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Background: Breast cancer (BC) is one of the most common fatal cancers in women. Identifying new 
biomarkers is thus of great significance for the diagnosis and prognosis of BC.
Methods: In this study, 1,030 BC cases from The Cancer Genome Atlas (TCGA) were obtained for 
differential expression analysis and Short Time-series Expression Miner (STEM) analysis to identify 
characteristic BC development genes, which were further divided into upregulated and downregulated 
genes. Two predictive prognosis models were both defined by Least Absolute Shrinkage and Selection 
Operator (LASSO). Survival analysis and receiver operating characteristic (ROC) curve analysis were used to 
determine the diagnostic and prognostic capabilities of the two gene set model scores, respectively.
Results: Our findings from this study suggested that both the unfavorable (BC1) and favorable (BC2) gene 
sets are reliable biomarkers for the diagnosis and prognosis of BC, although the BC1 model presents better 
diagnostic and prognostic value. Associations between the models and M2 macrophages and sensitivity to 
Bortezomib were also found, indicating that unfavorable BC genes are significantly involved in the tumor 
immune microenvironment.
Conclusions: We successfully established one predictive prognosis model (BC1) based on characteristic 
gene sets of BC to diagnose and predict the survival time of BC patients using a cluster of 12 differentially 
expressed genes (DEGs).
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Introduction

Breast cancer (BC) is one of the most common types of 
cancers worldwide and one of the leading fatal cancers in 
females, accounting for approximately 14% of all cancer-
related deaths (1). While BC is a rare disease in males with 

a much lower rate of incidence, the mortality rate of BC 
male patients is quadruple that of female patients, making 
it worth attention (2). According to statistics, there were 
194,280 new BC cases in the US in 2009 and 40,610 BC-
related deaths (3), while a decade later, those numbers 
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increased to 268,670 and 41,400, respectively (2).
Advancement in the diagnosis of BC may contribute to 

the rising incidence of BC. Self-inspection of the breasts at 
an early stage is considered to be effective for the discovery 
and diagnosis of BC and can prevent BC-related deaths, but 
there are still numerous BC cases that are only diagnosed 
at advanced stages due to patient (female) negligence of 
the importance of self-inspection and regular clinical 
examination of the breasts. Screening examinations are 
gradually becoming routine for BC diagnosis, including 
ultrasound breast imaging, single photon emission 
computerized tomography, and digital mammography. 
Mammography is considered the gold standard test for 
early BC detection (3), although there are concerns, such 
as radical harm caused by frequent screening examinations, 
false-positive results and overdiagnosis, which lead to a 
negative impact on patient quality of life (4). Biomarkers 
of BC are also used in diagnosis during different stages, 
including immunohistochemical markers [ER, PR, HER2 
(ERBB2), and proliferation marker protein Ki-67 (MKI67)], 
genomic markers (BRCA1, BRCA2, and PIK3CA), and 
immunomarkers (tumor-infiltrating lymphocytes and PD-
L1) (5). While there has been progress in BC treatment, 
the mortality rate is not declining, indicating that new 
biomarkers or models for BC survival prediction and 
prognosis should be established to help provide more 
efficient and personalized measurements for managing BC. 
By 2022, the incidence and mortality of BC in the Chinese 
population has been predicted to be higher than those 

in developed countries (6). Given the lack of an effective 
survival prediction model for physicians, novel biomarkers 
or models for BC survival prediction and prognosis 
should be established to help provide more efficient and 
personalized measures for managing BC in the early stage.

In our study, we identified two characteristic gene sets of 
BC development, the BC unfavorable gene set and the BC 
favorable gene set. Survival analysis and ROC analysis were 
used to determine the diagnostic and prognostic capabilities 
of the two gene set model scores, respectively. Both the 
unfavorable and favorable BC gene set models presented 
reliable biomarkers for BC diagnosis and independent 
biomarkers for prediction and prognosis. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2444/rc).

