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Introduction

Hepatocellular carcinoma (HCC) is the third leading cause 
of cancer-related death and results in more than 500,000 
deaths worldwide each year (1). Most patients with HCC 
are at the advanced stage of the disease when diagnosed; 
thus, they do not have the opportunity to undergo surgery 

and have a poor prognosis. The 5-year overall survival 
(OS) rate of HCC is only 10–18% (2). The main treatment 
methods for HCC include surgical resection, liver 
transplantation, transcatheter arterial chemoembolization, 
and radiofrequency ablation, which can be supplemented 
by systemic chemotherapy and targeted drug therapy (3-6). 
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However, alternative treatment methods for patients with 
unresectable middle and advanced HCC are limited, and 
new treatment strategies are urgently needed (7-9).

In recent years, extensive clinical trials have been 
conducted to assess the potential of tumor immunotherapy 
(TIT), and promising preliminary results have been reported 
(10,11). This has led to the investigation of TIT as a 
treatment for advanced HCC becoming a research hotspot. 
The aim of TIT is to activate the immune system of an 
organism to kill tumor cells (12,13). Several immunotherapy 
strategies exist for HCC, such as immune checkpoint 
inhibitors (ICIs), adoptive cell therapy, tumor vaccines, and 
cytokine therapy, among which ICIs [anti–programmed 
cell death protein 1 (PD1), anti–programmed death-ligand 
1 (PDL1), and anti–cytotoxic T-lymphocyte-associated 
(CTLA4) antibodies] have been proven to be an effective 
and successful TIT method (14,15). With the development 
of TIT, great progress has been made in the treatment 
and prognosis of patients with HCC (16,17). However, 
due to the problems of drug resistance, side effects, 
uncertain efficacy, and patient heterogeneity in TIT (18),  
the identification of novel immune-related biomarkers and 
the selection of a suitable patient population are urgent 
issues to be solved in HCC immunotherapy.

Therefore, the purpose of this study was to identify 
new immune-related genes for the therapy and prognosis 
prediction of HCC and clusters of patients with HCC 

at the molecular level, which will enable the selection of 
appropriate patients for TIT. First, we identified genes 
that were overexpressed in HCC tissue and confirmed 
the results using global high-throughput datasets that 
included 7,384 samples (3,941 HCC vs. 3,443 non-HCC 
tissues) from 84 central datasets, as well as 39 platforms. 
Next, genes associated with immune response pathways 
and expressed by a HCC subpopulation with the most 
differentiation potential were identified. Finally, we defined 
5 genes responsible for poor prognosis and strong immune 
infiltration in patients with HCC as potential immune-
related prognostic biomarkers. Based on the coexpression 
module of these 5 genes in HCC tissue samples, we defined 
3 clusters of patients with HCC. Each cluster contained 
different clinical, mutation, immune, and biological process 
characteristics. Thus, our findings provide a theoretical basis 
for the identification of immune-related genes with strong 
prognostic value and the selection of appropriate patients 
for TIT. We present this article in accordance with the 
Reporting Recommendations for Tumor Marker Prognostic 
Studies (REMARK ) reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-22-2304/rc).

Methods 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The graphical 
abstract of our study is shown in Figure 1.

Evaluation of significantly upregulated genes in HCC 
tissues associated with immune response pathways among 
global high-throughput datasets

First, genes significantly upregulated in HCC tissues 
were collected via integrated analysis. The key term 
“hepatocellular carcinoma” was used for data retrieval in 
the public databases of The Cancer Genome Atlas (TCGA; 
https://www.cancer. gov/tcga), Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/), ArrayExpress 
(https://www.ebi.ac.uk/arrayexpress/), Sequence Read 
Archive (SRA; https://trace.ncbi.nlm.nih.gov/Traces/
sra/), Oncomine (https://www.oncomine.org/resource/
login.html), the Cancer Cell Line Encyclopedia (CCLE; 
https://sites.broadinstitute.org/ccle), the International 
Cancer Genome Consortium (ICGC; https://dcc.icgc.
org/), Genomic Expression Archive (GEA; https://www.
ddbj.nig.ac.jp/gea/index-e.html), and PubMed. The 
inclusion criteria were as follows: messenger RNA (mRNA) 
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Figure 1 Graphic summary of this study. ****, P<0.0001. HCC, hepatocellular carcinoma; TIT, tumor immunotherapy; scRNA-seq, single-
cell RNA sequencing; SMD, standardized mean difference; CNV, copy number variation; MHC, major histocompatibility complex; APC, 
antigen-presenting cell; MEGENA, Multiscale Embedded Gene Co-expression Network Analysis; NMF, nonnegative matrix factorization.

