1 and FDR <0.05, 434 up-regulated as well as 
36 down-regulated differentially expressed lncRNAs were 
selected. A volcano map of all lncRNAs is shown in Figure S1. 
Red and green dots indicate the up- and down-regulated 
lncRNAs in GC, and black dots indicate lncRNAs with 
nonsignificant differences.

Construction of a model consisting of 20 lncRNA pairs

The screened lncRNA was paired with each other and the 
lncRNA pairs were excluded if the score of which were 
0 or 1 in less than 20% of the samples. Univariate Cox 
analysis was performed on these constructed lncRNA pairs, 
and 35 lncRNA pairs remained. Next, LASSO regression 
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was employed to remove the overfitting in the training 
set (Figure 1). After 1,000 iterations, a prognostic model 
composed of 20 lncRNA pairs was established (Table S2). 
Then, the ROC curves were plotted for one, three, and 
five years, and the corresponding areas under the ROC 
curves (AUC) values were all greater than 0.7, suggesting 
the model had a robust performance in survival prediction. 
Subsequently, the maximum inflection point at the five-year 
ROC curve was calculated to be 0.299 and set as the optimal 
cutoff value for classifying all samples into either the high- 
or low-risk groups (Figure 2). 

Assessment and validation of the model

All patients’ risk scores were counted, and the distribution 
results of low- and high-risk samples in the TCGA cohort 
and GSE62254 are shown in Figure 3A,3B. The scatter 
plots showed that the rates of death increased gradually as 
the improvement of the risk score in the patients with GC. 
Kaplan-Meier analyses were also employed and suggested 
that the overall survival (OS) of the group with low-risk was 
better than that of the group with high-risk (Figure 3C,3D). 
In the testing set, the AUCs at one, three, and five years 

Figure 1 The LASSO regression analysis identified 20 EMT-related lncRNA pairs. LASSO, least absolute shrinkage and selection operator; 
EMT, epithelial-mesenchymal transition; lncRNA, long noncoding RNA.
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were 0.642, 0.631, and 0.644, respectively, displaying the 
good prognostic capability of the risk model (Figure 3E). 
Furthermore, univariate and multivariate Cox analyses were 
conducted in these two sets and revealed risk score had an 
independent prognostic role in GC patients (Figure 4A-4D). 
Therefore, this model based on the 20 lncRNA pairs was 
closely associated with the prognosis.

Association between clinical features and the risk score

The five-year ROC curve was compared with other 
traditional clinicopathological parameters (Figure 5A). 
The results demonstrated apparently that the predictive 
power of risk score was superior to the common clinical 
features. The relationships between the risk score and 
clinical characteristics were also evaluated (Figure 5B). The 
risk score was found to be relevant to grade, stage, and T 
stage, but there was no significant correlation with other 
clinical characteristics. Moreover, to observe whether the 
prognostic model was suitable for different populations, 
further survival analyses of stratified clinical features were 
performed. The survival curves showed low-risk patients 
presented a greater prognosis than the high-risk in all clinical 
features except stage I, stage II, T1, and T2 (Figure 6).

Immune cell infiltration and functional analysis

Tumor-infiltrating immune cells participate in the process 
of the occurrence, development, and prognosis of cancer. A 
file of tumor-infiltrating immune cells from the TIMER2.0 
website was obtained and a bubble chart was developed 
after the analysis (Figure 7). If the correlation coefficient 
corresponding to the dot was positive, then the immune 
cell was positively related to the risk score of patients; 
otherwise, it was a negative correlation. In addition, 
functional enrichment analyses of GO and KEGG pathway 
were implemented to investigate the biological effects of the 
constructed lncRNA pairs model. GO analysis indicated the 
lncRNAs in the prognostic model were mostly correlated 
with digestion (Figure 8A); KEGG analysis revealed the 
most significant enrichment pathways involved in these 
lncRNAs (Figure 8B).

Discussion

GC is a very prevalent gastrointestinal malignant tumor, which 
has the features of high morbidity and mortality. Although 
the treatment methods of GC are developing continuously, 
the prognosis of advanced patients is still poor (17). With 
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the widespread use of microarray sequencing technology, 
more and more biomarkers are found to be able to utilize 
to predict the prognosis of tumors. LncRNAs, as important 

regulators of multiple processes of gene expression, 
participate in the proliferation, invasion, and metastasis 
of various cancers (18,19). At present, many studies have 



Translational Cancer Research, Vol 12, No 5 May 2023 1203

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(5):1196-1209 | https://dx.doi.org/10.21037/tcr-22-2751