Methods

Datasets

The gene expression profiles of BC and healthy breast 
samples were obtained from The Cancer Genome Atlas 
(TCGA), including 173 stage I BCs, 597 stage II BCs, 
240 stage III BCs, 20 stage IV BCs and 113 normal 
samples. TCGA is an international database that is publicly 
accessible and freely available for research and contains 
a large collection of human cancer genome sequencing 
data. Previous studies using a group of genes with known 
alterations in BC to validate TCGA data suggested 
that TCGA had accurately documented the genomic 
abnormalities of multiple malignancies (7-9). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of differentially expressed genes (DEGs)

Preliminary identification of the characteristic genes 
promoting or inhibiting the development of BC was 
performed using differential expression analysis and Short 
Time-series Expression Miner (STEM) analysis. STEM 
is a new software package for analyzing short time-series 
expression data. The software can find statistically significant 
patterns from short time-series microarray experiments 
and compare datasets across experiments. STEM presents 
its analysis of the data in a highly visual and interactive 
manner (10). STEM’s unique algorithm tends to cluster and 
compare short time-series gene expression data combined 
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with its visualization capabilities and integration with Gene 
Ontology, suggesting that STEM is useful in the analysis of 
data from a significant portion of all microarray studies (10).

The RNA sequencing expression profile of BC was 
displayed as read counts, which were subsequently 
normalized by the voom function in the limma package. 
P<0.01 adjusted by the false discovery rate (FDR) and 
|log fold change (FC)| >1.5 were set as thresholds. In the 
development of BC, if a DEG was gradually upregulated 
(log FC stage I vs. control < log FC stage II vs. control < 
log FC stage III vs. control < log FC stage IV vs. control) 
or gradually downregulated (log FC stage I vs. control > 
log FC stage II vs. control > log FC stage III vs. control > 
log FC stage IV vs. control), then it was considered to be a 
characteristic BC development gene.

Limma package

DEGs in the four stages of BC were identified separately 
using the limma package with RNA sequencing expression 
profiles of BC in TCGA. The package can now perform 
both differential expression and differential splicing analyses 
of RNA sequencing (RNA seq) data. This software provides 
an integrated data analysis solution, using advanced 
computational algorithms to deliver reliable performance 
on large datasets, represent expression data and simplify 
the user interface (11). Significantly DEGs were selected 
by using the FDR and log (FC) values. In the development 
of BC, if the DEGs were gradually upregulated [log (FC) 
value increased] or gradually downregulated [log (FC) 
decreased], they were considered to promote or suppress 
BC development.

Cox regression analysis

Univariate Cox regression analysis was used to identify genes 
associated with BC prognosis. Multivariate Cox regression 
analysis was used to test the correlation among our models, 
current clinicopathological features and BC prognosis.

Least Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis

We screened the expression levels for significant genes 
in the favorable and unfavorable groups using univariate 
Cox regression analysis (P<0.01). Then, these genes were 
selected for further functional investigation, and a possible 
risk score was developed using the LASSO Cox regression 

algorithm. The most refined prognostic prediction models 
were constructed by minimal compression using LASSO 
regression analysis based on two characteristic gene sets of 
BC development. With a constraint condition in the sum 
of the absolute terms, LASSO could reduce the dimension 
of the independent variable and produce a better model 
fit. It was suitable for analyzing the genetic survival data, 
identifying more meaningful independent variables and 
determining the model. The fixed coefficient R2 indicates 
the fraction of the variation that the covariate explains. The 
larger the percentage is, the better the model fit (12).

Calculation of characteristic BC development Gene Set 
Variation Analysis (GSVA) Score

Both models based on upregulated and downregulated 
characteristic gene sets of BC development were scored. 
GSVA is a popular method of scoring individual samples for 
molecular characteristics or gene sets. The GSVA package 
in R was used to calculate the BC-unfavorable GSVA score 
and BC-favorable GSVA score for individual samples.