expression in HCC and adjacent tissues; Homo sapiens 
tissue sample collected; no adjuvant treatment, such as 
chemotherapy or radiotherapy, for patients with HCC; 
and HCC parenchymal tissue but not interstitial cells or 
interstitial tissue. When qualified throughput data were 
obtained, the data were normalized with log2, and the 

means and standard deviations (SDs) of the genes were 
calculated. The standardized mean difference (SMD) of 
the high-throughput datasets was counted using Stata 
14.0 (StataCorp). When obvious heterogeneity (I2>50%) 
was observed, a random effects model was selected. 
After exclusion of heterogeneous sources, the analysis 
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was integrated, and Begg test was conducted to detect 
publication bias. The discrimination ability of genes for 
HCC was determined by calculating the sensitivity and 
specificity and using a summarized receiver operating 
characteristic curve (sROC). Furthermore, true positive 
(TP), false positive (FP), false negative (FN), and true 
negative (TN) were assigned to summarize the diagnostic 
analysis results and calculate sensitivity, specificity, negative 
likelihood ratio (NLR), and positive likelihood ratio (PLR). 
P values <0.05 were considered statistically significant.

Antigen presentation depends on the following factors: 
the mutant sequence can be translated into protein, 
the mutant protein can be processed into peptides and 
recognized by antigen-presenting cells (APCs), the mutant 
peptides have high affinity with the major histocompatibility 
complex (MHC) molecules of patients, and the mutant 
peptide–MHC complex can be identified with T-cell 
receptors. Therefore, the genes of the following 13 gene 
sets were extracted from the molecular signatures database 
(MSIGDB; https://www.gsea-msigdb.org/gsea/msigdb), 
which corresponded to the screening conditions for the 
candidate genes: antigen processing and presentation, T-cell 
receptor signaling pathway, peptide antigen assembly with 
MHC class II protein complex, peptide antigen assembly 
with MHC protein complex, positive regulation of MHC 
class I biosynthetic process, positive regulation of MHC 
class II biosynthetic process, MHC class I peptide loading 
complex, MHC class I protein complex, MHC class II 
protein complex, MHC protein complex, MHC class I 
receptor activity, MHC class IB receptor activity, and MHC 
class II receptor activity.

Use of single-cell RNA sequencing analysis to identify 
significant differentiation-driving genes in HCC cells 

Recent studies have shown that the cell state changes during 
differentiation, producing cell types with stable phenotypes 
and immature bodies that change between phenotypes. 
This series of changes is mainly controlled by the gene 
expression in the cells (19,20). Similarly, during tumor 
cell development, the accumulation of early mutations 
leads to the production of carcinogenic metabolites, which 
increases intracellular genetic instability and genomic 
hypermethylation and eventually induces a malignant 
phenotype (21). Additionally, high differentiation potential 
is one of the characteristics of cancer stem cells (CSCs), 
and many studies have shown that the presence of CSCs in 
tumor tissues is closely related to poor prognosis (22,23). 

Therefore, specific differentiation-driving molecules active 
in the early stage of HCC cell development were explored 
via single-cell RNA sequencing (scRNA-seq) analysis.

The GSE112271 (24) dataset of the GEO contains  
7 regions extracted from tumor tissues of 2 patients with 
HCC (quality control threshold: minimum cells =3, 
minimum features =200, percentage of mitochondrial 
genes <10%). The canonical correlation analysis (CCA) 
function in the “Seurat” package in R software (The R 
Foundation for Statistical Computing) was employed to 
correct the batch effect. Then, 2,000 genes with a large 
coefficient of variation between different cells were selected 
for follow-up analysis. The subpopulations of cells were 
obtained via linear dimensionality reduction principal 
component analysis (PCA) and t-distribution stochastic 
neighbor embedding (t-SNE) clustering. By taking the gene 
expression matrix as the input, copy number karyotype of 
tumors (CopyKAT) (25) was used to calculate the genomic 
copy number distribution of single cells through combining 
the Bayesian method and hierarchical clustering and to 
classify tumor and normal cells according to the aneuploid 
copy number. Monocle (26) package in R software was 
then applied to construct a cell development trajectory, 
and independent component analysis (ICA) was used to 
project all cells in low-dimensional space. Next, a minimum 
spanning tree (MST) was constructed to connect the main 
cell points and form a 1-dimensional ranking of all cells. 
This dimension, called pseudotime, was used to represent 
the predicted lineage trajectory of sample cells. Since 
the pseudotime of the cells in Monocle does not include 
sequencing, Cellular Trajectory Reconstruction Analysis 
using gene Counts and Expression (CytoTRACE) (27) 
package in R software was applied to determine which cells 
had the most differentiation potential. This provided a 
starting point for MST by regarding the number of genes 
expressed per cell as a determinant of their developmental 
potential.

Construction of functional gene modules of HCC based 
on Multiscale Embedded Gene Co-expression Network 
Analysis

Gene coexpression networks can be used to effectively 
identify functional gene modules, and Multiscale Embedded 
Gene Co-expression Network Analysis (MEGENA) (28) 
adopts the network embedding paradigm in the field of 
topology. MEGENA comprises the following main steps: 
construction of a planar filter network, multiscale cluster 

https://www.gsea-msigdb.org/gsea/msigdb
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analysis through the compactness of the network structure, 
calculation of subcluster compactness, and identification of 
hub genes in subclusters. Notably, the hub gene is defined 
as the node with the highest degree in the subcluster.