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

Age ≤65 High risk (n=125) Low risk (n=38) Age >65 High risk (n=142) Low risk (n=63)

P<0.001 P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

Female High risk (n=87) Low risk (n=46)

P=0.003

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

Male High risk (n=181) Low risk (n=57)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

G1−2 High risk (n=92) Low risk (n=52)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

G3 High risk (n=170) Low risk (n=48)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

Stage I High risk (n=31) Low risk (n=19)

P=0.378

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

Stage II High risk (n=87) Low risk (n=24)

P=0.064

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

Stage III High risk (n=104) Low risk (n=45)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

Stage IV High risk (n=26) Low risk (n=12)

P=0.002

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0    1    2    3    4    5
Time, years

T1 High risk (n=9) Low risk (n=9)

P=0.221

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

T2 High risk (n=57) Low risk (n=21)

P=0.103

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

T3 High risk (n=127) Low risk (n=40)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

T4 High risk (n=67) Low risk (n=33)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

N0 High risk (n=80) Low risk (n=28)

P=0.048

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

N1 High risk (n=64) Low risk (n=33)

P=0.004

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

N2 High risk (n=51) Low risk (n=23)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

N3 High risk (n=57) Low risk (n=17)

P=0.002

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0  1  2  3  4  5  6  7  8  9 10
Time, years

M0 High risk (n=234) Low risk (n=94)

P<0.001

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0   1   2   3   4   5   6
Time, years

M1 High risk (n=18) Low risk (n=7)

P=0.044

Figure 6 Kaplan-Meier stratified analyses of high/low-risk GC samples in the training set. GC, gastric cancer.
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Figure 7 Evaluation of immune cell infiltration in GC. GC, gastric cancer.

reported the predictive model constructed by lncRNAs to 
identify the prognosis of cancer patients, such as bladder 
cancer, hepatocellular carcinoma, colorectal cancer (20-22).  
EMT is related to tumor progression and promotes the 
metastasis of cancer cells by enhancing their migration and 
invasion. The disorder of lncRNAs plays a crucial role in 
tumor metastasis, which is conducive to the occurrence 
of EMT and can mediate EMT-induced metastasis 
using multiple mechanisms. For example, lncRNAs 
participate in gene transcription by binding with EMT-
induced transcription factors (TFs), and the interaction 
of lncRNAs and TFs directly regulates gene transcription 
by phosphorylation and ubiquitination inducing targeted 
protein degradation (23,24). In terms of GC, lncRNAs 
mediate a variety of signaling pathways, including Wnt, 
PI3K/AKT, Hippo, MEK/ERK and Notch1, regulating 
the process of EMT in GC. And lncRNAs regulate EMT-
induced GC metastasis through transcription factors 
and sponging miRNAs (25). In addition, EMT-related 
lncRNAs can be used as biomarkers to judge the prognosis, 
treatment, and immune infiltration of tumor patients. And 
the dysregulation of lncRNAs expression value is closely 
related to the poor prognosis of GC (26). However, there 
are relatively few studies using lncRNA biomarkers to 
construct GC prognosis models.

In this research, a prognostic prediction model was 
constructed on the basis of the EMT-related lncRNA pairs. 
Different from previous prediction models, we paired the 

selected lncRNAs and identified the risk score in patients 
with GC through relative expression values of the two 
lncRNAs. Using this method, there was no need for batch 
normalization. First, we downloaded RNA-seq data of 
TCGA-Stomach Adenocarcinoma (TCGA-STAD) cohort, 
acquired EMT-related lncRNA expression profiles for 
GC patients, and paired differentially expressed lncRNAs. 
Second, adopting univariate integrated with LASSO Cox 
regression analyses, a risk model was established consisting 
of 20 survival-related lncRNA pairs. Then, each GC 
sample’s corresponding risk score was determined, and 
these samples were classified into two subgroups according 
to the cutoff value. Kaplan-Meier plots of OS manifested 
the patients with lower risk scores had a longer survival 
time than those with higher risk scores, and the results 
of ROC curves verified the excellent predictive capacity 
of the model. We also assessed this risk model from the 
perspectives of clinicopathologic features, immune cell 
infiltration, and biological functions. Furthermore, the 
analysis of GSE62254 verified the model had an excellent 
predictive capacity. 