We screened the expression levels for genes in the TCGA 
data group using univariate Cox regression analysis. Thus, 
we identified genes that were highly related to survival 
(P<0.01). We chose these genes for further functional 
investigation and developed a possible risk score using the 
LASSO Cox regression algorithm. In detail, the risk score 
of the TCGA training set was calculated with the linear 
combination of the signature gene expression weighted 
by their regression coefficients. Risk score = (exprgene1 × 
coefficientgene1) + (exprgene2 × coefficientgene2) + … + (exprgenen 
× coefficientgenen). Finally, minimum criteria defined genes 
and their constants, choosing the perfect penalty parameter 
λ related to the minimum 10-fold cross-validation in the 
training set.

Statistical analysis

Receiver operating characteristic (ROC) curve analysis 
and survival analysis were used to explore the diagnostic 
and prognostic capabilities of the two scoring systems. In 
ROC curve analysis, the area under the curve provides 
an objective parameter of the diagnostic or prognostic 
accuracy of a test, which is superior to comparing single 
combinations of sensitivity and specificity values since the 
influence of the threshold value is eliminated. Because 
only part of the ROC curve represents clinically relevant 
combinations of sensitivity and specificity, comparing the 
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ROC curves in the relevant sensitivity or specificity ranges 
is preferred over comparing the total area under the curve. 
In addition, ROC analysis can be used to determine the 
optimal threshold value for tests that generate continuous 
quantitative data (13). Multivariate Cox regression analysis 
was used to compare the relative prognostic value of the 
two scoring systems with that of routine clinicopathological 
features. Moreover, correlation analysis was used to explore 
the correlation between these models and the tumor 
immune microenvironment and drug responses.

Results

Identification of gradually up/downregulated genes

Compared to normal breast tissue samples, a total of 5,770 
DEGs were identified in stage I BCs, 6,083 DEGs in stage 
II BCs, 5,966 DEGs in stage III BCs, and 5,855 DEGs in 
stage IV BCs, with a total of 4,656 common DEGs among 
all stages (Figure 1A,1B). We summarized 10 major variation 
tendencies of gene expression by STEM analysis in BC gene 
expression profiles in TCGA (Figure S1). Based on these 
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Figure 1 Identification of DEGs in different stages of BC. (A) Manhattan plot showing DEGs in different stages of BC; (B) Venn diagram 
showing common DEGs in BC stages I–IV; (C,D) upregulated genes with the development of BC; (E,F) downregulated genes with the 
development of BC. Con, control; FDR, false discovery rate; FC, fold change; DEGs, differentially expressed genes; BC, breast cancer; 
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tendencies, DEGs were classified into two groups: one 
group (BC1 cluster) contained 476 genes that were gradually 
upregulated with the development of BC from stage I to 
stage IV (Figure 1C,1D), indicating the progression of BC; 
this group was named the BC unfavorable gene set. The 
second group (BC2 cluster) contained 262 genes that were 
gradually downregulated with the development of BC 
(Figure 1E,1F), which indicated a good prognosis, named 
the BC favorable gene set.

To identify BC DEGs associated with prognosis, we 
first used univariate Cox regression analysis to assess the 
association between the expression levels of each DEG 
and found that 26 genes were significantly associated 
with BC prognosis in the BC unfavorable gene set  
(Table S1; P<0.01) and 14 genes in the BC favorable gene set  
(Table S2; P<0.01).

Establishment and evaluation of a prognostic model based 
on BC DEGs

LASSO regression analysis was performed to establish risk 
models concerning BC prediction and prognosis based on 
the two characteristic gene sets of BC development. The 
results showed that a total of 12 DEGs (Figure 2A-2D) in 
the BC unfavorable gene set and 7 DEGs (Figure 2E-2H) 
in the BC favorable gene set were significantly associated 
with BC prognosis. On this basis, two risk models were 
obtained, consisting of 12 genes and 7 genes, named the BC 
unfavorable model (BC1 model) and BC favorable model 
(BC2 model), respectively.

