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Background: The representative gene mutation in the prognostic groups of acute myeloid leukemia (AML) 
patients is not yet known. The purpose of this study is to identify representative mutations that can help 
physicians better predict patient prognosis and thus develop better treatment plans.
Methods: The Cancer Genome Atlas (TCGA) database was queried for clinical and genetic information, 
and individuals with AML were classified into 3 groups based on their AML Cancer and Leukemia Group 
B (CALGB) cytogenetic risk category. Each group’s differentially mutated genes (DMGs) were evaluated. 
Simultaneously, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were used to assess the function of DMGs within the 3 distinct groups. We used the driver 
status and protein impact of DMGs as additional filters to narrow down the list of significant genes. Cox 
regression analysis was used to examine the survival features of gene mutations in these genes.
Results: A cohort of 197 AML patients were divided into 3 groups according to their prognostic subtype: 
favorable (n=38), intermediate (n=116) and poor (n=43). There were significant differences in age and tumor 
metastasis rates among the three groups of patients. Patients in the favorable group had the highest rate 
of tumor metastasis. Different prognosis groups’ DMGs were detected. The DMGs were examined for 
the driver and harmful mutations. We considered the DMGs that had driver and harmful mutations and 
that affected the survival outcomes in the prognostic groups as the key gene mutations. The group with a 
favorable prognosis carried specific gene mutations for KIT and WT1. The intermediate prognostic group 
contained mutations in the genes IDH2, NRAS, NPM1, FLT3, RUNX1, DNMT1A, and MUC16. In the 
group with a poor prognosis, the representative genes were KRAS, TP53, IDH1, IDH2, and DNMT3A, with 
TP53 mutations substantially correlated with overall patient survival.
Conclusions: We performed the systemic analysis of the gene mutation in patients with AML and 
identified representative and driver mutations between the prognostic group. identification of representative 
and driver mutations between the prognostic group can help predict the prognosis of patients with AML and 
guide treatment decisions.

Keywords: Acute myeloid leukemia (AML); prognosis; gene mutation; differentially mutated genes (DMGs); 

driver mutation

Submitted Apr 07, 2023. Accepted for publication Jun 13, 2023. Published online Jun 21, 2023.

doi: 10.21037/tcr-23-587

View this article at: https://dx.doi.org/10.21037/tcr-23-587

1564

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-23-587


Translational Cancer Research, Vol 12, No 6 June 2023 1553

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(6):1552-1564 | https://dx.doi.org/10.21037/tcr-23-587

Introduction

Acute myeloid leukemia (AML) is a condition involving 
hematopoietic stem cells and is caused by genetic changes 
in blood cell progenitors that leads to the overproduction 
of neoplastic clonal myeloid stem cells (1). AML begins 
in the bone marrow (the soft interior of some bones that 
produces new blood cells), and in most cases, it also enters 
the bloodstream, where it can spread to the lymph nodes, 
liver, spleen, central nervous system (brain and spinal cord), 
and testes (2). In the majority of cases, AML develops in 
leukocytes (excluding lymphocytes) although it can also 
occur in other types of blood-forming cells (3). Some cases 
will be detected by regular blood tests, while others will 
manifest as clinical problems such as infection, bleeding, 
or widespread disease (4). Bone marrow examination is 
essential for confirming the diagnosis and acquiring tissue 
for study to better define the AML subtype and prognostic 
severity (1,5,6). In addition, more studies are screening 
for diagnostic markers of AML based on bioinformatics 
analysis (7). The prognostic biomarkers of AML have been 
studied extensively. New AML biomarkers have been shown 
to enhance the molecular understanding of the disease, 
and to provide significant benefits for screening, diagnosis, 
prognosis and monitoring of AML, as well as for predicting 
the treatment response of each patient (2). However, there 

are still knowledge gaps and limitations in prior studies (2). 
Advancing age (≥60 years) at the time of AML diagnosis 
has been associated consistently with worse survival in 
cooperative group trials and in population-based studies (8).

The AML CALGB cytogenetics risk category was 
developed by the Cancer and Leukemia Group B (CALGB). 
It classifies AML into 3 prognostic risk groups: favorable, 
intermediate, and poor, based on the presence and type of 
cytogenetic abnormalities and karyotypic complexity (9,10). 
For the poor group, the probability of complete response 
is one-fourth and one-twelfth that of the intermediate and 
favorable prognostic groups, respectively; 

the recurrence rate is 3.0 times higher than the 
intermediate prognostic group and 4.4 times higher than 
the favorable prognostic group; and the mortality rate is  
2.1 times higher than the intermediate prognostic group and 
4.3 times higher than the favorable prognostic group (11). 
Intermediate I is a normal karyotype, whereas intermediate 
II is an aberrant karyotype (12).

