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Background: Extracapsular extension (ECE) of prostate cancer (PCa) is closely related to the treatment 
and prognosis of patients, and radiomics has been widely used in the study of PCa. This study aimed to 
evaluate the value of a combined model considering magnetic resonance imaging (MRI)-based radiomics and 
clinical parameters for predicting ECE in PCa.
Methods: A total of 392 PCa patients enrolled in this retrospective study were randomly divided into the 
training and validation sets at a ratio of 7:3. Radiologists assessed all lesions by Mehralivand grade. Radiomics 
features were extracted and selected to build a radiomics model, while clinical parameters were noted to 
construct the clinical model. The combined model was constructed by the integration of the radiomics model 
and clinical model. Meanwhile, the nomogram for predicting ECE was constructed based on the combined 
model. Then, the area under the receiver operating characteristic (ROC) curve (AUC), Delong test and the 
decision curve analysis (DCA) were used to compare the performance among the combined model, radiomics 
model, clinical model and Mehralivand grade.
Results: The AUC of the combined model in the validation set was comparable to that of the radiomics 
model [AUC =0.894 (95% confidence interval (CI): 0.837–0.950) vs. 0.835 (95% CI: 0.763–0.908), P>0.05]. 
In addition, the sensitivity of the combined model and radiomics model was 90.7% and 77.8%, with an 
accuracy of 81.4% and 76.3%, respectively. On the other hand, the AUCs of the Mehralivand grade of 
radiologists and clinical model were 0.774 (95% CI: 0.691–0.857) and 0.749 (95% CI: 0.658–0.840), 
respectively, in the validation set, which were lower than those in the combined model (P<0.05). The DCA 
implied that the combined model could obtain the maximum net clinical benefits compared with the clinical 
model, the Mehralivand grade and radiomics model.
Conclusions: The combined model has a satisfactory predictive value for ECE in PCa patients compared 
with the clinical model, Mehralivand grade of radiologists, and the radiomics model.
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Introduction

Prostate cancer (PCa) is a common genitourinary malignancy 
in men and the leading cause of cancer incidence and 
mortality (1). Radical prostatectomy (RP) is the preferred 
treatment for patients with localized PCa (2). While 
achieving the goal of tumor resection, the preservation of 
erectile function and urinary continence is also paramount. 
However, the choice of preserving the neurovascular bundle 
around the prostate depends on the presence of extracapsular 
extension (ECE) of PCa (3). ECE is closely associated 
with adverse pathologies such as positive surgical margins, 
biochemical recurrence and progression, and an increased 
risk of PCa-related mortality (4). Therefore, accurate 
preoperative prediction of ECE is a key step to optimize 
treatment for patients with PCa, and has an important impact 
on clinical decision making and prognosis of PCa patients.

From an image perspective, magnetic resonance imaging 
(MRI) can aid in diagnosing ECE by clearly displaying 
the anatomical morphology of the prostate and lesions 
with high soft tissue resolution (5). Due to the different 
signs of ECE on MRI images and the lack of standardized 
description of ECE, the diagnostic accuracy and sensitivity 
of different experienced radiologists vary greatly (6). Some 
scholars proposed to use structured reports to describe 
ECE, which mainly include Likert score, the European 
Society of Urogenital Radiology (ESUR) score, and the 
Mehralivand grade. Among them, Mehralivand grade had 

the highest correlation with pathological ECE and the best 
diagnostic performance with its simplicity and little imaging 
features (7). Even so, Mehralivand grade is only dependent 
on the subjective assessment of radiologists by the relatively 
limited imaging features, and the diagnostic performance of 
ECE remains limited in practice (8).

Radiomics has been increasingly used in medical 
imaging as an emerging research technology in recent 
years. It enables the extraction of many diagnostic features 
(kurtosis, skewness, wavelet, etc.) from specific areas of the 
medical image through data characterization algorithms to 
make an objective and quantitative analysis of the images. 
Medical images can be transformed into minable data 
in the form of features by radiomics, which can provide 
valuable information for clinical decision-making (9,10). 
Relevant research results have shown that radiomics has 
broad application prospects in the detection, grading, 
and invasiveness prediction of PCa (11,12). Qi et al. (13) 
established a radiomics model in patients with prostate-
specific antigen (PSA) level of 4–10 ng/mL, which could 
provide potential preoperative prediction for PCa patients 
and help to reduce unnecessary biopsies. A study conducted 
comparative analysis based on radiomics model and the 
Prostate Imaging Report and Data System (PI-RADS) score 
in PCa diagnosis and pathological grading, which verified 
the excellent diagnostic efficacy of radiomics model in 
distinguishing cancerous and non-cancerous prostate lesions 
and high or low grade PCa lesions (14). Previous fundings 
also showed that radiomics features hold promise for the 
prediction of the therapy response in the radioligand therapy 
of PCa patients by positron emission tomography/computed 
tomography (PET/CT) (15,16). In summary, the potential 
application value of radiomics in ECE is promising. However, 
there are few studies on the applications of radiomics in the 
preoperative prediction of ECE in PCa patients.

