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Background: Lung cancer is one of the most common epithelial malignancies worldwide, accounting
for the highest number of new cases and deaths. Metabolism is the sum of chemical reactions that produce
energy to keep an organism alive. Several studies have shown that glucose and lipid metabolic disorders are
common phenomena related to cancer cell genesis and progression.

Methods: We screened the differentially expressed genes (DEGs) of lung adenocarcinoma (LUAD)
samples of The Cancer Genome Atlas (TCGA) database, the Gene Set Enrichment Analysis (GSEA),
and Gene Card database metabolism-related data, the metabolism-related DEGs of LUAD, as well as
the univariate Cox regression analysis genes, for identifying significant outcome-related genes. The least
absolute shrinkage and gene selection operator (LASSO) analysis was performed to establish the best risk
model.

Results: Our study aimed to establish a lipid metabolism-related model for predicting LUAD prognosis.
Furthermore, our model’s prognosis prediction power was evaluated by survival analysis. This study finally
identified 11 DEGs related to lipid metabolism that were significantly associated with the prognosis of lung
adenocarcinoma. It provided a new idea for the treatment of high-risk lung adenocarcinoma patients.
Conclusions: The constructed clinical prognosis model of lung adenocarcinoma related to lipid

metabolism provides a new idea for clinical treatment of lung adenocarcinoma.
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Introduction deaths, a total of 710,000 lung cancer patients died in 2020 (1),
thus, making lung cancer rank first in both new cases and
Background . . . . . .
mortality rates in China. Lung cancer is subdivided into
Lung cancer is a very common malignancy worldwide. two types: small cell lung cancer (SCLC) and non-small
According to World Health Organization (WHO) statistics, cell lung cancer (NSCLC); however, the latter occupies
there were 4.57 million new cancer cases in China in 2020, 80-85% of the entire lung cancer cases (2), and has a poor
including 820,000 lung cancer cases. Out of 3 million cancer prognosis. Lung adenocarcinoma (LUAD) represents a
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major NSCLC subtype. LUAD mainly originated from
bronchial mucosa epithelium, and a few from mucous
glands of large bronchi. It is the most common type of lung
cancer among non-smokers, more common in women than
in men, and more likely to occur in young people than other
types of lung cancer. It takes >10 years for lung cancer to
progress through different stages. Often, the symptoms of
physical discomfort, such as cough and fatigue, are ignored
and are considered symptoms of other diseases. Therefore,
detection of early stages of lung cancer becomes difficult as
undetected I/I1 stages often develop into full-blown lung
cancer cases. If diagnosed early, the initial stages can be
surgically treated. Hence, early detection and treatment of
cancer are recommended for a good prognosis since it is
difficult to treat lung cancer in its advanced stages.

Lipids, along with nucleic acids and proteins, are
the essential structural units that form cells and help in
biofilm formation. Since lipids are important for cellular
metabolism and storage, they exert a critical influence on
signal transduction in various cell processes. Regulating lipid
metabolism processes, like lipid absorption, biosynthesis,
and hydrolysis, are critical for maintaining homeostasis.
During tumor progression, nutrient availability in the
tumor microenvironment (TME) constantly changes; thus,

Highlight box

Key findings
* A new prognostic model related to lipid metabolism was
constructed.

What is known and what is new?

e In previous studies, it was generally found that LDHA, ACSS3,
ESYT3, CFTR, CYP17Al were differentially expressed in various
types of cancer. At present, there is no comprehensive screening
and systematic evaluation of LMDG in LUAD.

® This study screened the differentially expressed genes of lipid
metabolism (LMDG), revealing its prognostic value and clinical
and pathological parameters. In addition, a risk model involving
LMDG is constructed using the minimum absolute contraction
and selection operator (LASSO).

What is the implication, and what should change now?

e This study provides a risk model for prognostic evaluation and
identifies potential therapeutic targets for LUAD.

* Additional clinical data are needed to validate the model.
In addition, the interaction mechanism between LMDG

and downstream molecules needs to be further explored.
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cancer cells maintain their growth, invasion, migration,
metastasis, and survival through lipid metabolism.