In order to understand the somatic mutations properties 
of these 3 prognosis groups of AML we investigated 
the mutated genes, mutation frequency, mutation 
characteristics, and mutation types in samples of the 
distinct prognostic subtypes of AML. We completed 
prognostic analysis, cancer driver gene prediction, mutation 
identification, and visualization of the mutation sites of the 
representative genes and subsequently analyzed the targeted 
chemical drugs for these mutations. This study provides 
a scientific and theoretical basis for understanding the 
mechanism of AML development and the specific mutations 
in individuals with varying prognostic outcomes, as well as 
the development of their targeted therapies. We present 
this article in accordance with the STREGA reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-587/rc).

Methods

Data sets

The Cancer Genome Atlas database (TCGA) was used to 
retrieve the clinical data and somatic mutation information 
of patients with AML. For details, we obtained 197 
patients with overall survival information (death from any 
cause). The clinical characteristics including gender, race, 
age, the FAB (French-American-British) classification, 
and cytogenetic risk group (established by the European 
LeukemiaNet, related with the prognosis of patients). 

Highlight box

Key findings
•	 We identified specific differentially mutated genes (DMGs) for 

prognostic groups of patients with acute myeloid leukemia (AML).
•	 The group with a favorable prognosis carried specific gene 

mutations, including for KIT and WT1. 
•	 The intermediate prognostic group contained mutations in the 

genes IDH2, NRAS, NPM1, FLT3, RUNX1, DNMT1A, and 
MUC16.

•	 In the group with a poor prognosis, the representative genes were 
KRAS, TP53, IDH1, IDH2, and DNMT3A, with TP53 mutations 
substantially correlated with overall patient survival.

What is known and what is new?
•	 AML is divided into 3 prognostic risk groups: favorable, 

intermediate, and poor.
•	 We investigated the somatic mutational properties of these 3 AML 

prognosis groups and the mutation types in samples of distinct 
prognostic subtypes.

What is the implication, and what should change now?
•	 This study provides a theoretical basis for the development of 

targeted therapies of AML based on gene-specific mutations.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-587/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-587/rc
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Cytogenetic risk group consisted of favorable (n=38), 
intermediate (n=116), and poor (n=43). 

This study involved 197 samples and detected 9,905 
somatic mutations. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of differentially mutated genes

The clinicalEnrichment function of the “maftools” package 
in R software (The R Foundation of Statistical Computing) 
was used to determine the differentially mutated genes 
(DMGs) for the favorable, moderate, and poor prognostic 
subtypes of AML. A P value <0.05 was deemed to indicate a 
statistically significant difference. 

Functional annotation

The R package “clusterProfiler” was used to annotate 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways for the acquired genes. 
GO annotation was performed based on biological process 
(BP), molecular function (MF), and cellular component 
(CC) categories. Fisher exact test was used to evaluate 
the significance level (P value) for identifying GO with 
substantial enrichment of distinct genes. A P value <0.01 
indicated significant enrichment, while other values indicated 
nonsignificant enrichment. Meanwhile, for the KEGG 
database, a P value <0.05 was used to indicate signal pathway 
enrichment of significantly differentially expressed genes. 

Analysis of driver genes using mutation location clustering

Mutations in oncogenes often happen in specific domains of 
proteins (known as mutation hot spots), and these mutations 
increase the growth or proliferation of cancer cells. We used 
the OncodriveCLUST method to cluster the mutation sites 
of gene bases and find cancer genes. The key information we 
calculated included the number of mutation hot spots, the 
number of mutations in the hot spots that were clustered, 
the length of amino acids corresponding to the protein, the 
fraction of clustered mutations in all mutations of the gene, 
the P value, and the false discovery rate (FDR) values. The 
lower the scores were, the higher the driving force was.

Mutation damage assessment with PROVEAN and SIFT 
software

We used the PROVEAN and SIFT database to find 

homologous proteins, and selected protein sequences with 
high similarity and consistent function for multisequence 
PSI-BLAST alignment to evaluate the conserved protein 
sites. The risk was assessed using the PROVEAN/SIFT 
database score.