This study aimed to evaluate the predictive value of 
a combined model of MRI-based radiomics and clinical 
variables for predicting ECE in PCa, and further compare it 
with the radiologists’ assessments using Mehralivand grade. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-22-2750/rc).

Methods

Patients

This study was conducted in accordance with the 
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Declaration of Helsinki (as revised in 2013). This study was 
approved by the Ethics Committee of The First Affiliated 
Hospital of Soochow University (No. 262; 2021) and 
individual consent for this retrospective analysis was waived.

A total of 557 patients with pathologically confirmed 
PCa underwent preoperative 3.0-T MRI followed by RP 
between January 2018 to March 2022 at The First Affiliated 
Hospital of Soochow University, out of which 392 patients 
were retrospectively enrolled in this study. The inclusion 
criteria were as follows: (I) all patients received RP and had 
confirmed PCa; (II) patients with detailed and complete 
clinical data, imaging information, and pathological 
reports; and (III) prostate MRI was performed within one 
month before RP. The exclusion criteria were as follows: 
(I) patients with an incomplete pathological report and 
no precise diagnosis of ECE (n=78); (II) the patients who 
received prior therapies (such as biopsy, surgery, radiation 
therapy, or hormonal therapy) before MRI (n=51); (III) 
poor image quality or severe motion artifacts, which affect 
observation (n=21); and (IV) the lesion volume is too small 
(diameter <3 mm) to define the boundary of the region of 

interest (ROI) (n=15). Figure 1 shows a flowchart depicting 
the patient recruitment in this study.

The clinical variables, including age, PSA at admission, 
lesion location distribution, and biopsy Gleason group 
(GG) for each patient, were obtained from the medical 
records. Further, the PI-RADS v2.1 scores were assessed 
by radiologists (with more than 10 years of prostate MRI 
experience). The lesion location distribution included the 
peripheral zone (PZ), transitional zone (TZ), or PZ + TZ. 
The biopsy pathology GG was divided into five grades 
according to the 2014 International Society of Urological 
Pathology (ISUP) guidelines (17).

Standard of reference

The final histopathologic assessment after the RP procedure 
was defined as the standard reference. One dedicated 
pathologist (with more than 10 years of experience) 
blinded to the MRI reports reviewed all the specimens 
according to a standard protocol and filled out a structured 
pathological report per the clinical routine. The pathologist 

Patients with pathologically confirmed PCa who underwent preoperative 
3.0-T MRI between January 2018 and March 2022 (n=557)

Patients who received RP and were diagnosed with PCa (n=392)

Radiomics analysis and date statistics 

Training set 
(n=274)

Testing set 
(n=118)

Exclusion criteria:
(I) Patients with an incomplete pathological report 

and no precise diagnosis of ECE (n=78)
(II) Prior therapies (such as biopsy, surgery, radiation 

therapy, or hormonal therapy) were performed 
before MRI examination (n=51)

(III) Poor image quality or severe motion artifacts, 
which affect observation (n=21)

(IV) The lesion volume is too small (diameter <3 mm) 
to define the boundary of the ROI (n=15)

Figure 1 Flowchart of patient recruitment in this study. PCa, prostate cancer; ECE, extracapsular extension; MRI, magnetic resonance 
imaging; RP, radical prostatectomy; ROI, region of interest.
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then recorded the ECE status for each lesion. Another 
senior urologist (with more than 10 years of experience) 
coordinated the workflow to ensure the tumor depicted 
by the pathologist matched the lesion analyzed by the 
radiologist. Only lesions that were visible on MRI images 
were finally enrolled in subsequent analysis. According to 
the measure of ISUP (17), ECE is defined as the presence 
of tumors beyond the borders of the prostate.

Scanning equipment and parameters

A 3.0-T superconducting MR scanner (Skyra; Siemens, 
Munich, Germany) with an abdominal 32-channel surface 
phased line coil was used to perform prostate MRI. Patients 
were taken in a supine position with the head advanced. 
The scanning sequence included axial T1-weighted imaging 
(T1WI), axial T2-weighted imaging (T2WI) (no fast-
saturated), sagittal T2WI, coronal T2WI, and diffusion-
weighted imaging (DWI) (b=100, 1,000, 1,500 s/mm2). 
Based on the DWI images of b=1,500 s/mm2, the apparent 
diffusion coefficient (ADC) icons were calculated by an 
extended single exponential fitting model. The specific 
scanning parameters were recommended by PI-RADS  
v2.1 (18). The detailed scan parameters are shown in Table 1.