Rationale and knowledge gap

An elevated rate of lipid synthesis contributes to fast
tumor cell growth as well as fulfilling their increased
energy demands. Furthermore, critical genes related to
lipid generation like fatty acid synthase (FAS), acetyl-
CoA carboxylase (ACC), ATP citrate lyase (ACLY), and
a transcription factor (TF) Sterol regulatory element-
binding protein 1 (SREBP1), modulate gene expressions
and can inhibit carcinogenesis; moreover, cancer cell
proliferation can be efficiently suppressed by chemical
inhibitors or gene knockouts (3). Another lipid metabolism
enzyme related to cancer progression is Stearoyl-CoA
Desaturase-1 (SCD1), which converts saturated fatty acids
(SFA) into monounsaturated fatty acids (MUFA). SCD1
inhibition in lung cancer cells markedly suppresses the
in-vitro tumor cell growth, invasion, survival, and in-vive
tumorigenicity (4). Moreover, SCD1 inhibition occurs by
the reduction of MUFA content to prevent the G1/S phase
cell cycle progression while inducing apoptosis (4), thus,
exerting a critical effect on lung carcinogenesis (5). It has
also been demonstrated that upregulated SCD1 expression
may promote cancer development by either activating the
AKT signaling pathway or inhibiting AMPK and GSK3
pathways, thereby promoting downstream B-catenin activity
and activating tumor growth signals in other tumors like
prostate cancer.

Objective

Lipid metabolism can be a useful prognostic marker
for several malignant tumors (6-8). However, various
lipid metabolism changes and their potential to become
biomarkers related to the survival and treatment of LUAD
require further exploration.

Based on clinical data of The Cancer Genome
Atlas (TCGA)-derived LUAD cases, the present study
constructed one lipid metabolism-related prognosis
prediction model and verified it internally as well as
externally. Additionally, functional enrichment and TME
analyses were also performed to explore its working
mechanism, which can be used later for providing
personalized treatment and improving patient survival. We

Transl Cancer Res 2023;12(8):2099-2114 | https://dx.doi.org/10.21037/tcr-23-375



Translational Cancer Research, Vol 12, No 8 August 2023

present this manuscript in accordance with the TRIPOD
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-375/rc).

Methods
Data extraction and differentially expressed genes (DEGs)

The clinical characteristics and RINA-seq data of TCGA-
LUAD cases were provided by the University of California
Santa Cruz (UCSC) Xena website (https://xena.ucsc.edu)
and were log2-transformed as well as normalized to select
DEGs. Out of the total 5,395 differential LUAD genes
meeting the threshold values: [logFCI >1 and P<0.05, 2022
DEGs with logFC value >1 and 3,373 genes were divided
into up- and down-regulated gene expression groups,
respectively.

Based on Molecular Signatures Database (MSigDB)
and Gene Set Enrichment Analysis (GSEA, https://www.
gsea-msigdb.org/gsea) database, we searched for lipid
metabolism-related genes (LMRGs) with the keyword
“datasets with lipid metabolism”. Simultaneously, LMRGs
were extracted from the Gene Card and repetitive GSEA
genes were deleted; these genes were later intersected with
LUAD DEGs to obtain lipid metabolism-related DEGs
(LMDGs). The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013).

DEGs and functional analyses

The identified LMDGs were subjected to a differential
analysis with the edgeR Bioconductor package (https://
bioconductor.org/packages/release/bioc/) in the TCGA
cohort, followed by volcano plot visualization. DEGs were
identified at the thresholds of P<0.05 and IlogFCl >1.
Furthermore, DEGs were intersected with lipid metabolism
genes to obtain LMDGs in subsequent analyses. A Venn
diagram visualized overlapping datasets.

Gene expression RNA sequence profiles obtained at
the UCSC Xena website (https://xena.ucsc.edu) and Gene
Expression Omnibus (GEO) datasets (GSE30219 and
GSE72094) were designated as training and validation
cohorts, respectively.

Gene functional enrichment represents an essential
process that translates high-throughput-derived molecular
results for obtaining biological significance. Statistical
analysis and visualization of LMDG functions were carried
out with the R software cluster Profiler package by Gene
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Ontology (GO) as well as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis. Moreover, P<0.05 denoted

statistical difference.