Survival analysis

The information on overall survival (OS) was taken from 
TCGA database. The hazard ratio (HR) was calculated 
using Kaplan-Meier analysis, and the survival curve 
was drawn. A P value <0.05 was considered to indicate 
significant correlation of the gene mutation with patient 
prognosis. Based on AML patient survival data, the R 
package “survival” was used to conduct univariate Cox 
regression analysis on the significant DMGs in the 
favorable, intermediate, and poor prognostic groups, 
respectively. We screened for genes significantly correlated 
with the OS of patients (P<0.01). Least absolute shrinkage 
and selection operator (LASSO) Cox regression analysis 
was performed using the R package “glmnet” on genes 
that were significantly correlated with OS (13). The 10-
fold cross-validation selection procedure was used to find 
the appropriate punishment parameter lambda in order to 
eliminate genes with strong correlation and reduce model 
complexity. With R package “survival”, a multivariate Cox 
regression analysis was performed on the genes identified 
by LASSO analysis to determine the prognostic genes in 
the favorable, intermediate, and poor subtypes, respectively.

Targeted drugs for gene mutations

Targeted drugs for gene mutations, including KRAS, 
TP53, KIT and DNMT3A were screened according to the 
clinical data on cancer mutations provided by the Clinical 
Interpretation of Variants in Cancer (CIViC) database 
(https://civicdb.org/home). 

Results

Clinical characteristics of patients and prognosis

Data from a total of 197 patients with AML were obtained 
from TCGA database, and the patients were classified into 
3 groups according to their CALGB prognostic subtypes: 
favorable (38 patients), intermediate (116 patients), and 
poor (43 patients). The majority of patients were Caucasian. 
The age of the patients and the rate of tumor metastasis in 

https://civicdb.org/home
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the 3 groups were significantly different (Table 1). However, 
patients in the favorable group had the highest rate of tumor 
metastasis, although this group had a better prognosis and 
the longest survival. Comparison of OS among the 3 groups 
showed that the favorable group had the best prognosis, the 
intermediate group had a slightly better prognosis, and the 
poor group had the worst prognosis, which was consistent 
with the prognosis of CALGB prognostic classification 
(Figure 1A).

Landscape of gene somatic mutation of AML

We analyzed the somatic mutations in 197 patients with 
AML. Overall, missense mutations were the most common 
in AML, and the remaining other mutation types were 
very rare. Single-nucleotide mutations were the most 
common mutation mode, and the most common nucleotide 
substitution was cytosine ribonucleotide substitution 
for thymine ribonucleotide (C>T), followed by thymine 
ribonucleotide substitution for cytosine ribonucleotide 
(T>C). The median number of somatic mutations in 

patients with AML was 10. The most common mutated 
genes in AML were DNMT3A (13%) and FLT3 (11%), 
followed by RUNX1 (9%), NPM1 (9%), TTN (8%), 
MUC16 (8%), TP53 (8%), IDH2 (8%), KIT (6%), and 
NRAS (6%) (Figure 1B, Figure S1).

The poor prognostic group had the highest mutation 
frequency (median =13.5), the favorable group had the 
second highest (median =10), and the intermediate group 
had the lowest (median =8) (Figure 1C). The TP53 gene 
had the highest mutation frequency in all subtypes and 
was followed by the TTN gene. Based on the comparative 
analysis of mutation frequency and number of mutations, 
we obtained the top 10 genes in each prognostic group 
(Figure S2). In the favorable prognostic group, KIT (25%) 
and TTN (17%) had the highest mutation frequency, 
followed by ZFHX4 (12%), RAPGEF2 (12%), GRIK4 (12%), 
MUC16 (8%), UBR4 (8%), SPEN (8%), AMT (8%), and 
AHNAK (8%). Missense mutation was predominant in all 
genes except the KIT gene, which was more complex and 
dominated by in-frame insertions (ins), and the rest were 
missense mutations, nonsense mutations, and in-frame 

Table 1 Comparison of clinical characteristics of the patients between the favorable, intermediate, and poor prognostic groups

Characteristics
Prognostic group

P Test
Favorable (n=38) Intermediate (n=116) Poor (n=43)

OS, median (IQR), days 623.50 (222.00, 1401.75) 304.00 (90.00, 678.00) 243.00 (31.00, 441.00) 2.90E–03 nonnorm

Gender, n (%) 4.94E–01

Female 18 (47.4) 55 (47.4) 16 (37.2)

Male 20 (52.6) 61 (52.6) 27 (62.8)

Race, n (%) 7.31E–01 fisher_exact

Asian 0 (0.0) 2 (1.7) 0 (0.0)

Black 1 (2.7) 8 (7.0) 4 (9.3)

White 36 (97.3) 105 (91.3) 39 (90.7)

NA 1 (2.6) 1 (0.9) 0 (0.0)

Age (years), median (IQR) 49.50 (35.25, 58.50) 58.50 (45.00, 67.00) 63.00 (50.50, 69.50) 5.43E–03 nonnorm