Mehralivand grade

Two radiologists (reader 1 and 2), with 6–8 years of prostate 
MRI experience, assessed ECE by Mehralivand grade 
based on T2WI, ADC, and DWI images without obtaining 
pathological results. The assessment of radiologist is 
mainly based on T2WI images, assisted by DWI and ADC 
images to determine the boundary between the lesion and 
the prostate capsule. If a patient has multiple lesions, each 
lesion of the patient is evaluated separately, and the highest 
grade among the multiple lesions is selected as the final 

assessment of the patient.
A staging assessment of ECE was performed using a 

criteria-based grading system for the Mehralivand grade 
introduced by Mehralivand et al. (19). Imaging diagnosis 
of ECE was based on a four-level grading approach using 
capsular contact length (CCL) of 15 mm or greater, capsular 
irregularity or bulge, and frank breach of the capsule: (I) 
grade 0, no capsular contact or CCL less than 15 mm; 
(II) grade 1, either CCL of 15 mm or greater, or capsular 
irregularity or bulge; (III) grade 2, both CCL of 15 mm or 
greater, and capsular irregularity or bulge; and (IV) grade 
3, frank breach of the capsule at MRI with tumor extension 
into the periprostatic space or invasion of adjacent anatomic 
structures. Each scoring example is shown in Figure 2.

Radiomics analysis

Tumor segmentation
The axial T2WI, high b-value (1,500 s/mm2) DWI, and 
ADC images were the target for radiomics analysis. Firstly, 
different target images of the same patient were matched 
spatially by Elastix software package (v. 4.10, http://elastix.
isi.uu.nl/index.php). Based on T2WI images, DWI and 
ADC images were registered successively, which could 
ensure that three sequences had the same resolution, 
field of vision and orientation. Secondly, the processed 
T2WI, DWI and ADC images (nii format) were imported 
into ITK-SNAP software (v. 4.7.2; https://itk.org/) for 
lesion segmentation. A radiologist with 6 years of prostate 
MRI experience (reader 3) manually outlined the ROI 
on the T2WI, ADC, and DWI images without obtaining 
pathological results. Then, the total volume of interest 
(VOI) of the tumor was obtained. Finally, the results of the 
segmentation were reviewed by a senior radiologist who 
had 12 years of prostate MRI experience (reader 4). For 
some controversial lesions, readers 3 and 4 determined after 

Table 1 Sequences and parameters of the MRI scans

Sequence Repetition (ms) Echo time (ms) Layer thickness (mm) Interlayer spacing (mm) Field of view (mm × mm)

Axial T1WI 680.00 13.00 5 0.50 380×380

Axial T2WI 6,980.00 104.00 3 0 200×200

Sagittal T2WI 3,900.00 89.00 3 0.45 200×200

Coronal T2WI 3,500.00 85.00 3 0.60 220×220

DWI 5,000.00 72.00 3 0 288×288

MRI, magnetic resonance imaging; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging.

http://elastix.isi.uu.nl/index.php).
http://elastix.isi.uu.nl/index.php).
https://itk.org/
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consultation.
To ensure the stability and repeatability of ROI, reader 

4 randomly selected 50 lesions in the enrolled cases to draw 
ROI, and reader 3 randomly selected 50 lesions to repeat 
the ROI one month later. The inter-observer and intra-
observer correlation coefficients were calculated.

Feature extraction
Before feature extraction, the images of each patient were 
standardized to improve the texture recognition rate. 
The T2WI, DWI, and ADC images of each patient were 
firstly resampled to 1×1×1 cm3 voxel sizes to normalize 
the voxel spacing. Then, the voxel intensity discretization 
was accomplished by fixing the bin width at 25 Hounsfield 
unit (HU) to reduce imaging noise and standardize the 
intensity. At last, Z-score normalization was carried out for 

different sequences of each patient to reduce the impact of 
inconsistent image parameters on the changes of radiomics 
features, and the voxel intensity was converted into a 
distribution with a mean of 0 and a standard deviation 
of 1 (20). After image preprocessing completed, FeAture 
Explorer (FAE, v.0.4.0), an open-source radiomics software 
based on pyradiomics software package (21), was used to 
extract features from VOI of each sequence. Based on 
T2WI, DWI, and ADC sequences, 851 radiomics features 
were extracted from the VOI of each sequence of each 
lesion separately. There were a total of 2,553 radiomics 
features, including 42 morphology features, 54 first-order 
statistics features, 15 neighboring gray level dependence 
matrix (NGLDM) features, 42 gray level dependence matrix 
(GLDM) features, 48 gray level size zone matrix (GLSZM) 
features, 48 gray level run length matrix (GLRLM) features, 

A

C

B

D

Figure 2 Each scoring example of Mehralivand grade on axial T2WI (A-D, the red circle is the outline of the lesion, and the red arrow 
indicates the contact relationship between the lesion and capsule). (A) grade 0, the lesion is located on the right of PZ, and there is still 
normal tissue between the lesion and capsule; (B) grade 1, the lesion is located on the left of PZ, and a CCL of 15 mm without capsular 
irregularity or bulge; (C) grade 2, the lesion is located on the left of PZ and a CCL >15 mm with capsular bulge; (D) grade 3, the lesion is 
located on the left of PZ + TZ and well-defined breach of the prostate capsule with tumor extension into periprostatic space. R, right; P 
posterior; T2WI, T2-weighted imaging; PZ, peripheral zone; TZ, transition zone; CCL, curvilinear contact length.
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72 gray level co-occurrence matrix (GLCM) features, and 
2,232 wavelet transform features.

