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Background: Glioblastoma (GBM) is a highly aggressive intracranial malignant tumor. The role of 
carboxypeptidase Q (CPQ) in GBM remains unknown. This study was to investigate the prognostic 
significance of CPQ and its methylation in GBM.
Methods: We collected data from The Cancer Genome Atlas (TCGA)-GBM database and analyzed 
the different expression of CPQ in GBM tissues and normal tissues. Then we explored the correlation 
of CPQ mRNA expression and DNA methylation, and confirmed the prognostic significance of them 
based on six additional datasets from TCGA, The Chinese Glioma Genome Atlas (CGGA) and Gene 
Expression Omnibus (GEO) databases. Gene Ontology analysis and Kyoto Encyclopedia of Genes and 
Genomes analysis were utilized to investigate the biological function of CPQ in GBM. Furthermore, we 
determined the association of CPQ expression and immune cell infiltration, immune markers and tumor 
microenvironment using different bioinformatic algorithms. R (version 4.1) and GraphPad Prism (version 8.0) 
were used to analyze the data. 
Results: CPQ mRNA expression in GBM tissues was significantly higher than that in normal brain tissues. 
DNA methylation of CPQ was negatively correlated with its expression. Patients with low CPQ expression 
or higher CPQ methylation level had remarkably better overall survival (OS). The TOP20 biological 
processes relevant to the differentially expressed genes between high and low CPQ patients were almost 
all related to immunity. And the differentially expressed genes were involved in several immune-related 
signaling pathways. CPQ mRNA expression was outstandingly correlated with CD8+ T cells, neutrophils, 
macrophages and dendritic cell (DC) infiltration. Moreover, CPQ expression was meaningfully associated 
with the ESTIMATE score and almost all immunomodulatory genes.
Conclusions: Low CPQ expression and high methylation are associated with longer OS. CPQ is a 
promising biomarker for predicting prognosis in patients with GBM.
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Introduction

Glioblastoma (GBM) is the most common primary 
intracranial malignant tumor in adults and is characterized 
by high aggressiveness and high mortality. The estimated 
annual incidence of GBM is 3.22 per 100,000 persons in the 
United States (1), and 5–8 per 100,000 persons in China (2).  
The five-year mortality rate of GBM in China is the third 
highest among all tumors, following pancreatic cancer 
and lung cancer. The current standard treatment includes 
maximum tumor resection, postoperative radiotherapy 
and concurrent temozolomide, followed by adjuvant 
chemotherapy (3). Despite the comprehensive treatment, 
GBM has a poor prognosis, with a median overall survival 
(OS) of 12 to 15 months, and a 5-year OS rate of only 6.8% 
(4,5). Almost all patients relapsed or progressed within 
a short period of time, with life expectancy dropping to 
5–10 months after tumor recurrence (6). Since the Stupp 
regimen was first designed, treatment of GBM around the 
world has remained a bottleneck, with little improvement 
over the years (7). The complex biology of the disease, the 
high mutational heterogeneity observed between cancer 
cells, the presence of natural protection represented by 
the blood-brain barrier (BBB), and changes in the tumor 
microenvironment (TME) are all factors that explain the 
lack of improvement in the treatment of GBM (8-10).

Carboxypeptidase Q (CPQ), also known as plasma 
glutamic carboxypeptidase (PGCP), is an important 
member of the M28 family metal carboxypeptidase. CPQ 

is a secretory protein with five potential glycosylation 
sites (11), which locates in the vesicle compartment and is 
secreted into the extracellular space, mainly hydrolyzing 
circulating peptides in plasma. High levels of CPQ were 
found in both plasma (11) and thyroid (12). CPQ can 
be isolated from bovine spleen and rat liver (13), human 
placenta (11), human kidney (14) and thyroid (12). 
Literature reports and statistical analysis of The Cancer 
Genome Atlas (TCGA) database showed that CPQ was 
observably upregulated in about 60–70% of patients 
with cancer, including liver cancer, ovarian cancer, breast 
cancer, lung cancer and thyroid cancer (15). CPQ plays an 
important role in the hydrolysis of circulating peptides, 
and its activity depends on its dimerization (16), but the 
exact physiological substrates remain unclear. It helps to 
hydrolyze the neurotransmitter N-acetylaspartylglutamate 
(NAAG) in the brain to glutamate and N-acetylaspartate 
(NAA) (17), which indicates that it might play a role in 
glutamatergic synaptic dysfunction.