ROC analysis was performed to evaluate the prognostic 
efficacy of the two risk models. In the BC1 model, the AUC 
was 0.80 (Figure 2I), presenting great capability of the model 
for BC prognosis, while in the BC2 model, the AUC was 
0.66 (Figure 2J). Compared with the BC2 model, the BC1 
model was more efficient in prognostic capability. ROC 
analysis of BC patients at 1, 2, and 3 years after diagnosis 
was also performed, and the AUCs were 0.80, 0.77, and 0.75, 
respectively, in the BC1 model (Figure 2K) and 0.66, 0.69, 
and 0.74 in the BC2 model (Figure 2L). The results showed 
that both the BC1 and BC2 models could accurately predict 
the survival rate of BC patients, especially the BC1 model.

Additionally, the efficacy of the risk score, age, stage, T 
stage, M stage and N stage for BC prognosis was compared. 
In the BC1 model, the AUC of the risk score was 0.80, 
which was the highest among these clinical characteristics, 
illustrating that the BC1 model was more efficient than 
other clinical factors for prognosis (Figure 2M). In the BC2 

model, the AUC of the risk score was 0.64, which was lower 
than that of the clinical characteristics, including 0.71 for 
age, 0.64 for stage, 0.70 for T stage, 0.55 for M stage and 
0.62 for N stage (Figure 2N).

Survival analysis was performed to evaluate the survival 
possibility of BC patients divided into a high-risk group 
and a low-risk group based on these two models. In the 
BC1 model, the results of survival analysis showed that the 
survival possibility of the high-risk group was lower than 
that of the low-risk group, and the gap between the two 
groups became much wider as the survival years increased 
(P<0.001; Figure 3A). The final survival time of the high-
risk group was less than 22 years, which was shorter than 
that of the low-risk group (23.5 years). In the scatter graphs, 
we ranked BC patients by the risk scores evaluated with 
our model from low scores to high scores on the horizontal 
axis. The vertical axis represented their survival time; 
green scatter represents living patients, and red represents 
patients who died. The graphs demonstrate that more 
patients with high risk scores died, and more patients with 
low risk scores were living. The survival time of patients 
with low risk scores was longer than that of patients with 
high risk scores. As shown in Figure 3B, the survival time in 
the high-risk group was significantly lower than that in the 
low-risk group using the BC1 model. In the BC2 model, 
the results were similar (Figure 3C,3D), indicating that these 
two models can accurately predict the survival rate of BC 
patients.

Association of risk score from BC models with clinical 
characteristics

Multivariate Cox regression analysis and univariate 
Cox regression analysis were used to identify factors 
independently associated with BC prognosis. For both 
the BC1 and BC2 models, the P values for age, N stage 
and risk score were all less than 0.001, suggesting that 
age, lymphatic metastasis and the risk score were all 
independently associated with BC prognosis. These findings 
demonstrated that the risk score derived from our model 
was an independent prognostic predictor of BC patients 
(Figure 3E-3H).

The performance of the risk scores was tested with each 
clinical characteristic. Significant differences were observed 
between risk score and age (P<0.0001; Figure 3I) in the 
BC1 model, while risk score and tumor topography were 
significantly correlated (P<0.001; Figure 3J) in the BC2 
model.
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In the heatmap, there were obviously more patients 
(≥60 years) with high risk scores, yet there was no distinct 
regularity between risk scores and other features, which was 

consistent with the results of multivariate Cox regression 
analysis that age was an independent factor correlated with 
the BC1 model (Figure 3I). In the BC2 model, a marked 
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difference was observed between tumor topography and the 
risk score (Figure 3J).

Immune infiltration analysis and drug susceptibility

To further explore the immune-related mechanism involved 
in BC patients, we performed immune infiltration analysis 
using the two BC prognosis models. M2 macrophages were 
significantly correlated with the BC1 and BC2 models 
(Figure 4A,4B). Moreover, macrophage M2 infiltration was 
remarkably higher in the high-risk group than in the low-
risk group (Figure 4C,4D).