Feature selection and radiomics model construction
All samples were randomly divided into a training set and 
validation set at a ratio of 7:3. To remove the unbalance of 
sample, up-sampling was performed by repeating random 
cases to make positive/negative samples balance. The 
Z-score method was applied to normalize the extracted 
features again by subtracting the mean value and dividing 
it by the standard deviation. The dimension reduction 
was then applied to the normalized features. The Pearson 
correlation coefficient (PCC) was estimated on each pair of 
two features, and the ones with a value larger than 0.9 were 
dropped. Analysis of recursive feature elimination (RFE) 
was used to select features, and the F-value of each feature 
was calculated based on the label. Only the top 20 features 
were reserved. Finally, the different classifiers, including 
least absolute shrinkage and selection operator (LASSO), 
decision tree (DT), logistics regression (LR), random forest 
(RF) and support vector machine (SVM), were trained on 
the selected features to build the radiomics model. The 
optimal model parameters were chosen by 10-fold cross-
validation and finally the predictive value of the radiomics 
model was obtained through the linear combination of the 
coefficients weighted by the selected radiomics features, so 
as to quantify the diagnostic efficiency. All the experiments 
above were run in FAE (21).

Construction of the clinical model and combined 
radiomics-clinical model
The clinical variables (including age, PSA at admission, 
lesion location, biopsy GG, and PI-RASD v2.1 score for 
each patient) were first evaluated by the univariate analysis. 
Then, the multivariate binary LR analysis was used to 
screen out independent risk factors from the significant 
clinical variables in the univariate analysis. The clinical 
model was built by the independent risk factors.

Moreover, a combined radiomics-clinical model was 
constructed by integrating the independent risk factors in 
clinical model and the predictive value of ECE in radiomics 
model. Meanwhile, the nomogram for the prediction of 
ECE was constructed based on the combined model.

Statistical analysis

SPSS 25.0 and MedCalc 18.0 software were used for 
statistical analysis. The counting data were compared by 

the chi-square test. The Shapiro-Wilk test was performed 
to test whether the measurement data was a normal 
distribution. Then, an independent sample t-test or Mann-
Whitney U test was conducted. Parameters including the 
receiver operating characteristic (ROC) curve, the area 
under the curve (AUC), 95% confidence interval (CI), 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy were 
all used to evaluate the performance in above models. 
DeLong test was used to compare the AUCs among these 
models, and the Hosmer-Lemeshow test was used to 
verify the agreement between the combined model and 
the pathological results. Finally, decision curve analysis 
(DCA) was used to quantify the net clinical benefits of each 
predictive method. A P<0.05 was considered statistically 
significant.

Results

Baseline characteristics

A total of 392 PCa patients who received RP were enrolled 
in this study, with 180 (45.9%) lesions having pathologically 
confirmed ECE. General data of patients in the training 
set and validation set are summarized in Table 2. There 
was no statistical significance in the age, PSA, lesion 
location distribution, PI-RADS v2.1 score, Mehralivand 
grade, biopsy GG, and the final pathological result of ECE 
between the two groups (P>0.05).

Performance of clinical model and Mehralivand grade

After univariate and multivariate binary LR analyses, PSA, 
lesion location, biopsy GG, and PI-RADS v2.1 score were 
all independent risk factors of ECE (P<0.05) (Table 3) and 
were used to build a clinical model. The AUC, sensitivity, 
specificity, and accuracy of the clinical model in the 
validation set were 0.749 (95% CI: 0.658–0.840), 87.0%, 
56.3%, and 70.3%, respectively, which were shown in 
Figure 3 and Table 4.

The inter-observer consistency for assessment of 
Mehralivand grade in terms of Kappa value was 0.887, 
indicating a strong consistency between readers 1 and 2. 
The Mehralivand grade of reader 1 was selected as the final 
for the following analysis. The AUC, sensitivity, specificity, 
and accuracy of radiologists’ Mehralivand grade in the 
validation set were 0.774 (95% CI: 0.691–0.857), 70.4%, 
76.6%, and 73.7%, respectively. The performance of the 
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Table 2 General data of patients in the training set and validation set

Variables Total Training set Validation set P value

N (%) 392 274 (69.9) 118 (30.1) –

Age (years), median [IQR] 70 [66, 75] 71 [66, 75] 72 [67, 75] 0.290*

PSA (ng/mL), median [IQR] 16.55 [9.26, 33.05] 15.89 [9.25, 29.91] 17.40 [9.45, 36.69] 0.378*