NAA is the second most abundant amino acid derivative 
in the brain, following glutamate (18). It contributes to 
neuronal mitochondrial metabolism, osmotic regulation 
of neuronal activity and axon-glial signaling (19). Possible 
connection was found to exist between NAA catabolism 
and oligodendrocyte progenitor cell (OPC) cell cycle 
arrest or oligodendrocyte differentiation (20). Long et al. 
showed that NAA and NAAG promoted the growth of 
glioma stem cells (GSC) and inhibited the differentiation 
of GSC. The increase of NAA or NAAG may enhance the 
phenotype of proliferative undifferentiated GSC (21). In 
GBM, CPQ might promote the growth of GSC and inhibit 
the differentiation of GSC by hydrolyzing NAAG into 
NAA, thus exacerbating the pathological changes of glioma. 
Here we attempt to analyze the relationship between CPQ 
expression and GBM.

Although GBM was refined into GBM, isocitrate 
dehydrogenase (IDH) wild-type in the 2021 WHO 
classification of tumors of the central nervous system (22),  
IDH mutation information in some databases was 
incomplete, so we mainly included traditional GBM 
patients for analysis. In this study, we investigated the 
differential expression of CPQ mRNA in GBM tissues and 
normal brain tissues, analyzed the association between CPQ 
expression and CPQ DNA methylation, and evaluated 
the prognostic significance of CPQ expression and DNA 
methylation in GBM. We then collected data from different 
databases and performed a multi-analysis of six public 
databases to assess the overall prognostic significance of 
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CPQ. In addition, we assessed the potential connection 
between CPQ and GBM immune cell infiltration. Finally, 
the biological processes and signaling pathways involved in 
CPQ were examined by gene enrichment analysis to further 
analyze the mechanism of CPQ in GBM. We present 
this article in accordance with the REMARK reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2562/rc).

Methods

Database selection

First, we used GlioVis (http://gliovis.bioinfo.cnio.es/) to 
analyze the different expression of CPQ mRNA in GBM 
tissues and normal tissues based on the TCGA-GBM 
dataset (23). The University of ALabama at Birmingham 
CANcer data analysis Portal (UALCAN, http://ualcan.
path.uab.edu/tutorial.html) was utilized to compare CPQ 
protein expression level between GBM tissues and normal 
tissues (24). Protein expression data were obtained from 
The National Cancer Institute’s Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) (25).

Then we explored the correlation of CPQ mRNA 
expression and DNA methylation through cBioportal 
(https://www.cbioportal.org/) based on the TCGA-GBM 
dataset (26). We took advantage of MethSurv (https://biit.
cs.ut.ee/methsurv/) to collect the DNA methylation data of 
CPQ in the TCGA-GBM dataset, then drew the heat map 
of methylation sites, and analyzed the prognosis of different 
methylation sites (27).

In addition, we collected data of GBM patients from 
TCGA, Chinese Glioma Genome Atlas (CGGA) and Gene 
Expression Omnibus (GEO) databases and verified the 
prognostic significance of CPQ using GlioVis (http://gliovis.
bioinfo.cnio.es/). Inclusion criteria were GBM patients 
with complete clinical and transcriptional data. Parameters 
like mRNA and protein expression, methylation and sites, 
clinical characteristics, survival outcomes, immune cells 
infiltration, TME, immunoregulatory genes expression etc. 
were chosen and downloaded for different analyses. A total 
of 1,199 patients with pathologically confirmed GBM were 
included in this study (TCGA: 525 cases; CGGA: 220 cases;  
Gravendeel: 155 cases; LeeY: 191 cases; Murat: 80 cases; 
Nutt: 28 cases).

Biological function analysis

CAMOIP (https://www.camoip.net/) was used for Gene 

Ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis (28). GBM patients in the 
TCGA dataset were divided into high CPQ expression 
group and low CPQ expression group according to 
the median CPQ expression. The gene expression was 
considered different between the two groups, if the error 
detection rate was less than 0.05.

Correlation analysis of CPQ expression and immune cell 
infiltration

TIMER 2.0 (http://timer.cistrome.org/) was utilized to 
study the association of CPQ expression and immune cell 
infiltration (29). We made use of CAMOIP to evaluate 
the immune cell infiltration in TME. The population 
was divided into high CPQ group and low CPQ group 
according to the median CPQ expression value. The 
CIBERSORT algorithm was used to analyze the differences 
in the infiltration levels of 22 kinds of immune cells 
between the two groups, and the differences of tumor 
mutational burden (TMB), microsatellite instability 
(MSI) and Neoantigen scores between the two groups. 
The ESTIMATE algorithm was taken advantage to 
investigate the correlation between CPQ expression and the 
StromaScore and ImmuneScore. The relationship of CPQ 
expression and immunoregulatory factors expression was 
explored by Sangerbox 3.0 (http://vip.sangerbox.com/home.
html).