For BC chemotherapy, bortezomib is a first-in-class 
selective and reversible proteasome inhibitor that targets 
the 26S proteasome (14). Previous studies have observed 
that bortezomib combined with antiestrogen therapy might 
have therapeutic advantages in the management of early-
stage BC (15-17). Our study also found that patients in the 
high-risk group were more sensitive to bortezomib than 
those in the low-risk group (Figure 4E,4F).

To further test these two models in cohorts from 
different populations, we assessed the testing power of both 
models of BC development-related gene sets in GSE4922. 
The AUC of the BC1 model was 0.79, which was higher 
than that of the BC2 model, implying that the testing power 
of the BC1 model was stronger than that of the BC2 model 
(Figure 4G,4H).

Discussion

Worldwide, especially for women, BC is the main cause of 
cancer-related death (18). Even with gradually progressing 
diagnosis and surgical treatments, the recurrence rate 
and cancer-related death rate of BC are still very high. 
Hence, it is of great urgency to explore new biomarkers 
that can precisely diagnose BC and predict prognosis for 
the treatment and management of BC. In this study, we 
identified two prognostic models (BC1 and BC2) using 
bioinformatics analysis on the basis of BC-related DEGs 
and further explored the prognostic value of BC survival 
time and the mechanism involved. One model (BC1) was 
observed to derive a better prognostic risk factor, which 
classified the survival time in BC patients into low- and 
high-risk categories.

A number of previous studies have shown that abnormal 
expression of genes in BC is closely related to disease 
prognosis and can be used as a potential biomarker of 
prognosis (19,20). In the present study, a number of genes 

were differentially expressed in BC at different stages. 
This indicated that gene expression patterns varied along 
with BC development. Compared to normal breast tissue, 
a gene may be differentially expressed in early BC but 
not in the advanced stage. A total of 738 characteristic 
BC development genes were identified, including 476 
genes that were gradually upregulated and 262 genes that 
were gradually downregulated with BC development. 
The development of BC results from interactive effects 
of multiple genes. Prominently, not all characteristic BC 
development genes were associated with the prognosis 
of BC, some of which may result from selection bias 
or analytical error. Furthermore, DE genes that were 
upregulated or downregulated may represent entirely 
different mechanisms involved in BC development. The BC 
unfavorable gene set comprised 26 gradually upregulated 
DEGs, and the BC favorable gene set contained 14 
gradually downregulated DEGs. Unsurprisingly, previous 
studies have suggested that some of these genes are 
associated with BC development (21-23). These results 
confirmed the possibility that the BC unfavorable gene set 
and BC favorable gene set could be used as a prognostic 
model for BC.

In previous studies, a gene coefficient was often obtained 
from a Cox regression analysis or other method in the 
training set (24-26). However, due to the limitations of 
the sample size and the heterogeneity of the tumor, we 
may never know the true coefficient of a gene. Therefore, 
GSVA was used to score individual samples against the gene 
sets (BC unfavorable gene set and BC favorable gene set) 
in our study. ROC curve analysis suggested that both the 
BC unfavorable and BC favorable GSVA scores exhibited 
strong prognostic capacity for BC, which was verified in 
two other independent datasets. Univariate and multivariate 
Cox regression analyses suggested that the BC unfavorable 
and BC favorable gene sets and the risk score systems were 
independent prognostic factors for BC. This result was 
also verified in an independent dataset. However, further 
studies are needed to investigate and validate the functions 
of these genes, and the synergy between the genes of these 
two gene sets in BC development still requires molecular 
experimental validation. Their application in the clinic still 
needs to wait for further decline in sequencing costs.

In addition, the interaction between the immune 
microenvironment and cancer cells is important for tumor 
progression (27). Both the BC development-promoting 
gene model and BC development inhibitory gene model 
were associated with high infiltration of M2 macrophages. 
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Figure 4 Immune infiltration analysis and drug susceptibility to bortezomib. (A,B) Immune infiltration analysis using the BC1 (A) and BC2 (B) 
models. (C,D) Quantitative analysis of M2 infiltration between low-risk and high-risk groups using the BC1 (C) and BC2 (D) models. (E,F) 
Bortezomib susceptibility test of low-risk and high-risk groups using the BC1 (E) and BC2 (F) models. (G,H) Validation of the prognostic 
efficacy of the BC1 (G) and BC2 (H) models in GSE4922. AUC, area under the curve; BC, breast cancer.
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Both the BC development-promoting gene model and the 
BC development-suppressing gene model were related 
to patient drug responsiveness to bortezomib. Naturally, 
studies aimed at revealing the exact mechanisms and DEGs 
in BC are advocated. The potential of molecularly targeted 
immunotherapy to intervene in BC may be promising.