Lesion location distribution, n (%) 0.747#

PZ 227 (57.9) 160 (58.4) 67 (56.8)

TZ 113 (28.8) 80 (29.2) 33 (28.0)

PZ + TZ 52 (13.3) 34 (12.4) 18 (15.3)

PI-RADS v2.1 score, n (%) 0.295#

2 38 (9.7) 24 (8.8) 14 (11.9)

3 45 (11.5) 27 (9.9) 18 (15.3)

4 85 (21.7) 62 (22.6) 23 (19.5)

5 224 (57.1) 161 (58.8) 63 (53.4)

Mehralivand grade of reader 1, n (%) 0.808#

0 102 (26.0) 70 (25.5) 32 (27.1)

1 105 (26.8) 72 (26.3) 33 (28.0)

2 130 (33.2) 95 (34.7) 35 (29.7)

3 55 (14.0) 37 (13.5) 18 (15.3)

Mehralivand grade of reader 2, n (%) 0.454#

0 111 (28.3) 71 (25.9) 40 (33.9)

1 89 (22.7) 64 (23.4) 25 (21.2)

2 118 (30.1) 85 (31.0) 33 (28.0)

3 74 (18.9) 54 (19.7) 20 (16.9)

Biopsy GG, n (%) 0.917#

GG ≤3 249 (63.5) 175 (63.9) 74 (62.7)

GG ≥4 143 (36.5) 99 (36.1) 44 (37.3)

Final pathologic result of ECE, n (%) 1.000#

ECE positive 180 (45.9) 126 (46.0) 54 (45.8)

ECE negative 212 (54.1) 148 (54.0) 64 (54.2)

*, Mann-Whitney U test; #, chi-squared test. IQR, interquartile range; PSA, prostate specific antigen; PZ, peripheral zone; TZ, transition 
zone; PI-RADS, prostate imaging reporting and data system; GG, Gleason group; ECE, extracapsular extension.

Mehralivand grade in predicting ECE was shown in Figure 3  
and Table 4.

Performance of radiomics model and combined model

The reliability of the radiomics features was quantified 
by inter-observer (as determined by readers 3 and 4), and 

intra-observer statistics (as determined by reader 3 twice) 
tested based on all radiomics features. The mean inter-
observer reliability was 0.805 (95% CI: 0.702–0.869), and 
the mean intra-observer reliability was 0.859 (95% CI: 
0.784–0.913), indicating that the repeatability of feature 
extraction was fine.

After the features normalization of Z-score and the 
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Table 3 Univariate and multivariate binary logistics regression analyses results of clinical variables 

Variables
ECE positive  

(n=180)
ECE negative  

(n=212)

Univariate analysis Multivariate binary logistics regression

t/Z/χ2 P value Odds ratio (95% CI) P value

PSA (ng/mL), median [IQR] 25.84 [13.4, 50.1] 12.16 [7.81, 20.6] −4.567 <0.001* 1.017 (1.003–1.031) 0.015

Age (years), median [IQR] 72 [66, 76] 71 [66, 75] −1.404 0.128* – –

PI-RADS v2.1 score, n (%) 82.108 <0.001# 1.521 (1.069–2.165) 0.020

2 3 (1.7) 35 (16.5)

3 8 (4.4) 37 (17.5)

4 23 (12.8) 62 (29.2)

5 146 (81.1) 78 (36.8)

Biopsy GG, n (%) 49.270 <0.001# 2.038 (1.135–3.661) 0.017

GG ≤3 81 (45.0) 168 (79.2)

GG ≥4 99 (55.0) 44 (20.8)

Lesion location distribution, n (%) 41.670 <0.001# 1.287 (1.066–1.553) 0.024

PZ 96 (53.3) 131 (61.8)

TZ 39 (21.7) 74 (34.9)

PZ + TZ 45 (25.0) 7 (3.3)

*, Mann-Whitney U test; #, chi-squared test. ECE, extracapsular extension; CI, confidence interval; PSA, prostate specific antigen; IQR, 
interquartile range; PI-RADS, prostate imaging reporting and data system; GG, Gleason group; PZ, peripheral zone; TZ, transition zone.

Figure 3 Comparisons of ROC curves among combined model, radiomics model, clinical model, and Mehralivand grade of radiologists in 
the training set (A) and validation set (B). TPR, true positive rate; FPR, false positive rate; ROC, receiver operating characteristic; AUC, 
area under the curve.