Fab_category, n (%) 1.34E–12 fisher_exact

M0 0 (0.0) 9 (7.8) 10 (23.8)

M1, M2, M4, M5 19 (50.0) 101 (87.8) 30 (71.4)

M3 18 (47.4) 3 (2.6) 0 (0.0)

M6, M7 1 (2.6) 2 (1.7) 2 (4.8)

NA 0 (0.0) 1 (0.9) 1 (2.3)

OS, overall survival; IQR, interquartile range; NA, not available. 

https://cdn.amegroups.cn/static/public/TCR-23-587-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-587-Supplementary.pdf
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deletions (dels). In the intermediate prognostic group, FLT3 
(15%), DNMT3A (15%), and NPM1 (14%) had the highest 
mutation frequencies, followed by RUNX1 (12%), TTN 
(10%), MUC16 (10%), NRAS (8%), IDH2 (7%), WT1 (7%), 
and BCORL1 (5%). Mutated genes were dominated by 
missense mutations, except for NPM1 and WT1 mutations. 
All mutations in NPM1 were frame-shift ins, and WT1 
mutations were also dominated by frame-shift ins. In the 
poor prognostic group, TP53 (20%) and DNMT3A (18%) 
had the highest mutation frequencies, followed by KRAS 
(15%), IDH2 (12%), IDH1 (10%), RUNX1 (8%), FLT3 
(8%), BRINP3 (5%), BSN (5%), and ASXL1 (5%). The 
mutation types of all genes except the ASXL1 gene were 
dominated by missense mutation, and the mutation types of 
the ASXL1 gene were mainly frame-shift ins and nonsense 
mutations.

DMGs in patients with AML with different prognosis

To better investigate the prognosis-related mutation, 
we compared differences in mutation of patients with 
AML with different prognoses. We obtained a total of 
45 genes with significant differences in the number of 
mutations between the 3 groups, including 15 genes for 
each group respectively (Figure 2A, Table S1). In the 
favorable prognostic group, the KIT, TTN, PCLO, and 
WT1 mutations had the most prominent occurrence. In the 
intermediate prognostic group, the NPM1, FLT3, RUNX1, 
NIRAS, TTN, MUC16, DNMT3A, and WT1 mutations 
had the most frequent occurrence. In the poor risk group, 
mutations of TP53, KRAS, IDH1, IDH2, and DNMT3A 
were the most common.

The obtained representative genes of each group 
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Figure 2 Functional enrichment analysis of genes and genes with significantly different mutations between the 3 prognostic groups. (A) 
Genes with P value <0.05 for differential mutation significance in a given group are shown, sorted from left to right by significance of the 
difference in the subgroups. The horizontal axis shows the gene names, the vertical axis shows the proportion of mutations in different 
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were annotated based on GO terms (Figure 2B-2D). GO 
enrichment results showed that in the poor prognostic 
subgroup, DMGs were involved in glyoxylate cycle, 
i socitrate metabolic  process ,  myeloid progenitor 
cell differentiation and other molecular processes, 
mitochondria, PR-DUB complex, presynaptic cytoskeletal 

matrix, nuclear matrix, and isocitrate dehydrogenase. For 
the intermediate prognostic group, DMGs were enriched 
in myeloid progenitor cell differentiation, negative 
regulation of cell proliferation, cell aging, structural 
molecular activity conferring elasticity, DNA (cytosine-5-)
methyltransferase activity, acting on CpG substrates, and 
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isocitrate dehydrogenase (NADP+) activity. In the favorable 
prognostic group, DMGs were enriched in ventricular 
system development, cAMP-mediated signaling, cellular 
response to cAMP, and presynaptic cytoskeletal matrix 
assembled at the active zone and synapse.

The obtained representative genes of each group were 
annotated based on pathway annotation terms derived from 
the KEGG database (Figure 2E-2G). The results showed 
that the representative genes in poor prognostic group 
were enriched in the pathways of AML, chronic myeloid 
leukemia, and 2-oxocarboxylic acid metabolism. In the 
intermediate prognostic group, they were related to the 
pathways of AML, transcriptional misregulation in cancer, 
and chronic myeloid leukemia. In the favorable prognostic 
group, there was enrichment for one-carbon pool by folate, 
Rap1 signaling pathway, nitrogen metabolism, glycine, 
serine, and threonine metabolism.

