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Background: Accumulating evidence suggests that microRNA-target genes are closely related to 
tumorigenesis and progression. This study aims to screen the intersection of differentially expressed mRNAs 
(DEmRNAs) and the target genes of differentially expressed microRNAs (DEmiRNAs), and to construct a 
prognostic gene model of esophageal cancer (EC).
Methods: Gene expression, microRNA expression, somatic mutation, and clinical information data of EC 
from The Cancer Genome Atlas (TCGA) database were used. The intersection of DEmRNAs and the target 
genes of DEmiRNAs predicted by the Targetscan database and microRNA Data Integration Portal (mirDIP) 
database were screened. The screened genes were used to construct a prognostic model of EC. Then, the 
molecular and immune signatures of these genes were explored. Finally, the GSE53625 dataset from the 
Gene Expression Omnibus (GEO) database was further used as a validation cohort to confirm the prognostic 
value of the genes.
Results: Six genes on the grounds of the intersection of DEmiRNAs target genes and DEmRNAs were 
identified as prognostic genes, including ARHGAP11A, H1.4, HMGB3, LRIG1, PRR11, and COL4A1. Based 
on the median risk score calculated for these genes, EC patients were divided into a high-risk group (n=72) 
and a low-risk group (n=72). Survival analysis showed that the high-risk group had a significantly shorter 
survival time than the low-risk group (TCGA and GEO, P<0.001). The nomogram evaluation showed high 
reliability in predicting the 1-year, 2-year, and 3-year survival probability of EC patients. Compared to low-
risk group, higher expression level of M2 macrophages was found in high-risk group of EC patient (P<0.05), 
while STAT3 checkpoints showed attenuated expression level in high-risk group. 
Conclusions: A panel of differential genes was identified as potential EC prognostic biomarkers and 
showed great clinical significance in EC prognosis.
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Introduction

Esophageal cancer (EC) ranks the seventh common cancer 
in terms of incidence (572,000 new cases) and the sixth 
most common cause of death from cancer worldwide in 
2,018 (509,000 deaths) (1). Due to the insidious onset, 
highly invasive properties, and rapid progress, most EC 
patients are diagnosed at an advanced stage. The prognosis 
of EC patients is poor (2). Consequently, there are still in 
urgent need for more reliable and non-invasive prognostic 
biomarkers to guide EC personalized treatment.

Recent studies has proved dysregulation of specific 
microRNAs could contribute to metaplastic and neoplastic 
processes in the oesophageal mucosa. MicroRNAs are 
short, non-coding RNAs regulating gene expression. Li 
et al. found microRNAs-target gene played an important 
role in cancer initiation and progression (3). Although the 
contribution of microRNAs to EC development has been 
extensively studied, little has been done on microRNA 
targeting genes in EC. Previous studies showed tumor 
microenvironment (TME) may play a crucial role in the 
tumorigenesis and progression of EC. The TME includes 
a complex collection of components to keep a dynamic 

balance exists between the pro- and anti-tumor factors 
within the TME, which profoundly influences the prognosis 
of patients with cancer (4-7).

This study aimed to identify a panel of potential prognostic 
genes according to the intersection of differentially expressed 
mRNAs (DEmRNAs) and the target genes of differentially 
expressed microRNAs (DEmiRNAs), and to explore 
the prognostic value of these genes. We further clarified 
the immunological roles of prognostic genes among EC 
patients, therefore providing a comprehensive insights into 
esophageal tumor development. We present this article/case 
in accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-22-
2588/rc). 

Methods

Data downloading and processing

Gene expression data included 160 tumor samples and 
11 normal samples, microRNA data included 185 tumor 
samples and 13 normal samples, 366 somatic mutation data 
and corresponding clinical data were collected from The 
Cancer Genome Atlas (TCGA) dataset (8) as the training 
cohort. Furthermore, The GSE53625 dataset from the 
Gene Expression Omnibus (GEO) database as the validation 
cohort was downloaded (9). Data with incomplete survival 
information were excluded. The training dataset comprised 
144 EC patients while the validation dataset comprised 179 
EC patients.

The edgeR (10) package was employed to identify 
DEmiRNAs or DEmRNAs. The criteria of DEmiRNAs or 
DEmRNAs were false discovery rate (FDR) q value <0.05 
and log2 |fold change (FC)| >1.5. 