Combined model (AUC =0.897) Combined model (AUC =0.894)

Radiomics model (AUC =0.882) Radiomics model (AUC =0.835)

Clinically relevant model (AUC =0.805) Clinically relevant model (AUC =0.749)

Mehralivand grade (AUC =0.746) Mehralivand grade (AUC =0.774)

S
en

si
tiv

ity
 (T

P
R

)

S
en

si
tiv

ity
 (T

P
R

)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity (FPR) 1-Specificity (FPR)

redundant features remotion of RFE, different classifiers 
(including LASSO, DT, LR, RF, and SVM) were used to 
select the optimal radiomics model. The performance of the 
radiomics model using different classifiers in the training 

set and validation set was shown in Table 5. Based on the 
validation set, the AUC of the radiomics model constructed 
by LASSO classifier was 0.835 (95% CI: 0.763–0.908), 
which was higher than that of other classifiers. And the 
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Table 4 Performance of combined model, radiomics model, clinical model and Mehralivand grade of radiologists in the training set and 
validation set

Groups AUC (95% CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)
P value (vs. 

combined model)

Training set

Combined model 0.897 (0.861–0.934) 81.7 (103/126) 81.8 (121/148) 79.2 (103/130) 84.0 (121/144) 81.8 (224/274) –

Radiomics model 0.882 (0.844–0.921) 78.6 (99/126) 82.4 (122/148) 79.2 (99/125) 81.9 (122/149) 80.7 (221/274) 0.567

Clinical model 0.805 (0.753–0.857) 69.0 (87/126) 81.8 (121/148) 76.3 (87/114) 75.6 (121/160) 75.9 (208/274) 0.005

Mehralivand grade 0.746 (0.690–0.801) 69.8 (88/126) 70.3 (104/148) 66.7 (88/132) 73.2 (104/142) 70.1 (192/274) <0.001

Validation set

Combined model 0.894 (0.837–0.950) 90.7 (49/54) 73.4 (47/64) 74.2 (49/66) 90.4 (47/52) 81.4 (96/118) –

Radiomics model 0.835 (0.763–0.908) 77.8 (42/54) 75.0 (48/64) 72.4 (42/58) 80.0 (48/60) 76.3 (90/118) 0.167

Clinical model 0.749 (0.658–0.840) 87.0 (47/54) 56.3 (36/64) 62.7 (47/75) 83.7 (36/43) 70.3 (83/118) 0.005

Mehralivand grade 0.774 (0.691–0.857) 70.4 (38/54) 76.6 (49/64) 71.7 (38/53) 75.4 (49/65) 73.7 (87/118) 0.010

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

sensitivity, specificity, and accuracy of radiomics model 
were 77.8%, 75.0%, and 76.3%, respectively (Figure 3 and 
Table 4). In the LASSO classifier analysis, 20 radiomics 
features were selected to build the final radiomics model. 
The chosen features incorporated nine from ADC, six from 
DWI, and five from T2WI, which were all shown in Table 6.  
Meanwhile, based on the validation set, the AUC of the 
radiomics model was significantly higher than that of the 
clinical model and Mehralivand grade (both P<0.05).

Finally, the AUC, sensitivity, specificity, and accuracy 
of the combined model in the validation set were 0.894 
(95% CI: 0.837–0.950), 90.7%, 73.4%, and 81.4%, 
respectively. The performance of the combined model 
was listed in Figure 3 and Table 4. Based on the validation 
set, the predictive performance in the combined model 

was comparable to the radiomics model (P>0.05, 0.894 vs. 
0.835), but the sensitivity (90.7% vs. 77.8%) and accuracy 
(81.4% vs. 76.3%) were higher in the combined model. 
Meanwhile, the nomogram for the prediction of ECE 
was constructed based on the combined model, and a 
good agreement between the combined model and the 
pathological results was verified by the Hosmer-Lemeshow 
test (Figure 4). At last, the DCA implied that the combined 
model could obtain the maximum net clinical benefits 
compared with the clinical model, Mehralivand grade, and 
the radiomics model (Figure 5).

Discussion

In this study, a combined model was constructed based on 

Table 5 Performance of the radiomics model using different classifiers in the training set and validation set

Classifiers
Training set Validation set

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

LASSO 0.882 (0.844–0.921) 78.6 82.4 0.835 (0.763–0.908) 77.8 75.0

DT 1.000 (1.000–1.000) 100.0 100.0 0.619 (0.531–0.706) 51.9 71.9

LR 0.881 (0.843–0.921) 77.0 83.1 0.828 (0.754–0.902) 77.8 75.0

RF 1.000 (1.000–1.000) 100.0 100.0 0.804 (0.725–0.883) 70.4 76.6

SVM 0.879 (0.838–0.919) 78.6 84.5 0.826 (0.750–0.901) 79.6 75.0

AUC, area under the curve; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; DT, decision tree; LR, 
logistics regression; RF, random forest; SVM, support vector machine.
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Table 6 Selected radiomics features in the radiomics model