The role of lncRNAs in malignant tumors has become 
a research hotspot. Some recent researches have revealed 
that lncRNAs are connected with the prognosis of GC 
patients. Ma et al. downloaded lncRNA expression profiles in 
GSE62254 and constructed a six-lncRNA signature in order 
to evaluate GC patients’ prognosis independently (27). Chen 
et al. identified ten hypoxia-related lncRNAs and obtained 
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Figure 8 Results of gene set enrichment analysis. (A) Bubble chart of GO analysis. (B) Bubble chart of KEGG analysis. GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

a prognostic signature and nomogram to predict both the 
OS and disease-free survival in GC (28). Several lncRNAs 
included in our model have been identified to have an 
essential effect on various tumor types including GC. For 
example, Liu et al. reported over-expressed HOXA11-AS 
boosts GC cell proliferation, cell cycle progression and 

metastasis, proposing its exertion on oncogenic effects 
in GC (29). Wei et al. revealed that HOTAIR accelerates 
proliferation and metastasis in GC cell lines by sponging 
miR-1277-5p and upregulating COL5A1 (30). And 
HOTTIP exists in exosomes of GC patients and may be a 
good prognostic biomarker for GC (31). Besides, EMT, as 
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an important biological process, is induced by the TME and 
is closely correlated with the malignant progression of all 
types of cancer (32). Consequently, the model established 
here has the potential to provide a novel method to predict 
the prognosis of GC.

TME cells are important constituents of the tumor 
tissue. The study has shown that there is some interaction 
between infiltrating TME cells and the clinical features 
of GC (33). Considering the importance of immune cell 
infiltration in GC, seven recognized reliable methods 
were utilized to explore the correlation between infiltrated 
immune cells and risk scores, including XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT (34-40). Through the result 
reorganization and analysis, the lncRNA pairs for building 
the model was found to have a positive relation to the 
immune infiltration of macrophages, monocytes, myeloid 
dendritic cells, and neutrophils. These innate immune 
cells and adaptive immune cells were part of the TME 
and were associated with tumor progression (41). Given 
that all lncRNAs in the model were associated with EMT, 
the relationship between EMT and immune cells was also 
explored. Evidence has shown that immune cells could 
modulate the process of EMT by producing multiple 
EMT inducers and mediators (42). Tumor-associated 
macrophages (TAMs) derived from inflammatory monocytes 
are functionally effective EMT inducers and can produce a 
variety of growth factors and inflammatory cytokines to cause 
EMT of cancer cells (43). Neutrophils can also regulate 
EMT like TAMs. Li et al. reported that tumor-associated 
neutrophils promoted the migration and invasion of GC 
cells by inducing EMT through IL-17a (44). In addition, 
inflammatory cytokines generated by all immunocytes 
could affect EMT through indirect regulation (45). The 
infiltration level of specific immune cells is significantly 
correlated with the pathological features and clinical results 
of GC. Immunotherapy is an innovative treatment for 
GC. Cancer cells can evade immune monitoring by up-
regulating programmed cell death ligand 1 (PD-L1) and 
other immune checkpoint proteins (46). Tumor mutational 
burden (TMB) is a novel biomarker for PD-L1 antibody 
therapy in a variety of tumors. The research has shown that 
OS in patients with chemotherapy-refractory GC treated 
with toripalimab is significantly better in the high TMB 
group than in the low TMB group (47). The results of 
gene set enrichment analysis (GSEA) revealed the model 
is involved in activities related to digestion. Moreover, a 
study has used bioinformatics and experimental methods 

to construct mRNA-miRNA-lncRNA networks, and 
explored the possible role of central genes in promoting or 
suppressing GC by constructing an axis, which is helpful to 
identify new targets for the treatment of GC (48).

This study constructed a prognostic model of GC by 
relative ranking and paired comparison of EMT-related 
lncRNAs expression values, which did not take into account 
of the impact of the batch effects of the different platforms. 
And the findings here suggested that a GC patient with a 
higher model risk score may have a shorter survival time 
and a worse prognostic outcome. However, it should be 
admitted that there are still some shortcomings in our 
research. Firstly, the variables contained in the TCGA and 
GSE62254 databases were not comparable, and important 
indicators such as the history of past illness, chemotherapy, 
and radiotherapy were not indicated, which may influence 
the treatment and prognosis of GC patients. Secondly, 
in vivo or in vitro experimental researches are crucial 
to further confirm the prognostic performance of the 
constructed model for GC. Finally, given the relationship 
between lncRNAs and the immune system, more biological 
experiments on immunity are worth studying. Besides, the 
research results of The Cancer Genome Atlas (TCGA) 
project proposed a molecular classification method to 
divide GC into four genomic subtypes, including Epstein-
Barr virus (EBV)-infected tumors, microsatellite unstable 
tumors, genomically stable tumors, and chromosomally 
unstable tumors (49). This method is easier to be applied 
to the clinical nursing of patients with GC. Therefore, 
the study on the prognosis of the four molecular types of 
GC can serve as an in-depth direction for investigation 
in future research. Most studies on lncRNA are limited 
to bioinformatics analysis and cell experiments, and there 
are still many problems and challenges in the clinical 
application of lncRNA. For example, large-scale animal 
and clinical models are needed to define the regulatory 
role of lncRNAs. Further research is needed to determine 
whether lncRNAs and other RNAs may form competitive 
endogenous RNA networks, thus affecting the function of 
the body (50). In addition, there are still some difficulties in 
the targeted delivery and therapeutic efficacy evaluation of 
lncRNAs.