Verification of candidate gene expression in HCC cells at 
the protein level

From the Human Protein Atlas (HPA) database (29) (https://
www.proteinatlas.org/), protein expression data for HCC 
and non-HCC cells were obtained. The expression levels 
were then evaluated according to the intensity and density 
of immunohistochemical (IHC) staining. The intensity 
and density scores were multiplied to obtain an aggregate 
IHC staining value, and the result was placed on a protein 
expression scale of 0 to 9 points.

Classification of patient clusters based on the “c1_12” 
module genes and definition of corresponding clinical 
features

In recent years, nonnegative matrix factorization (NMF) 
has been widely used in gene expression data clustering, 
regulation pattern and function module recognition, and 
other areas (30). NMF is a valuable tool because it can 
recognize the local features of data to a certain extent and 
quantitatively describe, partially or wholly, the potential 
nonlinear combination relationship (31). In this study, 
the molecular cluster model was constructed using the 
NMF software package in R software (k =2–10), and the 
model with fine clustering stability was selected according 
to the clustering effect. Simultaneously, we collected the 
clinical data from TCGA-HCC samples, including the 
tumor region, TNM stage, and pathological grade. The 
χ2 test was conducted to evaluate the difference in clinical 
characteristics between the clusters. The log-rank test was 
then performed using OS to determine whether there were 
significant differences in prognosis. P values <0.05 were 
considered statistically significant.

As TIT research has progressed, tumor mutation burden 
(TMB) has emerged as a new biomarker. TMB is defined 
as the total number of somatic gene coding errors (i.e., 
base substitution, gene insertion, or gene deletion errors) 
detected per million bases (32). In this study, the whole-
exon somatic mutation data of TCGA was in mutation 
annotation format (MAF). The somatic mutation data were 
processed using Mutect2 from GATK4 software and was 
selected to calculate the TMB and determine whether there 

were significant differences in the TMB of different clusters. 
The abnormal expression of immune checkpoint (ICP) 
molecules is a tumor immune escape mechanism, and several 
ICP pathways have been found to be related to tumor 
immune escape (33). Therefore, TMB and the expression 
distribution of ICP molecules in the clusters were evaluated 
via analysis of variance (ANOVA). The ICP molecules 
included tumor necrosis factor receptor superfamily member 
14 (TNFRSF14), neuropilin 1 (NRP1), lymphocyte-
activating 3 (LAG3), cytotoxic T-lymphocyte–associated 
protein 4 (CTLA4), programmed cell death 1 (PDCD1), 
CD276 molecule (CD276), programmed cell death 1 ligand 
2 (PDCD1LG2), indoleamine 2,3-dioxygenase 1 (IDO1), 
V-set domain–containing T-cell activation inhibitor 1 
(VTCN1), indoleamine 2,3-dioxygenase 2 (IDO2), TNF 
superfamily member 9 (TNFSF9), T-cell immunoreceptor 
with immunoglobin and ITIM domains (TIGIT), CD274 
molecule (CD274), TNF receptor superfamily member 9 
(TNFRSF9), and CD40 molecule (CD40). 

Analysis of the mutation characteristics of the patient 
clusters based on mutation signature and copy number 
variation (CNV) level

Driver mutations are causally involved in cancer formation, 
which gives cancer cells a growth advantage (34). The 
mutation characteristics of HCC were analyzed to explore 
its possible etiology and mechanism. The mutation signature 
analysis was completed using the “MutationalPatterns” 
package in R (35). Bayesian NMF analysis was performed 
to examine the mutation categories and process in greater 
detail. In the TCGA-LIHC cohort, the mutations were 
stratified according to 96 trinucleotide backgrounds. 
Bayesian NMF automatically deletes irrelevant components 
that are not conducive to explaining the observed mutations 
and effectively determines the appropriate number of 
signatures and their sample-specific contributions.

CNV is an important source of genetic variation (36) and 
involves the repetition of DNA fragments greater than 1 kb. 
The number of fragments and type of variation (deletion, 
duplication, inversion, and translocation) can differ between 
individuals, which greatly enriches genetic diversity (37). 
The genomic copy information of the TCGA-LIHC 
samples was downloaded. The whole-genome copy 
information of the tumor tissue samples was analyzed 
using GISTIC 2.0 software on GenePattern (https://cloud.
genepattern.org/gp/pages/login.jsf). The reference genome 
was Human_Hg38.UCSC.add_miR.160920.refgene.

https://www.proteinatlas.org/
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mat. ANOVA analysis was conducted to calculate the 
amplification and deletion frequency differences between 
the clusters.