Driver mutations based on the mutation clustering 
algorithm 

We used the OncodriveCLUST algorithm to distinguish 
driver genes in each prognostic group (Figure 3). The 
algorithm is designed to detect mutated genes clustered in 
specific regions of the amino acid sequence, which often 
occur in specific protein regions or active sites. The driver 
genes in the poor prognostic group were IDH1, IDH2, 
KIT, KRTAP12-4, FLT3, KRAS, and DNMT3A. The driver 
genes in the intermediate prognostic group were ALOX12B, 
DOCK8, GART, HIST1 H2AE, IDH1, IDH2, MRM1, NPM1, 
OR5D16, RIMS4, SLC23A3, THADA, TNKS2, ZMYM5, 
ZNF491, NRAS, MYOM2, OBSCN, FLT3, RUNX1, 
DNMT3A, MUC17, and MUC16. The driver genes in the 
favorable prognostic group were GIGYF2, SERPINA3, 
SETD2, TFIP11, ZNF484, ZNF664, KIT, WT1, and RAD21.
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Mutational deleteriousness analysis based on the 
PROVEAN and SIFT algorithms

PROVEAN/SIFT algorithms can assess the deleteriousness 
of mutations based on protein conservativeness and 
tolerance for amino acid substitutions. A total of 7,581 
genes with deleterious mutations were obtained by using 
PROVEN and SIFT deleterious analysis in AML. Among 
the different prognostic groups, the most number of 
deleterious genes were found in the poor prognostic group 
(Figure 4).

Correlation with survival for DMGs in AML

Univariate Cox regression analysis was performed for the 
association of deleterious mutations in DMGS significantly 
associated with patient survival. There was a total of  
31 genes associated with survival in the poor prognostic 
group, 34 genes associated with survival in the intermediate 
prognostic group, and 14 genes associated with survival 
in the favorable prognostic group. The best Cox multiple 
regression model was selected with the LASSO algorithm. 
No eligible model was found for the favorable subtype. The 
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predicted by SIFT and the right panel (B) is the result predicted by PROVEAN.

Features Multi_beta Multi_HR Multi_95%_CI_for_HR

SMC1A 

CAGE1 

GP1BA 

BBX

2.32476 

5.57723 

4.53441 

4.53441

10.2243 

264.337 

93.1682 

93.1682

2.67267–39.1127 

9.90768–7052.54 

5.53108–1569.37 

5.53108–1569.37

Multi_P.value

0.000683614 

0.000872534 

0.00164941 

0.00164941

1 1020 50 100 150 7060

TP53 

CDX4 

MTA2

1.16008 

3.62481 

3.62481

3.19018 

37.5177 

37.5177

1.20741–8.42898 

3.15427–446.245 

3.15427–446.245

0.0192745 

0.00411405 

0.00411405

1 1020 50 100 150 447

Features Multi_beta Multi_HR Multi_95%_CI_for_HR Multi_P.value

A

B

Figure 5 The best Cox multivariate regression model obtained with the LASSO algorithm. (A) Multivariate Cox regression of the gene-
based hazard model for the intermediate prognostic group. (B) Multivariate Cox regression of gene-based hazard model for the poor 
prognostic group. The horizontal line shows the confidence interval, and the dots represent the hazard ratio.



Li et al. Gene mutations of acute myeloid leukemia1560

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(6):1552-1564 | https://dx.doi.org/10.21037/tcr-23-587

gene mutation-based model for the intermediate prognostic 
subtype consisted of SMC1A, CAGE1, GP1BA, and BBX. 
The model for the poor prognostic group consisted of 
TP53, CDX4, and MTA2 (Figure 5).

Screening for representative mutations for the prognostic 
groups

To select representative mutated genes in each group, 
we integrated the results of mutation frequency, survival 
analysis, and driver gene analysis (Figure 6A-6C). Among 
the representative genes in the favorable prognostic group, 
the DMGs were KIT, WT1, PCLO, and TTN, of which the 
driver genes were WT1 and KIT1. Among the representative 

genes in the intermediate prognostic group, the DMGs 
were WT1, NRAS, NPM1, FLT3, RUNX1, DNMT3A, 
MUC16, and TTN, of which the driver genes were NRAS, 
NPM1, FLT3, RUNX1, DNMT3A and, MUC16. Among 
the genes represented in the poor prognostic group, the 
DMGs were KRAS and TP53, among which TP53 was 
significantly associated with survival and KRAS was a 
cancer driver gene with significant hypermutation (15% of 
samples). The specific mutations of KRAS were p.G12D, 
p.G12V, p.G13D, p.I36M, and p.A59E. The mutation sites 
were concentrated on irregularly coiled structures, which 
are important regions for the functional implementation 
and conformation formation of protein molecules  
(Figure 6D). Those representative genes were enriched 
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in mitogen-activated protein kinase (MAPK) signaling 
pathway, PI3K-Akt signaling pathway, Sphingolipid 
signaling pathway, and apoptosis.