Conclusions

Taken together, the novel proposed model constructed 
by EMT-related lncRNA pairs is a promising method 
to predict the prognosis of GC patients, which could be 
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beneficial for improving the survival outcomes of patients. 
This research may offer new insights for clinicians in 
clinical decision-making and individualized treatment.
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Supplementary

Table S1 Clinical information of TCGA dataset and GSE62254 

Patients Characteristics TCGA GSE62254

Age, years

≤65 163 172

>65 205 128

Gender

Female 133 101

Male 238 199

Grade

G1 10 -

G2 134 -

G3 218 -

Stage

Stage I 50 30

Stage II 111 97

Stage III 149 96

Stage IV 38 77

T Stage

T1 18 -

T2 78 186

T3 167 91

T4 100 21

N Stage

N0 108 38

N1 97 131

N2 74 80

N3 74 51

M Stage

M0 328 273

M1 25 27

TCGA, The Cancer Genome Atlas.
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 Figure S1. The volcano map of differentially expressed lncRNAs.

Figure S1 The volcano map of differentially expressed lncRNAs.
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Table S2 The EMT-related lncRNA pairs list and coefficient

LncRNA pair 1 Full name LncRNA pair 2 Full name Coefficient

HOXA11-AS HOXA11 antisense RNA LINC01410 Long intergenic non-protein coding RNA 1410 −0.0884

HOXA11-AS HOXA11 antisense RNA GABPB1-AS1 GABPB1 antisense RNA 1 −0.1698

A2M-AS1 A2M antisense RNA 1 TFAP2A-AS1 TFAP2A antisense RNA 1 0.1275

A2M-AS1 A2M antisense RNA 1 RHPN1-AS1 RHPN1 antisense RNA 1 (head to head) 0.1072

MIR100HG Mir-100-let-7a-2-mir-125b-1 cluster host gene MCF2L-AS1 MCF2L antisense RNA 1 0.1287

MIR100HG Mir-100-let-7a-2-mir-125b-1 cluster host gene RHPN1-AS1 RHPN1 antisense RNA 1 (head to head) 0.0442

MIR100HG Mir-100-let-7a-2-mir-125b-1 cluster host gene GAS6-AS1 GAS6 antisense RNA 1 0.0321

LINC01004 Long intergenic non-protein coding RNA 1004 HOTAIR HOX transcript antisense RNA 0.1350 

BANCR BRAF-activated non-protein coding RNA FGF14-AS2 FGF14 antisense RNA 2 −0.2449

RUSC1-AS1 RUSC1 antisense RNA 1 GAS6-AS1 GAS6 antisense RNA 1 0.2446

MBNL1-AS1 MBNL1 antisense RNA 1 LINC00668 Long intergenic non-protein coding RNA 668 0.1835

DSCR8 Down syndrome critical region 8 HOTTIP HOXA distal transcript antisense RNA 0.4763

C1RL-AS1 C1RL antisense RNA 1 LINC01094 Long intergenic non-protein coding RNA 1094 −0.3423

UNC5B-AS1 UNC5B antisense RNA 1 ZNF667-AS1 ZNF667 antisense RNA 1 (head to head) −0.1317

ZNF667-AS1 ZNF667 antisense RNA 1 (head to head) RHPN1-AS1 RHPN1 antisense RNA 1 (head to head) 0.0149

DLEU2 Deleted in lymphocytic leukemia 2 LINC01094 Long intergenic non-protein coding RNA 1094 −0.0438

PSORS1C3 Psoriasis susceptibility 1 candidate 3 GABPB1-AS1 GABPB1 antisense RNA 1 0.4970 

RHPN1-AS1 RHPN1 antisense RNA 1 (head to head) HAGLROS HAGLR opposite strand lncRNA −0.1140 

FGF14-AS2 FGF14 antisense RNA 2 LINC01355 Long intergenic non-protein coding RNA 1355 0.0375

GABPB1-AS1 GABPB1 antisense RNA 1 GAS6-AS1 GAS6 Antisense RNA 1 0.1955