Identification of immune infiltration and enrichment 
analysis of the patient clusters

Immune cells play various roles in tumorigenesis, and 
both the composition and characteristics of the immune 
cell population differ in different tumors. Therefore, in 
studying tumor mechanisms, quantitative examination 
of different types of immune cells is necessary. Tumor 
immune estimation resource (TIMER; https://cistrome.
shinyapps.io/timer/) is an online database resource for 
analyzing immune cell infiltration in various cancers. The 
deconvolution method was used to estimate the degree of 
infiltration of immune cells into tumor tissues from the 
gene expression profiles and to analyze the correlation 
between different clusters and the infiltration of immune 
cells (B cells, CD8+ T lymphocytes, CD4+ T lymphocytes, 
macrophages, neutrophils, and dendritic cells). The “c2.
cp.kegg.v7.5.1.symbols.gmt” gene set from the MSIGDB 
was downloaded as the reference gene set. Gene set 
variation analysis (GSVA) was performed on the clusters 
using the GSVA package in R software. ANOVA was 
conducted to evaluate the variable distribution difference 
between the clusters.

Statistical analysis

For data analysis and plotting, Stata 14.0, R software, and 
GraphPad Prism 8.0 (GraphPad Software Inc.) were used. A 
P value less than 0.05 was considered statistically significant.

Results

Identification of immune-related genes with strong 
prognostic value

Definition of 68 genes upregulated in HCC tissue that 
were associated with immune response
To confirm the gene expression pattern in HCC tissues, we 
collected high-throughput datasets based on 7,384 samples 
(3,941 HCC vs. 3,443 non-HCC tissues), 84 central datasets, 
and 39 platforms. A P value <0.05 indicated significant 
heterogeneity in the included datasets, and a random effects 
model was selected for the analysis (Figures S1-S5). A total 
of 8,676 genes with SMD greater than 0 were obtained. 

Simultaneously, we also obtained 225 genes related to  
13 immune-related pathways from the MSIGDB database. 
According to their intersection, 68 candidate genes were then 
obtained.

Estimation of cell clusters as the initial step in HCC 
cell differentiation
After identifying the genes that were highly expressed in 
HCC tissues, we evaluated the expression of these genes in 
HCC cells with high differentiation potential. Via t-SNE, 
7 integrated samples of GSE112271 were distinguished 
into 16 different clusters using an unsupervised clustering 
method (Figure 2A). In the CopyKAT prediction results, 
aneuploidy represents tumor cells with aneuploidy variation, 
and diploid represents normal cells. The identification 
results were mapped using t-SNE (Figure 2B). In the 
CNV heatmap, shown in Figure 2C, each row represents 
a cell, each column represents a chromosome position, 
and the color represents the degree of change in the copy 
number. To understand the differences in the degree of 
differentiation between malignant cells with high CNV, we 
constructed a pseudotime trajectory of cell differentiation 
based on cell regrouping (Figure 2D,2E). Afterward, genes 
that were differentially expressed among the malignant cells 
were taken as the reference gene set. Ultimately, a pseudo-
temporal algorithm was employed to predict the dynamic 
development trajectory of malignant cells, and 4 time 
points of cell differentiation were defined (Figure 2F,2G). 
Then, the differentialGeneTest function in Monocle 
was used to determine the best 2 clusters based on the 
significant driver genes (Figure 3A). More importantly, the 
CytoTRACE score was calculated to predict the trajectory 
relationship between 15 clusters of HCC cells, and cluster 
9 was estimated to have the highest differentiation potential 
(Figure 3B-3E). Moreover, significantly differentially 
expressed genes in cluster 9 were found to be enriched 
in pathways that included the 2019 coronavirus disease 
(COVID-19), ribosome, and complement and coagulation 
cascades (Figure 3F). Finally, 13 genes [human leukocyte 
antigen, class I, A (HLA-A), TAP binding protein (TAPBP), 
cell division cycle 42 (CDC42), heat shock protein family 
A (HSP70) member 1A (HSPA1A), HSP70 member 8 
(HSPA8), HSP70 member 1B (HSPA1B), NFKB inhibitor 
epsilon (NFKBIE), HSP70 member 5 (HSPA5), HSP110 
member 1 (HSPH1), HSP90 alpha family class A member 
1 (HSP90AA1), Ras homolog family member A (RHOA), 
cyclin0dependent kinase 4 (CDK4), and HSP90A family 
class B member 1 (HSP90AB1)] were screened to meet the 

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://cdn.amegroups.cn/static/public/TCR-22-2304-Supplementary.pdf
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Figure 2 scRNA-seq analysis screening various HCC cell clusters. (A) Sixteen cluster cell types in HCC tissues were identified via 
t-SNE distribution. (B) CopyKAT evaluation was conducted to distinguish aneuploid and diploid cells. (C) CNV heatmap of HCC tissue 
representing the CNV level of each cell. (D) Differential expression analysis was conducted on HCC cells to obtain abnormally expressed 
genes. Clusters 1–15 are shown in order from left to right. (E) HCC cells were extracted, and dimensionality was reduced via t-SNE. (F) 
A 2-dimensional cell trajectory was mapped to 15 HCC clusters and the pseudotime index (G). t-SNE, t-distribution stochastic neighbor 
embedding; HCC, hepatocellular carcinoma; CNV, copy number variation; CHR, chromosome; scRNA-seq, single-cell RNA sequencing; 
CopyKAT, copy number karyotype of tumors.
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Figure 3 Trajectory and differentiation analysis of HCC cells. (A) The expression pattern of genes defined as potential driving genes 
of pseudotime and cluster =2 (red and cyan) had the best clustering effect parameter. (B) The CytoTRACE scores of the 15 clusters of 
HCC cells were distributed in t-SNE. (C) Twenty genes were defined as the factors that most correlated with the CytoTRACE scores. 
The abscissa represents the correlation coefficient. (D) Predicted differentiation potential was evaluated in 15 clusters of HCC cells. (E) 
Cluster 9 cells were estimated as the part with the highest differentiation potential. (F) Pathway enrichment of the differentially expressed 
genes in cluster 9 of the HCC cells. CytoTRACE, Cellular Trajectory Reconstruction Analysis using gene Counts and Expression; HCC, 
hepatocellular carcinoma; t-SNE, t-distribution stochastic neighbor embedding.