Prognosis prediction model establishment

LMDGs underwent univariate Cox proportional hazards
regression for selecting significant overall survival (OS)-
related genes from the TCGA training cohort. Thereafter,
genes obtained were analyzed by LASSO Cox regression.
Afterward, LMDGs were incorporated into the multivariate
model. A risk score was determined by genes that had
nonzero coefficients. Therefore, the patient risk scores
were determined as: risk score =genel expression* j1 +
gene2 expression® j2 + ... + genex expression*jx, with j
representing the coefficient. Thereafter, TCGA-LUAD
cases were classified as high- or low-risk groups based on
the median risk score. There are 248 patients at high risk
and 249 patients at low risk. For both GEO validation
cohorts, the above formula and threshold were used.

We used univariate and multivariate regression analyses
together to analyze if the LMDG-based prognosis
prediction model independently predicted patient
prognosis. Kaplan-Meier (KM) survival analysis was utilized
to analyze the patient survival, while the group differences
were analyzed by a log-rank test. The ROC curve was
later plotted to analyze the sensitivity and specificity of our
prognosis model. The model discrimination was determined

based on the AUC values.

Nomogram establishment and verification

We built a prognosis prediction nomogram for assessing the
3-and 5-year survival probabilities of LUAD cases using the
rms R package. Various independent parameters were also
included like age, gender, pathological stage, tumor node
metastasis classification (TINM) staging, and risk scores.
Nomogram discrimination and calibration were determined
by C-index and calibration curves relative to the actual
survival, respectively.

Prediction of chemotherapy drug response

Additionally, the chemotherapeutic responses were
predicted in LUAD cases according to the Genomics
of Drug Sensitivity in Cancer (GDSC) database. We
chose nine common drugs, including cisplatin, docetaxel,
doxorubicin, erlotinib, etoposide, gemecitabine, paclitaxel,
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rapamycin, and vinorelbine. Our results were calculated
with a pRRophetic R package along with the determination
of the drug’s half-maximal inhibitory concentration (IC50)
values.

Statistical analysis

Wilcoxon rank-sum test was utilized to select DEGs, while
Fisher’s exact test was utilized for comparing variables.
Prognosis-associated genes were identified through
univariate OS Cox regression analysis.

KM analysis and the log-rank test were conducted
to compare patient survival between different groups.
Spearman’s correlation analysis was carried out to analyze
the relationship between the prediction model’s risk and
immune scores, respectively. R software (version 4.0.0,
R-project.org), along with associated packages, was used for
statistical analysis. Furthermore, P<0.05 denoted statistical
difference.

Results
Identification of LMD Gs within LUADs

TCGA-LUAD data were obtained from the UCSC Xena
website after performing the Wilcoxon rank-sum test
with threshold values of P<0.05 and Log2FC <-1 or >1.
We obtained 5,395 differential genes from LUAD and
adjacent normal tissues. Additionally, 1,133 LMRG genes
were found from the GESA and Gene Card databases, of
which 273 were differential genes in TCGA-LUAD DEGs
(Table S1). Moreover, 117 and 156 genes showed down-
and up-regulation, which were observed from the volcano
plot and heatmap, respectively (Figure 14,1B). Lastly, the
intersection of LUAD-DEGs with LMRGs was represented
by the Venn diagram (Figure 1C).

Functional analysis of LMDGs

For exploring LMDG functions, we carried out GO and
KEGG enrichment analyses. Based on GO enrichment,
LMDGs were correlated with fatty acid metabolism,
organic acid biosynthesis, and glycerol lipid metabolism
(Figure 1D). A subsequent KEGG enrichment analysis
discovered that LMDGs were significantly responsible
for the peroxisome proliferator-activated receptor (PPAR)
pathway and glycerophospholipid metabolism (Figure 1E).

© Translational Cancer Research. All rights reserved.
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Prognosis prediction nomogram based on LMD Gs

Univariate Cox regression analysis detected 83 LMDGs
significantly associated with OS (Figure 2A). Figure 2B,2C
displays a differential analysis of LMDGs in LUAD cases
compared with the healthy controls (normal people without
lung cancer). To avoid model overfitting, we conducted
LASSO regression analysis (Figure 2D,2E) which identified
11 genes (LDHA, SECI4L3, LPL, ACSS3, GAPDH,
ESYT3, SEC14L4, CYP17A1, CFTR, SLC16A41, and
CIDEC) from risk score equation: Risk score = (LDHA *
0.028984915874997 — SECI4L3 x 0.261183701168222 -
LPL*0.0337878152386764 - ACSS3 x 0.178280741516102
+ GAPDH * 0.128193589061992 - ESYT3 x
0.0811858233929162 - SECI4L4 x 0.13673431029615
- CYP1741 x 0.16678096110078 - CFTR *
0.0334880885905273 + SLCI16A1 x 0.00307791690707033
+ CIDEC * 0.0685768082639508).