Target genes of DEmiRNAs were selected by TargetScan 
(http://www.targetscan.org/vert_72/) and microRNA Data 
Integration Portal (mirDIP) databases (http://ophid.utoronto.
ca/mirDIP/index.jsp). Further, a panel of prognostic genes 
were identified by taking the intersection of DEmRNAs and 
target genes of DEmiRNAs. To better understand the deep 
molecular mechanism behind these potential prognostic 
biomarkers, we conducted pathway enrichment analysis 
based on Gene Ontology (GO) database (11) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (12). 
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Construction and validation of a prognostic model

Least absolute shrinkage and selection operator (LASSO) 
Cox regression analysis was used to select differential 
genes to construct final prognostic model using the R 
package “glmnet” (13). Then, Cox regression analysis was 
performed to construct the best prognostic model and make 
proportional hazards assumption with R package “survival” 
and “MASS”. The prognostic genes eventually screened in 
the training dataset were used to construct the prognostic 
model, and then verified in the validation dataset. According 
to the prognostic model formula, the risk score of each 
patient was calculated, and then divided EC patients into 
high-risk and low-risk groups according to the median risk 
value. Subsequently, we constructed a prognostic model 
using genes, tumor node metastasis (TNM) stage, and 
risk group, and validation in the validation dataset; 1-, 2-, 
and 3-year receiver operating characteristic (ROC) curves 
were drawn using the R package “timeROC” (14). Then, 
according to the genes, TNM stage, and risk group and 
other prognostic factors, the nomogram was constructed to 
predict overall survival (OS). 

Analysis of immune status of EC patients 

Moreover, immune cell infiltration, gene checkpoint gene 
expression, and significantly mutated gene identification 
were also assessed between the high-risk group and low-
risk group. The software CIBERSORT (15) was used to 
deconvolve the expression matrix of human immune cell 
subtypes to calculate the relative proportions of 22 immune 

cells in EC samples. The EC immune checkpoint genes were 
searched in the literature and found that the most studied EC 
immune checkpoint inhibitors were CTLA4, PDCD1, LAG3, 
TIGIT, IDO1, TDO2, CD19, STAT3, CD47 and WT1 (16-24). 
The differences between the high risk group and the low risk 
group of these immune checkpoint genes were explored. The 
R package “maftools” was used to analyze variant genes for 
somatic mutation data. Somatic mutation data for different 
risk groups were used to detect mutation types and single 
nucleotide variants (SNV). Differential mutant genes (DMG) 
were identified based on Fisher’s exact test, P<0.05 (25).

Statistical analysis

Baseline characteristics between different groups were 
analyzed using Student’s t-test or Wilcoxon rank sum 
test as appropriate for continuous variables and χ2 test for 
categorical variables. All statistical analyses were carried out 
with R (4.1.2).

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

TCGA and GEO datasets and patients characteristics

Baseline clinical characteristics of included EC patients 
were presented in Table 1, including 144 samples from 

Table 1 The clinical characteristics and sample size for TCGA and GEO datasets

Variable
TCGA GEO

Alive (n=90) Dead (n=54) Alive (n=106) Dead (n=73)

Age, years, mean (SD) 62.20 (12.3) 62.83 (11.3) 57.44 (8.5) 60.66 (9.2)

Follow-time, years, mean (SD) 1.46 (1.1) 1.60 (1.3) 5.02 (0.5) 1.64 (1.1)

Male, n (%) 72 (80.0) 50 (92.6) 22 (20.8) 11 (15.1)

Stage, n (%)

Stage I 13 (14.4) 3 (5.6) 0 (0.0) 0 (0.0)

Stage II 47 (52.2) 21 (38.9) 36 (34.0) 41 (56.2)

Stage III 28 (31.1) 20 (37.0) 67 (63.2) 25 (34.2)

Stage IV 0 (0.0) 8 (14.8) 3 (2.8) 7 (9.6)

Missing 2 (2.2) 2 (3.7) 0 (0.0) 0 (0.0)

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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TCGA database as training set and 179 samples from GEO 
database as validation set. EC patients in training set were 
more likely to be older males than patients in validation set 
(P<0.05).

Identification of differentially expressed genes and 
enrichment analysis

In total, 428 genes were identified as DEmRNAs, 
including 177 up-regulated genes and 251 down-regulated 
genes in gene expression data (Figure 1A); 2,029 target 
genes of DEmiRNAs were identified by TargetScan and 
mirDIP databases. There are 55 common genes between 
DEmRNAs and DEmiRNAs target genes (Figure 1B). 
GO and KEGG enrichment analysis was performed for 
DEmRNAs, DEmiRNAs and 55 common genes, and the 
results showed that DEmRNAs were mainly enriched in 
mitotic nuclear division, nuclear division and chromosome 
segregation (Figure S1A), DEmiRNAs was mainly enriched 
in muscle system process, response to zinc ion and muscle 

contract ion (Figure S1B), and 55 common genes were 
mainly enriched in muscle system process, response to zinc 
ion and muscle contraction and other KEGG pathways 
(Figure 1C).