following 4 conditions: upregulated in HCC cells with high 
CNV accumulation, a driving factor of early differentiation 
of HCC cells, related to the activation of APC function, and 
a high affinity for T-cell receptor or MHC molecules.

Identification of 5 genes as hub genes
The coexpression analysis was then conducted with 
MEGENA. Among the 13 genes, 5 (HSP90AA1, CDK4, 
HSPA8, HSPH1, and HSPA5) were specifically clustered 
in the “c1_12” module (Figure 4A), suggesting that 
these genes are involved in similar biological processes. 
Further analysis confirmed that the 5 genes were specific 
differentiation driving molecules that are active in the 
early stage of HCC (Figure 4B), and the HCC samples 
were clustered into 3 groups based on the expression 
of these genes (Figure 4C). Indexing of the specificity, 
sensitivity, sROC, and likelihood ratio indicated that 
HCC tissues could be discriminated based on these genes 
(Figure 5, Figures S6-S10). More importantly, the immune 
infiltration and survival analysis results suggested that 
these 5 genes were associated with the level of immune 
cells and the prognosis of HCC (Figure S11).

Verification of the upregulation of the proteins encoded 
by the 5 candidate genes in HCC
After determining the transcription levels of the candidate 
genes, we evaluated the associated protein levels. IHC 

staining was conducted to detect the protein expression 
associated with the 5 candidate genes in HCC tissue and 
hepatocyte samples. Representative IHC staining images 
are shown in Figure 6. The results showed that proteins 
encoded by these 5 genes were upregulated in HCC cells. 
However, due to the small sample size, the differential 
expression was not statistically tested and must be verified 
in subsequent experiments.

Overall, multiple levels of evidence confirmed that the 
genes encoding HSP90AA1, CDK4, HSPA8, HSPH1, and 
HSPA5 are promising biomarkers both in the prognosis 
prediction and immunotherapy of HCC.

Clinical features of patients classified in cluster 2

Based on the above findings, the “c1_12” module, which 
contains 333 genes, was regarded as a function network 
related to HCC immune response and prognosis. TCGA-
LIHC samples were then classified according to the 
expression of the 333 genes, and clustering stability was 
comprehensively determined, with k =3 presenting the best 
effect (Figure 4C; Figure S12). The HCC samples were 
divided into 3 clusters, and χ2 testing showed that there were 
significant differences in the distribution of tumor region, 
stage, and pathological grade (Figure 7A-7D). The log-rank 
test showed that the prognoses associated with the 3 clusters 
were significantly different (P<0.0001; Figure 7E). Although 
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Figure 4 NMF analysis of the coexpression genes in the “c1_12” module. (A) Gene regulatory network of the “c1_12” module embodying 
5 candidate genes. (B) The expression of 5 candidate genes in HCC cells in the distribution of the CytoTRACE scores. (C) k =3 was defined 
as the best cluster number based on analysis of cophenetic, dispersion, and silhouette. NMF, nonnegative matrix factorization; HCC, 
hepatocellular carcinoma; CytoTRACE, Cellular Trajectory Reconstruction Analysis using gene Counts and Expression.
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no significant difference in TMB was found among the 
3 clusters (Figure 7F), the abnormal upregulation of 15 
ICP genes (TNFRSF14, NRP1, LAG3, CTLA4, PDCD1, 
CD276, PDCD1LG2, IDO1, VTCN1, IDO2, TNFSF9, 
TIGIT, CD274, TNFRSF9, CD40) in patients in cluster 2  
(Figure 7G) suggested that immune escape was the cause of 
the poor prognosis for patients in cluster 2.