LMDG-based signature’s prognostic value

TCGA-derived cases were divided into high-or low-risk
groups based on the median risk score (Figure 34,3B).
Figure 3C displays additional details of 11 genes in both
groups. A time-dependent ROC curve analysis was
conducted to analyze our signature performance, with
AUCs of 0.668, 0.678, and 0.722 for predicting 1-, 3-,
and S-year OS, respectively (Figure 3D). Additionally, all
high-risk cases displayed poorer OS (Figure 3E, P<0.05),
suggesting that our 11 genes-based risk model was highly
accurate in predicting OS for LUADs.

Stability of LMD G-based risk score signature

For checking our LMDG-based signature’s performance,
we classified validation cohorts (GSE30219 and GSE72094)
as low- or high-risk groups based on the threshold and
risk score formula in the TCGA cohort (Figure 3). Based
on survival analysis (Figure 3F,3H), all high-risk cases
depicted poorer OS compared with the low-risk cases of
GSE30219 (P=0.0001718) and GSE72094 (P=0.0001061).
For GSE30219, the AUCs for predicting the OS at 1,
3, and 5 years were 0.631, 0.674, and 0.673, respectively
(Figure 3G). For the GSE72094 cohort, AUCs were 0.643,
0.690, and 0.619, respectively (Figure 3I). Therefore, these
findings confirmed that our constructed signature was
robust and universal.
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Figure 2 Construction of a prognostic gene sign
that the top ten differential genes related to lipid

ature in lipid metabolism-related DEGs. (A) Univariate Cox regression analysis showed
metabolism were significantly correlated with OS. (B,C) The expression of 83 LMDGs

associated with OS. (D) LASSO coefficient profile plots of the 83 prognostic-related genes showing that the variations in the size of the

coefficients of parameters shrink with an increasing value of the k penalty. (E) Penalty plots of the LASSO model of 83 prognostic genes,

with error bars representing standard errors, to
differentially expressed genes; OS, overall surviva

and selection operator; ns, no significance.
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identify the most useful prognostic genes. *, P<0.05; **, P<0.01; ***, P<0.005. DEGs,
l; LMDGs, lipid metabolism-related differential genes; LASSO, least absolute shrinkage
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Figure 3 Construction of LMDGs formula and verification of its stability. (A) Distribution of risk scores in training sets. (B) Survival state
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LMDG-based signature independently predicted the
patient’s prognosis

Because our constructed LMD G-based signature was
extensively verified with independent cohorts, univariate
and multivariate Cox regression analyses were conducted to
evaluate whether our LMRG-based signature independently
predicted early LUAD prognosis. Based on this, the risk
score independently predicted poor OS (Figure 37, HR
=6.816, 95% CI: 3.282-14.158, P<0.001) after adjusting
additional.

© Translational Cancer Research. All rights reserved.

Biological pathway enrichment, along with functional
annotation

Since the as-constructed LMD G-based signature performed
well in predicting LUAD prognosis, we analyzed its
associated mechanisms. Firstly, we completed a differential
analysis of both groups (Ilog2 FCI >1, adjusted P<0.05).
As a result, for the high-risk group, 97 and 34 genes
showed up- and down-regulation, respectively (Figure 44).
Afterward, these DEGs underwent GO and KEGG
analyses. Moreover, a biological process analysis showed
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that hypoxia and humoral immune response enriched DEGs
(Figure 4B,4C).

Determination of lipid metabolism gene-related risk score-
related mutation landscape

A comparison of both risk groups regarding their mutation
landscapes revealed that the high-risk group exhibited a
higher mutation frequency; moreover, TTN and TP53 were
the most frequent mutations among them (Figure 4D,4E).