Sequence Category Radiomics features Coefficient

ADC GLCM Correlation 0.613772031

GLRLM Run entropy 0.956982134

First-order Mean 0.136096474

GLSZM Small area emphasis 0

GLSZM Size zone nonuniformity normalized −0.328943021

First-order Skewness 0.367917783

GLCM Maximum probability −0.334694605

First-order 10th percentile −0.679633939

First-order Interquartile range −0.39148876

DWI GLDM Busyness 0.258039214

GLSZM Size zone nonuniformity 0.676713449

GLSZM Low gray level zone emphasis −0.627712659

GLSZM Small area high gray level emphasis −0.059995032

GLSZM Small area emphasis 0.229409054

GLSZM Small area low gray level emphasis 0.047497771

T2WI GLSZM Small area low gray level emphasis 0.273222621

First-order Kurtosis −0.128990984

First-order Skewness 0.197613557

GLRLM Long run high gray level emphasis −0.401781693

GLCM MCC 0.303335205

ADC GLCM Correlation 0.613772031

GLRLM Run entropy 0.956982134

First-order Mean 0.136096474

GLSZM Small area emphasis 0

GLSZM Size zone nonuniformity normalized −0.328943021

First-order Skewness 0.367917783

GLCM Maximum probability −0.334694605

ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; T2WI, T2-weighted imaging; GLCM, gray level co-occurrence 
matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; GLDM, gray level dependence matrix; MCC, Matthews 
correlation coefficient.

MRI radiomics and clinical variables for predicting the risk 
probability of ECE in PCa and developing an individualized 
and accurate diagnosis or treatment for PCa patients with 
better prognoses. The study has established the potential 
value of the combined model in predicting the ECE of 
PCa. The combined model performed well in the validation 
set with an AUC of 0.894, and offered the maximum net 

clinical benefits among other models.
Previous studies have shown that ECE of PCa is closely 

related to the choice of treatment options and prognosis 
of patients, especially for disease recurrence and survival 
following RP (3,4,22). Once ECE is suspected, nerves 
and blood vessels may be removed to avoid an adverse 
prognosis (23). The age, PSA, lesion location distribution, 
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Figure 4 Performance of the combined model (A-D). (A) The nomogram for the prediction of ECE constructed based on the combined 
model (GG value in the nomogram: value 1 represents GG ≤3, value 2 represents GG ≥4; position value in the nomogram: value  
1 represents PZ, value 2 represents TZ, value 3 represents PZ + TZ); (B) comparison of the predictive value in the combined model between 
the training set (left) and validation set (right); (C,D) calibration curve for combined model prediction of the consistency between the 
predicted results and pathological results in the training set (C) and validation set (D). PSA, prostate-specific antigen; PI-RADS, Prostate 
Imaging Report and Data System; GG, Gleason group; ECE, extracapsular extension; PZ, peripheral zone; TZ, transition zone.
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percent of biopsy cores positive, biopsy GG, and clinical 
stage of PCa patients are all closely related to the prognosis 
of patients (24). Therefore, researchers have built clinical 
models based on clinical and pathological variables to 
evaluate preoperative ECE in patients with PCa, such 
as the Paitin table (25), the Cancer of the Prostate Risk 

Assessment (CAPRA) score (26), and the Memorial Sloan 
Kettering Cancer Center (MSKCC) nomogram (27), etc. 
However, the diagnostic efficiency of the above models 
varied, with the AUC ranging from 0.609 to 0.805 (28). 
Krishna et al. (29) used PI-RADS v2 to assess ECE by 
measuring tumor size and CCL and analyzing the ADC 
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icons of the lesion. The results found a strong correlation 
between the PI-RADS v2 score and ECE, with an AUC of 
0.72. Matsuoka et al. also found that the PI-RADS score 
could improve the assessment of the clinical stage of the 
tumor and increase the consistency of ECE assessment 
among observers (30). Thus, in this study, the PI-RADS 
v2.1 score was included in clinical variables and it also 
verified as an independent risk factor of ECE. However, 
the AUC of the clinical model in the validation set was 
0.749, and the accuracy was only 70.3%, roughly similar 
to the previous studies, indicating the limited value of the 
clinical model in practice.

Regarding the preoperative diagnosis of ECE in PCa 
patients, MRI has high diagnostic specificity but low 
sensitivity. The results also depend a lot on the different 
experiences of radiologists (31). PI-RADS v2.1 suggests 
some imaging signs of ECE, including lesion proximity 
to prostate capsular, irregular or thickened peripheral 
neurovascular bundles, bulge or disappearance of the 
capsule and extracapsular lesions, etc. (18). However, there 
is no definitive quantitative diagnosis of ECE, and PI-
RADS v2.1 score alone has limited accuracy for assessing 
ECE. Recently, some studies have applied staging assessment 
for ECE (32,33). The Mehralivand grade is an objective and 
quantitative grading standard approach for the diagnosis of 
ECE proposed by Mehralivand et al. for the first time (19).  

In this study, it had verified that there was a fair result in 
the diagnostic efficacy of the Mehralivand grade in the 
validation set. The AUC was 0.774, similar to that in 
Mehralivand et al.’s research (AUC =0.77). However, the 
sensitivity of the Mehralivand grade was slightly low (70.4%) 
in this study, which could lead to some missed diagnoses of 
ECE, resulting in untimely treatment.