Mutation characteristics of the 3 clusters of patients with 
HCC

We then attempted to define the mutation differences 
between the 3 clusters. Bayesian NMF was used to identify 
the mutation characteristics of samples from 91 patients 
derived from TCGA-LIHC. Three mutation patterns were 
detected in the HCC cell genomes (Figure 8A,8B). Two 
of the patterns matched DNA damage patterns, namely 
adenine damage and guanine damage. The third mutation 
feature was T > C substitutions. Cluster 2 was found to be 
characterized by a higher proportion of adenine damage 
and a lower proportion of T > C substitutions (Figure 8C). 
In Figure 8D, the y-axis indicates 3 values: the number 
of mutations of each type in each specific sequence, the 
total number of mutations associated with the 3 mutation 
characteristics in each Euro-American patient with HCC, 
and the relative proportion of mutation types. Whole-
genome CNV analysis of TCGA-LIHC tumor tissue 
samples was performed using GISTIC 2.0 software. The 
results showed that the amplification frequency in multiple 
regions of cluster 2 samples was the highest of all clusters, 
especially in regions 10p/q, 12p/q, and 17p/q (Figure 8E). 

However, there were no obvious differential characteristics 
in the focal somatic copy number alteration (SCNA) level of 
cluster 2 samples (Figure 8F). The mutation characteristics 
of the clusters suggested that different clusters of patients 
with HCC had different degrees of immunogenicity.

Immune infiltration and molecular mechanism 
characteristics of cluster 2 patients

The 3 clusters of patients were also found to have significant 
differences in immune infiltration and biological pathway 
activity. We used the TIMER algorithm to calculate the 
fraction of infiltrating immune cells. The results showed 
that cluster 2 samples had a higher expression of CD8+ T 
cells, CD4+ T cells, and macrophages than did samples 
in the other 2 clusters, and the difference was statistically 
significant (P<0.05; Figure 9A-9D). In addition, the pathway 
phenotypes of the 3 clusters were quantified based on 
GSVA, and it was found that the main characteristics of 
cluster 2 were highly active cell cycle, spliceosome, and 
ribosome pathways, and low primary bile acid biosynthesis 
(Figure 9E,9G).

Discussion

In this study, we constructed an abnormal expression map 
of HCC cell genes using data from 7,384 samples (3,941 
HCC vs. 3,443 non-HCC tissues), 84 central datasets, and 
39 platforms. By screening for both immune-related genes 
and those associated with high differentiation potential 
in HCC cell development, we identified a series of target 

Figure 5 The sROC curves and likelihood ratios of candidate genes in HCC samples of global high-throughput datasets. (A) CDK4. (B) 
HSP90AA1. (C) HSPA5. (D) HSPA8. (E) HSPH1. sROC, summarized receiver operating characteristic; SENS, sensibility; SPEC, specificity; 
AUC, area under the curve; LR, likelihood ratio; HCC, hepatocellular carcinoma.
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Figure 6 IHC staining of 5 candidate genes in HCC and non-HCC cells in the HPA. IHC, immunohistochemistry; HCC, hepatocellular 
carcinoma; HPA, Human Protein Atlas.

genes, among which HSP90AA1, CDK4, HSPA8, HSPH1, 
and HSPA5 were promising biomarkers for HCC prognosis 
prediction and immunotherapy. Therefore, these genes 
may play a key role in the development and progression of 
HCC. Our research approach has the following advantages. 
First, our selection strategy was based on gene expression in 
HCC tissues and combined evidence-based concepts with 
scRNA-seq analysis of HCC cells, which strengthened the 
expression pattern specificity of the candidate genes in HCC 
cells. Second, through scRNA-seq cell trajectory analysis, 
the genes we selected were potential drivers of HCC cell 
differentiation and development. They were associated with 
malignant phenotypes identified by prognostic analysis. 

Finally, our strategy considered the relationships between 
hub genes and multiple immune response pathways, as well 
as their correlation with typical immune cells, suggesting 
that these genes may play a significant role in tumor 
immune escape and immunotherapy of HCC.

Although other studies associated with mining immune-
related prognostic biomarkers have been published, 
they tend to lack precision, which impacts the amount 
of confidence in the techniques and results (38,39). For 
example, screening differentially expressed genes through a 
single dataset could cause result bias. In addition, in view of 
the complexity of the immune system, the commonly used 
classification methods that are based on proven immune-
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Figure 7 Clinical significance of the 3 HCC clusters. (A) A heatmap showing the overall clinical characteristics of 3 clusters. Relationships 
of the 3 clusters with tumor region (B), tumor grade (C), and clinical stage (D). (E) Kaplan-Meier survival curves for overall survival of 3 
clusters of patients with HCC. (F) Relationships of the 3 clusters with tumor mutation burden (TMB). (G) Fifteen immune checkpoint gene 
expression levels in HCC 3 clusters. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. HCC, hepatocellular carcinoma.
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Figure 8 Mutation signature and CNV characteristics of 3 HCC clusters. (A) Defining k =3 as the best cluster number based on analysis 
of cophenetic. (B) Cosine similarity of 3 mutation signatures compared with 30 signatures summarized in the COSMIC database. (C) χ2 
tests of 3 mutation signature distributions in 3 HCC clusters. (D) Three patterns of mutation signature occurring in HCC genomes that 
were identified with Bayesian NMF. (E) Whole-genome CNV analysis in 3 HCC clusters. (F) Comparisons of focal SCNA level in 3 HCC 
clusters. *, P<0.05. CNV, copy number variation; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; COSMIC, Catalogue 
of Somatic Mutations in Cancer; SCNA, somatic copy number alteration.
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Figure 9 Immune and molecular characteristics of 3 HCC clusters. (A) The distribution of DC, macrophage (B), CD4+ T-cell (C), and 
CD8+ T-cell (D) components in 3 HCC clusters. (E) GSVA of 3 HCC clusters. (F) The distribution of cell cycle and fatty acid metabolism 
pathway (G) enrichment in 3 HCC clusters. HCC, hepatocellular carcinoma; DC, dendritic cell; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; GSVA, gene set variation analysis.
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related genes may not be suitable. In contrast, we chose 
to use the coexpression network module of candidate 
genes as the classification feature, which fit the selection 
strategy for patients with HCC potentially benefiting from 
immunotherapy. Therefore, our data mining method, which 
is based on multiple levels of evidence and on the biological 
mechanisms of candidates, is worthy of being used for this 
and other related research.