Statistical analysis

R (version 4.1) and GraphPad Prism (version 8.0) were 
used to analyze the data. According to the median CPQ 
mRNA expression value in different datasets, CPQ was 
divided into two groups, namely, CPQ high group and 
CPQ low group. Similarly, CPQ higher methylated and 
lower methylated groups were established according 
to the median value of CPQ DNA methylation in the 
TCGA-GBM dataset. Analysis of the relationship between 
CPQ expression or its DNA methylation and a series 
of variables was performed using the Chi-squared test 
or Fisher’s exact test. The difference of the continuous 
variable with normal distribution between the two groups 
was determined by Student’s T-test, while the continuous 
variable with skewness distribution was determined by non-
parametric test. The association between CPQ expression 
and CPQ DNA methylation level was identified by 
Pearson correlation coefficient. In addition, univariate and 
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multivariate Cox regression models were used to investigate 
whether CPQ expression was an independent prognostic 
indicator for GBM patients. Kaplan-Meier curves were 
carried out to assess the prognostic significance of CPQ 
expression and CPQ DNA methylation. P values less than 
0.05 on both sides were statistically significant.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee of the Fifth Affiliated Hospital of Sun Yat-
sen University has confirmed that no ethical approval is 
required.

Results

Clinical and prognostic value of CPQ expression and its 
methylation

We collected and analyzed RNA expression data of 528 
GBM tissues and 10 normal brain tissues from TCGA, 
and found that CPQ mRNA expression in GBM tissues 
was significantly higher than that in normal brain tissues 
(P=0.03, Figure 1A). The protein expression of CPQ in 

GBM tissue was also higher than that in normal brain tissue 
(P<0.05, Figure 1B). To clarify the cause of CPQ expression 
changes, we further investigated the genomic changes of 
CPQ, including gene mutation, copy number variation and 
DNA methylation. Results demonstrated that the DNA 
methylation level of CPQ was negatively correlated with its 
expression level (P<0.05; Figure 2A,2B). Figure 2C showed 
the heat map of methylation sites of CPQ. To further 
exclude other factors leading to abnormal CPQ expression, 
we also investigated the relationship between gene mutation 
or copy number variation and CPQ expression, and 
concluded that gene mutation and copy number variation 
were not related to CPQ expression (Figure S1).

Then we explored the association between the 
methylation levels of CPQ at different methylation sites 
and the prognosis of GBM patients. Kaplan-Meier survival 
analysis displayed that higher methylation level at six 
CpG sites (CG03613618, CG14678829, CG11536940, 
CG14892538, CG15133564, and CG17174400) were 
associated with better OS (P<0.05, Figure 3A-3F) in GBM. 
Figure S2A-S2U showed methylation sites of CPQ that 
were irrelevant to OS. In a further meta-analysis of the 
correlation between all methylation sites and OS, we 
found that patients with higher CPQ methylation level 

Figure 1 The mRNA (A) and protein (B) expression of CPQ in GBM tissues and normal tissues. CPQ, carboxypeptidase Q; GBM, 
glioblastoma; TCGA, The Cancer Genome Atlas; CPTAC, The National Cancer Institute’s Clinical Proteomic Tumor Analysis 
Consortium.
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Figure 2 The genomic changes of CPQ, including gene mutation, copy number variation and DNA methylation in GBM. (A) Heat map of 
the correlation of CPQ expression with methylation of CPQ DNA CpG sites. (B) Correlation analysis of CPQ mRNA expression and DNA 
methylation level. (C) Heat map of methylation sites of CPQ. Right panel: clinical and methylation characteristics. CPQ, carboxypeptidase Q; 
GBM, glioblastoma; FPKM, fragments per kilobase of transcript per million mapped reads.
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Figure 3 Correlation of CPQ methylation and OS. (A-F) K-M analysis of CPQ methylation at six methylation sites and OS. (G) Meta-
analysis of CPQ methylation and OS. CPQ, carboxypeptidase Q; OS, overall survival.
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had remarkably longer OS (Figure 3G), and higher CPQ 
methylation level was a protective factor.