Construction and validation of a risk score prognostic 
model 

Differential genes were screened by LASSO Cox analysis, 
including ARHGAP11A, CELF2, H1.4, H2AC8, HMGB3, 
ZNF367, LRIG1, PRR11, and COL4A1. Then, these 
differential genes were included in multivariate Cox 
stepwise regression analysis, and genes with P<0.05 were 
selected to construct a prognostic model. The prognostic 
genes were ARHGAP11A, H1.4, HMGB3, LRIG1, PRR11, 
and COL4A1. The prognostic genes were validated in 
the validation cohort. A risk score for each patient was 
calculated and then divided samples from the training and 
validation cohorts into high-risk group and low-risk group 
based on the median, respectively. The results (Figure 1D)  
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Figure 1 Results of differential gene analysis. (A) Volcano plot showing the differentially up-regulated (red nodes) and down-regulated 
genes (blue nodes). (B) Venn diagram of DEmRNAs and DEmiRNAs target genes. (C) Enrichment analysis of the common genes between 
DEmRNAs and DEmiRNAs target genes. (D) Scatterplots illustrate the distribution of risk scores and survival status of EC patients. FDR, 
false discovery rate; DEmRNAs, differentially expressed mRNAs; DEmiRNAs, differentially expressed microRNAs; EC, esophageal cancer.
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showed that the prognosis of the high-risk group was 
significantly poorer than that of the low-risk group in 
the training cohort. Compared with the low-risk group 
in Figure 2A,2B, patients in the high-risk group had 
significantly shorter OS in both the training and validation 
cohorts (all P<0.001) datasets.

This study constructed a risk score prediction model 
using the above prognostic genes, and the 1-, 2-, and 3-year 
areas under the curve (AUC) for EC risk scores in the 
training cohort were 0.714, 0.755, and 0.777, respectively 
(Figure 2C). The AUC in the validation cohort were 0.616, 
0.644, and 0.645, respectively. These findings further 
indicated these prognostic genes had great potential in 
predicting future prognosis for EC patients (Figure 2D). 
Subsequently, used eight independent prognostic factors 

including prognostic genes, TNM stage, and risk group 
to constructed a risk prediction model. For prognosis 
prediction for the training cohort, the performance of the 
models with 1-, 2-, and 3-year AUC equaled 0.736, 0.806, 
and 0.828 (Figure 2E). For validated prognostic predictions, 
the performance of the models with 1-, 2-, and 3-year AUC 
was 0.626, 0.699, and 0.679, respectively (Figure 2F). 

Independent prognostic role of the prognostic gene 
signature

A multivariate Cox regression model consisting of age, 
TNM stage, gender, and risk group was used to confirm 
whether the risk score was an independent prognostic 
indicator (Figure 3A). TNM stage and risk group were found 
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Figure 2 Construction and validation prognostic models. (A) Kaplan-Meier survival analysis with the 6 genes and TNM stage risk score as 
a stratification factor in the TCGA cohort. (B) Kaplan-Meier survival analysis with the 6 genes and TNM stage risk score as a stratification 
factor in the GEO cohort. (C) ROC curves of the risk score for predicting 1-, 2-, and 3-year survival in the TCGA cohort. (D) ROC curves 
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to remain significantly associated with OS [hazard ratio (HR) 
=0.37, 95% CI: 0.20–0.69, P=0.002; HR =2.54, 95% CI: 
1.38–4.69, P=0.003]. This study constructed a nomogram to 
predict patient OS by eight independent prognostic factors, 
including prognostic genes, TNM stage, and risk group 
(Figure 3B,3C). The calibration curve clarified an excellent 
calibration performance of this prognostic model.

Immune status of EC patients with different risk groups

The CIBERSORT method was used to estimate the 
immune infiltration differences between 22 immune cells in 
EC patients in the high-risk group and low-risk group. The 
correlation between different immune cell infiltration rates 
was weaker (Figure S2). The expression level of Macrophage 
M2 in the high-risk group was significantly higher than that 
in the low-risk group (P=0.001) (Figure 3D), the difference 
of other immune cells was not statistically significant  

(Figure S3). The relationship between different risk 
groups and key immune checkpoints (CTLA4, PDCD1, 
LAG3, TIGIT, IDO1, TDO2, CD19, STAT3, CD47, WT1) 
was analyzed. The expression level of STAT3 immune 
checkpoint was significantly higher in low-risk group than 
in high-risk group (P<0.05) (Figure 3E). Combining these 
results, the study found that the different risk groups of EC 
can accurately indicate the immune level.