Previous studies have also supported the prospect of 
incorporating our selected molecules into the biomarkers 
of TIT. Four of the candidate genes belong to the HSP 
family. HSP is highly expressed when cells are under 
stress and plays an important role in protein transport, 
folding, and dissociation (40). Its immunological activities 
include binding antigen peptides as molecular chaperones, 
presenting them to MHC molecules through APCs, and 
then inducing specific immunity (41,42). The results of 
recent double-blind multicenter phase II and III clinical 
trials of renal cell carcinoma and melanoma suggest that 
the HSP–antigen peptide complex is safe and effective as a 
TIT (43,44).

HSPH1 is a member of the HSP110 family, which has 
been demonstrated to be an effective immune adjuvant and 
has a strong chaperone function and polypeptide binding 
ability (45,46). HSPH1 silencing has been demonstrated to 
be parallel to BCL6 transcription repressor (BCL-6) and 
MYC proto-oncogene (c-MYC) downregulation in 4 invasive 
B-cell non-Hodgkin lymphoma (B-NHL) models (47).  
Interestingly, it was also found that HSPH1 physically 
interacts with c-MYC and BCL-6 in Namalwa cells and 
primary invasive B-NHL. 

Similarly, HSPA5 and HSPA8 are members of the 
HSP70 family (48). HSPA5 is mainly located in the 
endoplasmic reticulum (49). When the endoplasmic 
reticulum is stressed, for example, due to a lack of glucose 
or interference with intercellular stored calcium ions, 
HSPA5 expression rises sharply, which can prevent protein 
misfolding, protect protein transport, and maintain cell 
homeostasis (50). Other studies have shown that HSPA5 
can bind to caspase 7 (CASP7), prevent CASP7-induced 
apoptosis, and cause tumor cells to acquire drug resistance 
through autophagy (51,52). Many studies have shown that 
HSPA8 is overexpressed on tumor tissues (53-55). Sirtori 
et al. reported that knocking out HSPA8 resulted in the 
upregulation of tau, superoxide dismutase 1, and α-synuclein 
protein levels (56). 

HSP90 is another important member of the HSP family, 
and it is a highly conserved chaperone protein in eukaryotes 

(57,58). The HSP90α protein is encoded by the HSP90AA1 
gene. As a tumor promoter, HSP90 can interact with a 
variety of carcinogenic proteins and participate in the 
process of malignant tumor transformation (59). Current 
research on prostate cancer shows that extracellular HSP90α 
can be used in signal transduction to promote tumor-
associated fibroblasts to produce chronic inflammation (60).  
This change in the extracellular environment of malignant 
tumors can significantly promote the progression of 
prostate cancer. Hence, HSP90AA1 is involved in the 
malignant behavior of tumor cells in both cellular stress and 
nonstress responses, and the properties of HSP have been 
used to develop anticancer vaccines that induce cytotoxic 
reactions against tumors. However, the biological roles 
that the 4 genes identified here play in HCC have not yet 
been confirmed, emphasizing the groundbreaking nature 
of our research and the necessity for subsequent functional 
verification.

CDK4 is a key protein in the cell cycle process, and the 
upregulation of CDK4 is closely related to the proliferation 
of HCC cells (61,62). Concurrently, the upregulation of 
CDK4 is a predictor for poor OS in patients with HCC (63).  
Importantly, Chaikovsky et al. observed that CDK4/6i 
enhanced tumor antigen presentation through increased 
type III interferon synthesis in breast cancer cell lines 
treated with the CDK4/6i abemaciclib (64), which indicated 
that CDK4/6i could be applied in patients with HCC with 
suppressed immune systems. In brief, we are the first team 
to identify these 5 genes as promising HCC biomarkers for 
TIT and prognosis prediction.