Expression of CPQ in different subgroups of GBM

Non-parametric tests were applied to compare the 
differences of CPQ mRNA expression in subgroups 
classified by gender, IDH1 mutation, MGMT methylation, 
CIMP status and clinical subtypes (30) (Figure 4A-4E). CPQ 
mRNA expression in IDH1 wild-type was outstandingly 

higher than that in mutant type (P<0.001, Figure 4B). CPQ 
expression was extensively higher in the non-G-CIMP 
group than in the G-CIMP group (P<0.001, Figure 4D). 
The expression of CPQ in the Classical and Mesenchymal 
subtypes was expressively higher than that in proneural 
subtypes (P<0.001, Figure 4E). However, CPQ expression 
was not related to MGMT methylation or gender  
(Figure 4A,4C). Those results indicated that CPQ mRNA 
expression was closely related to a series of important 
clinical parameters.

Figure 4 Correlation of CPQ expression and clinical characteristics including gender (A), IDH1 status (B), MGMT status (C), CIMP status 
(D), and subtypes (E). CPQ, carboxypeptidase Q; IDH, isocitrate dehydrogenase; MGMT, O-6-methylguanine-DNA methyltransferase; 
CIMP, CpG island methylator phenotype.
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Meta-analysis of the prognostic role of CPQ in GBM

To verify the prognostic role of CPQ in GBM , we 
conducted validation in six datasets, including TCGA-
GBM, CGGA, Gravendeel, LeeY, Murat, and Nutt 
(Figure 5A-5F). We found that in all six datasets, low 
CPQ expression was associated with better OS (P<0.05). 
Since the expression of CPQ was lower in IDH mutant 
population, we further narrowed the analysis population to 
GBM, IDH wildtype, based on TCGA-GBM, CGGA, and 
Gravendeel datasets in order to exclude the factor of IDH 
mutation causing the better prognosis in patients with low 
CPQ expression. Results demonstrated that CPQ was still 
significant in predicting the prognosis of IDH wildtype 
GBM patients in TCGA-GBM, and Gravendeel datasets 

(P<0.05), though not meaningful in the CGGA dataset 
(Figure S3A-S3C). Therefore, it can be concluded that low 
CPQ expression is a strong predictor of favorable OS in 
GBM patients, even in IDH wildtype GBM population.

Correlation analysis of CPQ mRNA expression and 
immune cell infiltration

To understand the functional role of CPQ in GBM, we 
identified potential biological processes and signaling 
pathways by GO and KEGG analysis. We compared the 
genome information of high and low CPQ expression 
subgroups in the TCGA-GBM dataset and found that the 
TOP20 biological processes relevant to the differentially 

Figure 5 Kaplan-Meier analysis of CPQ expression and OS in multi-databases, including TCGA-GBM (A), CGGA (B), Gravendeel (C), 
LeeY (D), Murat (E), Nutt (F). CPQ, carboxypeptidase Q; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; OS, overall survival; 
CGGA, The Chinese Glioma Genome Atlas.
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Figure 6 Biological function analysis of CPQ. (A) GO analysis of high and low CPQ groups in TCGA-GBM dataset. (B) KEGG analysis 
of high and low CPQ groups in TCGA-GBM dataset. (C-H) Correlation of CPQ expression and immune cells infiltration including CD8+ 
T cell (C), CD4+ T cell (D), B cell (E), neutrophil (F), macrophage (G), dendritic cell (H). CPQ, carboxypeptidase Q; GBM, glioblastoma; 
TCGA, The Cancer Genome Atlas; GO-BP, Gene Ontology–Biological Process; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
TPM, transcripts per million.
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Figure 7 Analysis of immune cells infiltration in high and low CPQ groups in TCGA-GBM dataset. *, P<0.05; **, P<0.01; ****, P<0.0001; 
ns, P>0.05. CPQ, carboxypeptidase Q; GBM, glioblastoma; TCGA, The Cancer Genome Atlas.

expressed genes were almost all related to immunity  
(Figure 6A). KEGG analysis demonstrated that the 
differentially expressed genes were involved in several 
immune-related signaling pathways including cytokine-
cytokine receptor interaction , chemokine signaling 
pathway, complement and coagulation cascades, Th17 cell 
differentiation, and intestinal immune network for IgA 
production (Figure 6B).