Precision medicine, which refers to the targeted 
provision of individually tailored prevention and treatment 
strategies for patients, has emerged as popular topic in the 
field of medicine. In the context of cancer, this involves 
cancer-specific mutations and the corresponding targeted 
therapies. We obtained potential targeted drugs for 
these mutations, including KRAS, TP53, and DNMT3A 
mutations in the poor subgroup and KIT mutations in the 
favorable group according to the clinical data on cancer 
mutations provided by the CIViC database (https://civicdb.
org/home) (Table 2).

Discussion

The accumulation of abnormal blast cells in the bone 
marrow causes AML. These cells interfere with normal 

blood cell production, which results in the most common 
underlying cause of AML-related death, bone marrow 
failure. AML blasts can spread to organs, especially the 
central nervous system and lungs. The cytogenetics and 
mutational status of the NPM1, FLT3, and CEBPA genes 
are associated with the development of resistance to 
standard therapy (12). 

The European Leukemia Net (ELN) system defines 4 
prognostic groups for AML. The favorable group includes 
patients with mutant NPM1 without FLT3 ITDs or CEBPA 
mutations. The intermediate 1 group (int-1, closest to 
favorable) includes patients with a normal karyotype who are 
FLT3 ITD negative, and the intermediate 2 group includes 
patients with FLT3 ITD and a normal karyotype (14). 

FLT3 ITD usually affects the prognosis of AML by 
increasing the relapse rate rather than decreasing the 
complete response rate. Besides the presence of an FLT3 
ITD, the proportion of alleles with an ITD was also 
considered (15). The classification genes FLT3 and NPM1 

Table 2 Potential targeted chemical drugs for representative mutated genes

Subtype Gene Variant Disease Drugs

Poor TP53 DELETERIOUS MUTATION, 
MUTATION, TRUNCATING 
MUTATION, DNA BINDING 
DOMAIN MUTATION, WILD 
TYPE, OVEREXPRESSION, 
ALTERATION, CONSERVED 
DOMAIN MUT, G245S, 
M237I, R158H, R249S, 
R280K, R280T, R158L

Head and neck squamous cell carcinoma, 
esophagus squamous cell carcinoma, 
precursor B lymphoblastic lymphoma/
leukemia, myelodysplastic syndrome, 
myeloma, oral squamous cell carcinoma, 
gastric adenocarcinoma, breast cancer, 
colorectal cancer, esophageal carcinoma, 
acute myeloid leukemia, adrenocortical 
carcinoma, non-small cell lung carcinoma, 
sarcoma, chronic lymphocytic leukemia, 
ovarian cancer, stomach cancer, stomach 
carcinoma, cancer, leukemia

Doxorubicin, “Cetuximab, Capecitabine, 
Oxaliplatin”, “Docetaxel, Selumetinib 
(AZD6244)”, Docetaxel, Adjuvant 
Chemotherapy, Pazopanib, Alemtuzumab, 
“Cisplatin, Carboplatin”, Tamoxifen, 
“Cisplatin, Etoposide, Mitomycin”, EAP 
Protocol, Nutlin-3a, AMGMDS3, RG7112

KRAS G12V, G12D, G12A Colorectal cancer, lung cancer, lung 
adenocarcinoma, non-small cell lung 
carcinoma, pancreatic carcinoma, 
pancreatic cancer, tumor of exocrine 
pancreas, hairy cell leukemia, cancer, 
pancreatic ductal carcinoma, multiple 
myeloma, melanoma, ovarian cancer

Cetuximab, “Gefitinib, Erlotinib”, 
“BEZ235 (NVP-BEZ235, Dactolisib), 
ARRY-142886”, PD0332991, MK-2206, 
“Docetaxel, Selumetinib (AZD6244)”, 
Vemurafenib, Crizotinib, Adoptive T-cell 
Transfer, “Selumetinib (AZD6244), 
BEZ235”, Panitumumab, Gefitinib, 
Melphalan, Regorafenib, “Cetuximab, 
Panitumumab”, “Panitumumab, 
Cetuximab”

DNMT3A R882, MUTATION Acute myeloid leukemia, T-cell acute 
lymphoblastic leukemia, myelodysplastic 
syndrome, cancer

Daunorubicin, Idarubicin, Decitabine, 
“Atezolizumab, Pembrolizumab, 
Nivolumab”

Favorable KIT D816V Acute myeloid leukemia, systemic 
macrocytosis

Midostaurin

https://civicdb.org/home
https://civicdb.org/home
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were also detected in our study of the significant DMGs 
between prognostic groups, although the mutation of 
CEBPA was not statistically different.