Since TIT may be beneficial to specific patients 
with cancer with specific transcriptome characteristics, 
we divided samples from patients with HCC into 3 
clusters according to the coexpression network of the 
5 candidate genes to select the appropriate population 
for immunotherapy. These 3 clusters showed different 
molecular, cellular, and clinical characteristics. Among them, 
the prognosis of the patients in cluster 2 was significantly 
lower than that of patients in the other clusters, indicating 
that this molecular classification could be used to predict 
the prognosis of patients with HCC. Simultaneously, this 
molecular classification could also be used to predict the 
treatment effect of TIT. In this study, patients in cluster 
2 were found to have higher amplification frequencies, 
which may lead to greater reactivity to a tumor vaccine 
and higher immunogenicity. It is also worth noting that 
the tumor microenvironment may dominate the immune 
response to immunotherapy (65). According to the tumor 
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microenvironment, HCC can be divided into “immune-
hot” tumors and “immune-cold” tumors, with “immune-
hot” tumors that show a high degree of immune infiltration 
being more likely to respond to ICIs (66-68). Thus, we 
have described the immune cell populations present in 
the different clusters. The cluster 2 samples were found 
to have significantly higher quantities of CD8+ T cells, 
macrophages, and CD4+ T cells than did samples from the 
other clusters, which suggests they are a suitable population 
of patients for TIT.

The current work has some limitations, the discussion 
of which may provide ideas for future work. First, the 
defined candidate biomarkers must be validated via  
in vitro and in vivo experiments. At the in vitro level, the 
malignant biological characteristics of the 5 genes in 
HCC cells need to be confirmed. At the in vivo level, an 
experimental HCC animal model should be developed to 
assess the tumor microenvironment status and curative 
effect of immunotherapy. Second, there are several types 
of TIT, and all these types deserve further research and 
analysis. Extensive analysis of tumor microenvironment 
and classification based on multiple factors can more 
comprehensively guide HCC treatment and improve the 
prognosis. For example, the combination of PD-1 and a 
tumor vaccine may help overcome the immunotolerant 
microenvironment prevalent in HCC and boost the 
immunogenicity of vaccines. Our findings show that 
patients with the type of HCC classified as “cluster 2” 
may benefit the most from such a treatment strategy. The 
combination of ICIs and tumor vaccines could also be 
investigated in an HCC animal model.

Conclusions

The genes encoding CDK4, HSP90AA1, HSPA5, HSPA8, 
and HSPH1 were identified as prospective biomarkers for 
prognosis prediction and immunotherapy of HCC. Using 
our molecular classification system, which is based on a 
function module containing 5 candidate genes, patients 
with the type of HCC classified as “cluster 2” might be 
suitable candidates for TIT. These findings provide new 
insights into the selection of candidate genes and patient 
populations for future HCC immunotherapy.
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Figure S1 Integrative analysis of CDK4 expression in HCC tissues for external datasets. (A) SMD forest plot of CDK4. (B) No insignificant 
publication bias of CDK4 expression was found in the included datasets. SD, standard deviation; SMD, standardized mean difference; CI, 
confidence interval; HCC, hepatocellular carcinoma.
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Figure S2 Integrative analysis of HSP90AA1 expression in HCC tissues for external datasets. (A) SMD forest plot of HSP90AA1. (B) No 
insignificant publication bias of HSP90AA1 expression was found in the included datasets. SD, standard deviation; SMD, standardized mean 
difference; CI, confidence interval; HCC, hepatocellular carcinoma.
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Figure S3 Integrative analysis of HSPA5 expression in HCC tissues for external datasets. (A) SMD forest plot of HSPA5. (B) No 
insignificant publication bias of HSPA5 expression was found in the included datasets. SD, standard deviation; SMD, standardized mean 
difference; CI, confidence interval; HCC, hepatocellular carcinoma.
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Figure S4 Integrative analysis of HSPA8 expression in HCC tissues for external datasets. (A) SMD forest plot of HSPA8. (B) No 
insignificant publication bias of HSPA8 expression was found in the included datasets. SD, standard deviation; SMD, standardized mean 
difference; CI, confidence interval; HCC, hepatocellular carcinoma.
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Figure S5 Integrative analysis of HSPH1 expression in HCC tissues for external datasets. (A) SMD forest plot of HSPH1. (B) No 
insignificant publication bias of HSPH1 expression was found in the included datasets. SD, standard deviation; SMD, standardized mean 
difference; CI, confidence interval; HCC, hepatocellular carcinoma.
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Figure S6 Integrative analysis presenting the sensitivity and specificity forest plot of CDK4. 

Figure S7 Integrative analysis presenting the sensitivity and specificity forest plot of HSP90AA1. 
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Figure S8 Integrative analysis presenting the sensitivity and specificity forest plot of HSPA5. 

Figure S9 Integrative analysis presenting the sensitivity and specificity forest plot of HSPA8. 
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Figure S10 Integrative analysis presenting the sensitivity and specificity forest plot of HSPH1. 



Figure S11 Immune infiltration and survival analysis of the 5 candidate genes. (A) Immune infiltration analysis of the 5 candidate genes. (B) 
Survival analysis of the 5 candidate genes.
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Figure S12 Clustering effect of nonnegative matrix factorization (NMF) with k = 2, 4–10 based on the heatmap and analysis of the 
silhouette.