Subsequently, we investigated the association between 
CPQ expression and immune cell infiltration in GBM 
using TIMER 2.0 database, as shown in Figure 6C-6H, 
and found that CPQ mRNA expression was outstandingly 
correlated with CD8+ T cells, neutrophils, macrophages 
and DC cell infiltration, but not with CD4+ T cells and B 
cell infiltration. Then we analyzed the levels of immune cell 

infiltration between GBM samples with high and low CPQ 
expression in TCGA-GBM dataset through CIBERSORT. 
T cells regulatory, T cells gamma delta, NK cells resting, 
and Macrophages were found to be remarkably different in 
high and low CPQ expression specimens (Figure 7). Those 
findings demonstrated the close relationship between CPQ 
and tumor immunity.

To further evaluate the association between CPQ and GBM 
tumor immunity, we performed a correlation analysis between 
CPQ expression and ESTIMATE score in the TCGA-GBM 
dataset, and the results showed that CPQ expression was 
meaningfully correlated with ImmuneScore, StromaScore, 
and the final ESTIMATE scores (Figure 8A-8C), suggesting 
that CPQ might affect the entire TME, including immune 
cells and stromal cells. However, there were no statistically 
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Figure 8 Correlation of CPQ expression and tumor microenvironment. (A-C) Correlation of CPQ expression and ImmuneScore (A), 
StromaScore (B), ESTIMATEScore (C). (D-F) Analysis of TMB (D), MSI (E), and neoantigen (F) in high and low CPQ groups in TCGA-
GBM dataset. CPQ, carboxypeptidase Q; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; TMB, tumor mutational burden; MSI, 
microsatellite instability.

significant differences in TMB (Figure 8D), MSI score 
(Figure 8E) and Neoantigen score (Figure 8F) between 
CPQ high and low samples. In addition, we explored the 
relation between expressions of CPQ and five types of 
immunoregulatory genes (chemokine, receptor, major 
histocompatibility complex (MHC), immunoinhibitor, 
immunostimulator) in TCGA-GBM dataset. Results 
revealed that CPQ expression was correlated with almost all 
immunomodulatory genes (Figure 9). It suggested that CPQ 
might affect TME by regulating immunomodulatory genes.

Discussion

In this study,  the mRNA expression and the DNA 
methylation of CPQ in GBM, and their prognostic 
significance in clinic were analyzed based on TCGA 
database. We first found high CPQ mRNA expression 
in GBM tissues and a prominent negative correlation 
between CPQ mRNA expression and DNA methylation. 

We revealed that CPQ expression and methylation were 
closely related to a series of important characteristics of 
GBM, including clinical features and molecular types. Cox 
regression model confirmed that low CPQ expression and 
high CPQ methylation had good prognostic effects in GBM 
patients. Besides, six additional datasets analysis verified 
that low CPQ expression was associated with favorable OS. 
Finally, we demonstrated that immune cells infiltration, a 
series of immune markers and the TME were remarkably 
associated with CPQ expression in GBM. To the best of 
our knowledge, our study provided new insights into the 
prognostic role of CPQ and the potential role of CPQ in 
GBM tumor immunity.

CPQ had been reported to be significantly up-regulated 
in 60–70% of tumor patients, including liver cancer, ovarian 
cancer, breast cancer, lung cancer, thyroid cancer, etc. (15).  
However, the clinical, prognostic role of CPQ and its 
mechanism had never been studied in GBM. It had been 
found that CPQ helped hydrolyze the neurotransmitter 
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Figure 9 Correlation of CPQ expression and five types of immunoregulatory genes in TCGA-GBM dataset. *, statistically significant. Blue, 
negative correlation. Red, positive correlation. CPQ, carboxypeptidase Q; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; MHC, 
major histocompatibility complex.
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NAAG in the brain into glutamate and NAA (17), 
which might promote GSC growth and inhibit glial 
differentiation (21). In this study, we systematically explored 
the relationship between CPQ expression and survival 
by obtaining data from public databases. Meta-analysis 
and multivariate Cox regression confirmed that low CPQ 
expression was correlated with longer OS in GBM patients, 
and low CPQ expression was an effective prognostic factor 
for OS. In a word, it suggested that CPQ is a promising 
biomarker for predicting prognosis in patients with GBM.