Conclusions

In conclusion, this study explored and validated one 
prognostic model (BC1) to better diagnose and predict the 
survival of BC patients using a cluster of 12 DEGs, and 
extensive functional exploration revealed that the model was 
closely related to the tumor immune microenvironment, 
especially M2 macrophage infiltration. Our study provides 
new insights into further studies in BC, which requires 
further research.
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Supplementary

Figure S1 Ten major variation tendencies of gene expression by STEM analysis. STEM, Short Time-series Expression Miner.



© Translational Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tcr-22-2444

Table S1 Twenty-six upregulated genes associated with breast cancer prognosis in the unfavorable gene set

Gene HR HR.95L HR.95H P value

TMEM70 1.043569 1.017968 1.069814 0.000765

DERL1 1.021823 1.008642 1.035175 0.001118

NSF 1.026375 1.00672 1.046414 0.008318

COPS5 1.039876 1.011008 1.069568 0.006487

HSPA8 1.002499 1.00105 1.00395 0.000722

ARMC1 1.026949 1.010556 1.043607 0.001199

ELOC 1.033785 1.011187 1.056889 0.003214

ARFGEF1 1.020307 1.004823 1.03603 0.009977

PSME1 0.994074 0.990456 0.997705 0.001397

DCTPP1 1.014959 1.006543 1.023445 0.000474

MTFR1 1.034332 1.014289 1.054771 0.000722

RABIF 1.045548 1.011244 1.081016 0.008874

DLG3 1.067608 1.032316 1.104107 0.000137

SLC52A2 1.011621 1.004408 1.018887 0.001553

CMBL 1.012184 1.003103 1.021347 0.008443

ST6GALNAC4 1.030333 1.007932 1.053233 0.007713

LAMTOR4 0.981711 0.969305 0.994275 0.004442

AIFM1 1.032137 1.011559 1.053133 0.002081

QPRT 1.030299 1.012465 1.048448 0.000807

EZR 1.0032 1.000866 1.00554 0.007184

ADAM15 1.010791 1.003825 1.017805 0.00235

STIP1 1.009931 1.003493 1.01641 0.002456

MAB21L4 1.01307 1.006033 1.020155 0.000261

GRINA 1.002649 1.000867 1.004433 0.003553

SDC1 1.002579 1.001037 1.004123 0.001039

PRDX1 1.002043 1.00075 1.003338 0.001943

HR, hazard ratio.
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Table S2 Fourteen downregulated genes associated with breast cancer prognosis in the favorable gene set

Gene HR HR.95L HR.95H P value

RPS6 0.999177 0.998585 0.999769 0.006476

RPL4 0.997157 0.995188 0.999129 0.004741

RPS8 0.998672 0.997693 0.999653 0.007996

RPL34 0.995802 0.992737 0.998876 0.007468

RPS4X 0.999027 0.998306 0.999748 0.008213

RPL31 0.994263 0.990579 0.997961 0.002386

BTG1 0.985082 0.975526 0.994732 0.002511

BCLAF1 1.044311 1.014316 1.075192 0.003546

NFKBIA 0.98387 0.975809 0.991998 0.000107

APOBEC3C 0.969174 0.946372 0.992526 0.009949

BTBD6 0.967475 0.945187 0.99029 0.005428

PARP3 0.929746 0.890931 0.970252 0.000814

LIMCH1 1.036219 1.014398 1.058511 0.001052

FGF7 1.100526 1.028733 1.17733 0.005386

HR, hazard ratio.