Figure 4A,4B showed a panoramic of the 15 genes with 
the highest mutation frequency in the low-risk and high-risk 
groups for each sample. TP53 and TTN occupy the top two 
places in the two cohorts, indicating that these two genes 
were mainly involved in the occurrence and progression 
of tumors. As shown in Figure 5A,5B, the number of genes 
that significantly co-occur in pairs in the high-risk group 
is less than that in the low-risk group, while the number of 
genes with mutually exclusive mutations is greater than that 
in the low-risk group.
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Figure 5 The heatmap illustrates the mutually co-occurring and exclusive mutations of the top 25 frequently mutated genes. The color and 
symbol in each cell represent the statistical significance of the exclusivity or co-occurrence for each pair of genes. (A) High risk group. (B) 
Low risk group. Symbols indicated statistical significance for the Mann-Whitney U test: *P<0.05; **P<0.01. 
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Discussion

In this study, the intersection of DEmRNAs and target genes 
of DEmiRNAs was applied to identify EC prognostic genes, 
including ARHGAP11A, H1.4, HMGB3, LRIG1, PRR11, 
and COL4A1. Six prognostic genes were used to build EC 
prognostic model in training set, then GEO database was 
applied to validate their prognostic value among EC patients. 
According to the median risk score, included EC patients 
were divided into high-risk or low-risk group. Then, in the 
immune microenvironment, the expression level of M2 in 
macrophages in the high-risk group was observably higher 
than that in the low-risk group. For the immune checkpoint, 
only the STAT3 immune checkpoint in EC patients was 
significant in the low-risk group compared with the high-
risk group. Finally, among the somatic mutation genes of 
EC, the mutation frequency of the top 15 genes, TP53 and 
TTN were in the top 2 in the high-risk group and the low-
risk group were found.

Most genes included in the prognostic model of this 
study have been reported to be associated with many 
different malignancies. For example, Lawson et al. found 
that ARHGAP11A is highly expressed in a subtype of basal-
like breast cancer (BLBC). Previous study showed decreased 
migration velocity of BLBC without ARHGAP11A, 
indicating their oncogenic potential could be evaluated 
by their ability to induce cellular transformation (26). 
RhoGAPs is a newly discovered class of cancer biomarkers. 
ArhGAP11A, a member of the RhoGAP family, induces 
cell cycle arrest and apoptosis by binding tumor suppressor 
p53. ArhGAP11A directly binds p53 and promotes its 
transcriptional function through a Rho-independent 
mechanism. The expression level of ArhGAP11A was proved 
to have impact on cell proliferation and apoptosis (27,28).

HMGB3 is a member of the high mobility group box 
(HMGB) family, which is overexpressed in gastric and 
bladder cancers. And in colorectal cancer, breast cancer is 
up-regulated at both mRNA and protein levels (29-31). 
In addition, LRIG1 is associated with survival in patients 
with various cancers (32). The LRIG1 gene is located 
on chromosome 3p14.3, and deletion of this region is 
associated with a variety of tumors. The degree of low 
expression of LRIG1 increases with the increase of tumor 
grade, and the susceptibility of glioma is related to the 
LRIG1 gene (33). LRIG1 functions as a thyroid tumor 
suppressor (34).

Previous studies have explored the prognostic value of 
differential genes among EC patients, this study further 

combined the target genes of DEmiRNAs to construct 
prognostic model. Both ROC analysis and calibration 
curve showed this prognostic model in the study had better 
discrimination and calibration performance. In addition, 
we also explored the difference of TME between high-
risk group and low-risk group. In addition, we used the 
external data GEO dataset as a validation cohort. However, 
several limitations of this study need to be considered. 
Firstly, the prognostic model has only been validated in the 
GEO dataset and further validation in other independent 
large sample cohorts is required to ensure the reliability 
of our model. Secondly, for immune checkpoints, we only 
found a part of immune checkpoints, and many others 
were not included in the analysis. Thirdly, in this study, 
a small sample size was included. Lastly, these findings 
were from population based study, further experiments are 
needed to clarify deep molecular mechanism underlying the 
association between TME and EC.

Conclusions

The use of DEmRNA and DEmiRNA target genes to make 
a more accurate diagnosis and prognosis prediction of EC 
patients, so as to formulate individualized treatment plans 
on this basis, for the prognosis of patients bring greater 
benefits.
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Supplementary

A B

Figure S1 Enrichment analysis of mRNA differentially genes. (A) mRNA differentially up-regulated genes. (B) mRNA differentially down-
regulated genes.

Figure S2 The correlation between different immune cell infiltration rates. NK, natural killer. 
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Figure S3 The proportion of immune infiltrating cells in different subgroups: ns, P>0.05; **, P≤0.001. NK, natural killer; ns, no significance. 