Our results presented that CPQ expression was markedly 
higher in IDH1 wild-type than in mutant type in GBM 
patients. Metabolomics analysis of gliomas showed that 
NAA and NAAG were significantly reduced in IDH1/2 
mutant gliomas (31). Moreover, reaction rate and level 
of glutamate were lower in IDH mutant gliomas (31). 
Considering that CPQ can hydrolyze the NAAG into 
glutamate and NAA, the decreased level of NAA in IDH 
mutant cells may be related to the reduced catabolism 
of NAAG catalyzed by CPQ. However, NAAG levels 
also declined in IDH1/2 mutant cells, and the specific 
mechanism remains unclear. Hence, whether CPQ affects 
the occurrence and development of glioma by influencing 
the level of NAA has to be further explored.

There is increasing evidence that abnormal DNA 
methylation plays a crucial role in the progression of  
GBM (32). The CpG methylation of DNA was correlated 
with the molecular subtypes of GBM. In our study, we 
found a prominent negative connection between CPQ 
expression and CPQ DNA methylation. Six specific CpG 
sites in CPQ DNA promoters were identified, whose 
methylation were associated with better OS. Thus, the 
methylation of CPQ is a strong indicator of favorable OS 
and PFS. CpG Island methylation phenotype (CIMP) 
has become a distinct molecular subtype in many human 
malignancies, including GBM (33). In GBM, CIMP was 
associated with proneural subtype and IDH mutation 
status (33). IDH mutations were highly enriched in CIMP+ 
proneural subtype. In this study, the expression of CPQ 
decreased in IDH1 mutant GBM, and CPQ expression in 
the G-CIMP group was outstandingly lower than that in 
the non-G-CIMP group, suggesting that IDH1 might play 
an important role to connect CPQ and G-CIMP.

The interaction between GBM cells and other cells 
in the TME is an extremely complex phenomenon. The 
complexity of the GBM microenvironment influences the 
overall biology of GBM and enhances its resistance to 
treatment. GBM-associated macrophages/microglia cells 

accounted for 30% to 50% of GBM tumors (34). Those 
cells were considered to be one of the most critical cells in 
GBM TME, promoting glioma proliferation and migration, 
and secreting a variety of growth factors and cytokines (35). 
CD8+ T cytotoxic and CD4+ T helper cells are the main 
lymphocytes in GBM microenvironment (36). Our study 
revealed that CPQ expression was remarkably negatively 
correlated with immune cells infiltration including + T cells, 
neutrophils, macrophages and DC cells, and also associated 
with plenty of immune markers and the entire TME in 
GBM. Therefore, we speculated that CPQ could affect 
the prognosis of GBM patients by regulating the immune 
microenvironment. CPQ and tumor immunity deserve 
more exploration in the future.

According to the 2021 WHO classification of tumors 
of the central nervous system, the traditional GBM has 
been updated to GBM, IDH wild-type (22). Due to the 
limitation of data sources in the database, we could not 
obtain the information of IDH mutations in all patients, 
so we still included all GBM patients including IDH wild 
type and IDH mutation. Fortunately, there are three 
datasets (TCGA-GBM, CGGA, Gravendeel) containing 
information about IDH mutations in GBM patients, so we 
supplemented analysis of the survival significance of CPQ in 
GBM, IDH wild-type only patients in those datasets. That 
is a limitation of our study. The prognostic significance of 
CPQ and its methylation in GBM still needs to be verified 
in more GBM, IDH wild-type only cohorts.

Conclusions

In conclusion, we successfully screened and verified the 
significant correlation between CPQ and GBM prognosis. 
The low expression and high methylation of CPQ play a 
vital role in the occurrence, progression and prognosis of 
glioma, possibly working through regulation of immune 
microenvironment. However, the detailed mechanism needs 
to be further explored in biomedical experiments, which is 
also the limitation of our study. There have been no studies on 
the relationship between CPQ and GBM at present, but CPQ 
is a promising research target for the pathogenesis, diagnosis 
and treatment of GBM. Our research provided a basis for the 
further implementation of in vivo and in vitro experiments and 
a direction for GBM individualized treatment.
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Figure S1 Correlation of CPQ mRNA expression and copy number variation. (A) TCGA-GBM dataset information. (B) Copy number 
alterations of CPQ in TCGA-GBM dataset. (C) Correlation of CPQ mRNA expression and copy number variation.

Supplementary
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Figure S2 Kaplan-Meier analysis of methylation sites of CPQ that were irrelevant to OS.
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Figure S3 Kaplan-Meier analysis of CPQ expression and OS in IDH wildtype GBM populations based on TCGA-GBM (A), CGGA (B), 
Gravendeel (C) datasets. 