Most of the knowledge about the impact of NPM and 
FLT mutations comes from younger (under 60 years old) 
patients with de novo AML and normal karyotype (16). The 
frequency of NPM1 mutation decreases with age (17).  
However, not only do older adults constitute the majority 
of patients with AML, they are also more prone to 
demonstrate resistance. Older patients account for a higher 
percentage of the adverse (about 31%), intermediate 
(approximately 49%), and less favorable (approximately 
20%) prognosis groups (14). Consequently, it is crucial to 
search for further particular gene mutations within these 
prognostic groups. This study focused on the examination 
of mutant genes correlated with AML prognosis categories. 
We found unique mutations in the prognostic categories of 
patients with AML. 

We assessed the genes with driver and harmful mutations 
among these variants. In addition to mutations in genes that 
are prevalent in leukemia and used for classification, such 
as FLT3 and NPM1, we also observed somatic mutations 
in other genes with frequent mutations, including KRAS, 
NRAS, and TP53. These genes also appear to occur often 
in solid tumors, but hematologic malignancies have been 
investigated less systematically. Mutations in TP53 and 
KRAS/NRAS were reported to be related to resistance to 
current standard chemotherapy, including for azacitidine + 
venetoclax, decitabine + venetoclax, and low-dose cytarabine 
+ venetoclax (18). Mutations in the DNMT3A and TP53 
genes are more prevalent in adult patients with AML than 
in younger patients, while they are nearly entirely absent in 
pediatric cases (19). Meanwhile, NRAS, KRAS, and WT1 
mutations are prevalent in pediatric AML (19). The adverse 
prognostic impact of KRAS mutations was confirmed in 
adult mixed-lineage leukemia rearranged (MLL-r) AML, 
although there was no significant difference in prognosis 
between the KRAS wild type and mutated type in patients 
with non-MLL-r AML (20). Although TP53 mutations 
have been identified in only 5–10% of AML cases, they are 
strongly correlated with therapy-related AML and serve as 
a crucial prognostic indicator (21).

There is an association between the immunophenotype 
and prognosis in AML. Several studies have identified 
the relationship between antigens CD7, CD9, CD11b, 
CD13, CD14, CD15, CD33, CD34 and CD56 and AML 

prognosis. Some studies have reported conflicting results 
regarding the relationship between AML prognosis. One 
study found that CD56 expression in AML patients was 
associated with poor prognosis (22). Another study found 
that CD34 expression in AML patients was associated with 
a favorable prognosis (23). However, another study found 
that CD34 expression in AML patients was associated with 
a poor prognosis (24).

We systematically investigated the specific mutations 
and driver mutations in 3 prognostic groups of patients; 
we believe these mutations can be used to focus the 
targeted treatment of patients with AML according to 
the particular subtypes. IDH1 and IDH2 were found to 
be the specific mutations and driver mutant genes for the 
poor prognosis subtypes, indicating that targeted therapy 
for IDH1 and IDH2 can be developed for patients with 
poor prognostic subtypes. Mutations in the IDH genes 
in critical metabolic enzymes result in the generation 
of oncometabolite 2-hydroxyglutarate, which promotes 
leukemogenesis by interfering with normal myeloid 
differentiation (25). Enasidenib and ivosidenib are potent 
and selective inhibitors of mutant IDH2 and IDH1, 
respectively, serve as differentiation agents, and have 
demonstrated therapeutic activity in relapsed/refractory 
(R/R) AML (25,26). DNMT3A mutations are early events 
in the genesis of cancer and appear to be associated with 
poor prognosis in patients with AML, making this gene a 
potential target for novel therapeutics (27). They screened 
targeted chemical drugs including daunorubicin, idarubicin, 
decitabine, atezolizumab, pembrolizumab, and nivolumab 
for their possible inhibitory effects on AML by retrieving 
information from drug databases, which may aid in the 
precise treatment of AML with DNMT3A mutations.

Conclusions

We systematically identified the specific and driver 
mutations that served as prognostic indicators in 3 
prognostic groups of patients.
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Supplementary

Figure S1 The profile of somatic mutations of patients with AML. Each row from top to bottom shows the statistics of mutation types, 
the type and number of mutation bases, and the box plot of mutation number and mutation species in each sample. AML, acute myeloid 
leukemia.
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Figure S2 Heat maps showing the genes and mutation types of somatic mutations that occurred in the favorable (A), intermediate (B), and 
poor (C) prognostic groups.
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Table S1 Significantly different gene mutations between the 3 prognostic groups