The appl icat ion of  radiomics  has  shown good 
performance in the diagnosis of ECE. Ma et al. (34) 
constructed a LASSO regression model based on T2WI to 
predict ECE in PCa, and 17 radiomics features were finally 
selected. The AUC of the radiomics model was 0.883 in the 
validation set, with high sensitivity and specificity, which 
was better than the performance of the Likert score results 
in radiologists (AUC =0.600–0.697). In another study by 
Ma et al. (35), a radiomics model was also built based on 
T2WI to predict the occurrence of ECE in the unilateral 
prostate lobe. The results showed that the AUCs in the 
validation set was 0.821, further verifying the potential 
predictive value of radiomics in ECE. T2WI is a routine 
prostate MRI sequence, which can partly reflect the lesion’s 
histopathological characteristics (36). Meanwhile, DWI 
and ADC are also commonly used functional sequences for 
prostate, which can provide more information to quantify 
tumor heterogeneity for the training of radiomics model, 
and texture features may be more helpful than grayscale-
based statistical or morphological features in the diagnosis 
of ECE (37). Therefore, this study extracted features from 
T2WI, DWI, and ADC.

Different classifiers can produce differences in the results 
of radiomics model. This study showed that the LASSO 
analysis had the highest AUC among other classifiers based 
on the validation set, which was similar to the results of Ma 
et al. (35,36). According to the research, LASSO algorithm 
can ensure that all important radiomics features can not 
only be recognized effectively, but also avoid the overfitting 
problem of classification task (38). So that, it can get better 
results. In addition, RF, DT and other classifiers have good 
performance for nonlinear problems. But in the execution 
of multicollinearity tasks, they may have some problems 
such as difficulties in processing missing data, over-fitting 
and ignoring the correlation among each feature attribute, 
leading to unsatisfactory output results (39). For example, 
in this study, the AUCs of RF and DT classifiers in the 
training set were very high, reaching 1.000, but in the 
validation set, the AUCs were low, only 0.619–0.804, which 
may be due to the phenomenon of overfitting. Then, the 

Figure 5 The decision curve analysis among combined model, 
radiomics model, clinical model, and Mehralivand grade. The 
X-axis represents the threshold probability, and the Y-axis 
represents the net benefit. The decision curve shows that 
the incidence of ECE is in the range of 25% to 85%. ECE, 
extracapsular extension
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final selected radiomics model incorporated nine features 
from ADC, six from DWI, and five features from T2WI. 
Among this selected radiomics features, GLSZM features 
accounted for the largest proportion, which quantifies gray 
level zones in an image. A gray level zone is defined as the 
number of connected voxels that share the same gray level 
intensity, which reflects the heterogeneity on the medical 
image (40). The AUC of radiomics model in the validation 
set was 0.835, which further verified the predictive value of 
radiomics on ECE by a quantitative and objective method.

Moreover, a combined model was constructed by the 
PSA, biopsy GG score, lesion location distribution, PI-
RADS v2.1 score, and the predictive value in radiomics 
model in this study. Based on the validation set, the AUC 
reached 0.894, which showed higher sensitivity and 
accuracy than the radiomics model, but the AUC value 
between them was still comparable (P>0.05, 0.894 vs. 
0.835). Xu et al. (41) built a combined nomogram based 
on multiparametric MRI by integrating a radiomics model 
and a clinical model (considering PSA and biopsy Gleason 
score) for preoperative prediction of ECE in PCa patients. 
Their results showed satisfactory diagnostic performance 
in ECE, with the AUCs of the radiomics model and 
combined nomogram being 0.865 and 0.857 for the 
validation set, respectively. The AUC was slightly higher 
in the radiomics model than in the combined nomogram, 
but the prediction efficiency was roughly consistent in these 
two models. The results in this study are slightly different 
from those of Xu et al. (41) This may be related to the 
different features extracted from different sequences and 
the differences between the clinical variables included in 
the combined model. So far, few studies have reported on 
the complementarity of clinical variables and radiomics in 
the prediction of ECE in PCa, so further research is also 
needed to verify these results.

This study also has some limitations. First, it is a 
retrospective single-center study without an independent 
external validation set to evaluate the model’s generalization 
ability. Second, all ROIs used in this study were outlined 
manually, and the results largely depended on the 
experience of radiologists. Semi-automatic or automatic 
segmentation of ROI should be developed and adopted in 
the future. Third, this study only focused on the existence 
of ECE in PCa, and the value of ECE in the prediction 
of biochemical recurrence or prognosis of PCa was not 
explored. It is expected that further research will be carried 
out in a later study.

Conclusions

The proposed combined model based on MRI radiomics 
and clinical variables has prospected the predictive value 
for ECE in PCa patients. It can obtain the maximum 
net clinical benefits compared to the clinical model, 
Mehralivand grade of radiologists, and radiomics model, 
which could be conducive to the preoperative individualized 
and accurate diagnosis and treatment of patients.
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