Hugo 
symbol

Group 1 Group 2 n_mutated_group1 n_mutated_group2 P value OR low OR high FDR

KIT Favorable Rest 6 of 25 3 of 118 0.000951641 0 0.351055818 0.029712055

TP53 Poor Rest 8 of 40 3 of 103 0.001751797 0 0.449673544 0.029712055

KRAS Poor Rest 6 of 40 1 of 103 0.001980804 0 0.38770562 0.029712055

NPM1 Intermediate Rest 10 of 75 3 of 68 0.057048427 0 1.038299839 0.6417948

IDH1 Poor Rest 4 of 40 3 of 103 0.095849297 0 1.310572294 0.761718878

TTN Favorable Rest 4 of 25 7 of 118 0.101562517 0 1.324849622 0.761718878

FLT3 Intermediate Rest 11 of 75 5 of 68 0.131026151 0 1.315537773 0.819553313

IDH2 Poor Rest 5 of 40 6 of 103 0.159169344 0 1.544620924 0.819553313

RUNX1 Intermediate Rest 9 of 75 4 of 68 0.163910663 0 1.464221526 0.819553313

DNMT3A Poor Rest 7 of 40 12 of 103 0.252433328 0 1.703181146 1

PCLO Favorable Rest 2 of 25 4 of 118 0.281843854 0 3.19290701 1

NRAS Intermediate Rest 6 of 75 3 of 68 0.298063041 0 2.113526306 1

TTN Intermediate Rest 7 of 75 4 of 68 0.325340695 0 2.079845999 1

MUC16 Intermediate Rest 7 of 75 4 of 68 0.325340695 0 2.079845999 1

DNMT3A Intermediate Rest 11 of 75 8 of 68 0.397359577 0 1.959977219 1

WT1 Intermediate Rest 5 of 75 3 of 68 0.415276387 0 2.762824043 1

WT1 Favorable Rest 2 of 25 6 of 118 0.423153167 0 4.479665159 1

PCLO Poor Rest 2 of 40 4 of 103 0.53820923 0 5.945930578 1

MUC16 Favorable Rest 2 of 25 9 of 118 0.607037732 0 6.495630532 1

CMYA5 Favorable Rest 1 of 25 5 of 118 0.691438614 0 25.74294736 1

CMYA5 Intermediate Rest 3 of 75 3 of 68 0.704919526 0 6.323236075 1

RUNX1 Poor Rest 3 of 40 10 of 103 0.762374247 0 5.906795442 1

KIT Poor Rest 2 of 40 7 of 103 0.774464068 0 9.610431269 1

NRAS Poor Rest 2 of 40 7 of 103 0.774464068 0 9.610431269 1

IDH2 Intermediate Rest 5 of 75 6 of 68 0.787196266 0 4.733441448 1

IDH1 Intermediate Rest 3 of 75 4 of 68 0.817681358 0 7.859942089 1

NRAS Favorable Rest 1 of 25 8 of 118 0.832242472 0 39.67256167 1

CMYA5 Poor Rest 1 of 40 5 of 103 0.866108002 0 47.56655708 1

MUC16 Poor Rest 2 of 40 9 of 103 0.86761872 0 12.18457926 1

FLT3 Poor Rest 3 of 40 13 of 103 0.881844882 0 7.691615127 1

TP53 Favorable Rest 1 of 25 10 of 118 0.889190796 0 49.39612747 1

PCLO Intermediate Rest 2 of 75 4 of 68 0.916541047 0 17.42343265 1

NPM1 Poor Rest 2 of 40 11 of 103 0.924912763 0 14.85867244 1

RUNX1 Favorable Rest 1 of 25 12 of 118 0.927319108 0 59.69609609 1

WT1 Poor Rest 1 of 40 7 of 103 0.933082745 0 64.84321244 1

FLT3 Favorable Rest 1 of 25 15 of 118 0.96191648 0 75.67068368 1

KRAS Intermediate Rest 1 of 75 6 of 68 0.99536161 0 164.9300569 1

KIT Intermediate Rest 1 of 75 8 of 68 0.999075354 0 219.5410318 1

TP53 Intermediate Rest 1 of 75 10 of 68 0.999822459 0 278.0257502 1

DNMT3A Favorable Rest 0 of 25 19 of 118 1 0 Inf 1

NPM1 Favorable Rest 0 of 25 13 of 118 1 0 Inf 1

TTN Poor Rest 0 of 40 11 of 103 1 0 Inf 1

IDH2 Favorable Rest 0 of 25 11 of 118 1 0 Inf 1

IDH1 Favorable Rest 0 of 25 7 of 118 1 0 Inf 1

KRAS Favorable Rest 0 of 25 7 of 118 1 0 Inf 1