Immune status analysis

The relationship between the lipid metabolism DEGs-
related risk score and the immune status of TCGA patients
was analyzed, which showed significant changes in the
immune cells (Figure 4F,4G). There were significant
differences in immune-related pathways, such as type II
interferon (IFN) response (Figure 4H). A comparison of
immune checkpoint-related genes between the two groups
revealed that the high-risk patients showed a significant
reduction in expressions of CD40LG, CD160, TNFSF15,
BTLA, TNFSF14, CD200R1, and IDO2 (Figure 4I).
Based on this, high-risk patients displayed enhanced tumor
immune activities when compared with the low-risk cases.

Prediction of chemotberapy responses in cases with diverse
lipid metabolism-related risk score

Additionally, chemotherapeutic responses were predicted for
both risk groups by using the GDSC database to determine
possible treatments. Nine common drugs for treating
NSCLC were adopted in further analyses. Subsequently,
IC50 values of nine agents (cisplatin, docetaxel, doxorubicin,
gemcitabine, erlotinib, etoposide, paclitaxel, rapamyecin,
and vinorelbine) were significantly increased among low-
risk cases relative to their high-risk counterparts (Figure 5),
suggesting the higher chemoresistance of LUAD cases
which displayed lower risk scores when compared with
those having increased risk scores.

Nomogram establishment and validation for lipid
metabolism gene-related risk score

Based on clinical factors like age, TNM staging, gender,
smoking status, and LMDG, a nomogram was established
(Figure 6). As shown, the risk factors were related to specific
estimates for an accurate survival prediction at 1, 3, and
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5 years (Figure 7A-7C). Thus, our results exhibited the
clinical efficacy of LMDGs-based signature in LUAD.

Discussion

Lung cancer is one of the most common malignancies
worldwide, accounting for a higher number of new cases and
mortality. LUAD is a frequently seen pathological subtype,
occupying around 40% of all lung cancer subtypes (9).
Due to its low early diagnosis rate and poor prognosis,
exploring an efficient and stable prognosis model for
its treatment regime is of great importance. Metabolic
reprogramming exerts a critical effect on carcinogenesis and
cancer progression as cancer cells use metabolic pathways
for maintaining rapid proliferation, survival, migration,
and invasion (10). Additionally, lipid metabolism is closely
associated with biofilm formation, signaling, and energy
generation, thus, affecting the interactions between immune
response, drug resistance, and TME within a variety of
malignant tumors (11,12). Another study (13) reported
that lipid metabolism disorders might be associated with
cancer occurrence and migration. Our study focused on
exploring the relationship of lipid metabolism with LUAD
by including lipid metabolism genes for improving the
accuracy of prognosis prediction and providing appropriate
clinical interventions. Among all prognostic biomarkers, few
specific biological processes-based polygenic markers were
superior in predicting cancer prognosis (14-16). Therefore,
we investigated the role of prognostic gene signatures in
early LUAD cases showing lipid metabolism changes.

In this study, 273 LMDGs were identified through
intersecting lipid metabolism genes with LUAD DEGs
from three databases, GSEA, Gene Card, and UCSC. An
enrichment analysis proved that the DEGs were associated
with fatty acid metabolism, which is the basic substrate
required for energy storage, membrane synthesis, and
signal analysis in tumor cells (17). Through a univariate
Cox regression analysis, 83 LMDGS were significantly
correlated with patient survival. Finally, 11 genes were
selected from TCGA and GEO datasets through LASSO
analysis as prognostic gene signatures and were included
in LUAD prognostic formula, which classified cases as
low- or high-risk groups. This signature was verified based
on internal subsets and external validation sets. However,
OS was significantly different in low-risk when compared
with the high-risk groups, showing that our signature
model was associated with multiple lipid metabolic
pathways. A multivariate Cox regression revealed that risk
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Figure 4 Analysis of biological processes, pathways, mutations and immune status related to LMDGs. (A) Heatmap of the differentially
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score independently predicted the patient’s prognosis.
Additionally, the signature’s prognosis prediction
mechanism in LUAD cases was significantly associated with
humoral immune response. The human immune system
has a strong antitumor capacity, and immunotherapy is
proposed as an effective treatment for tumors. Several
studies suggest that immunotherapy can significantly
improve the survival of LUAD patients (18-22).
Furthermore, we explored the relationship of the LMDG
model with immune status and response to chemotherapy
drugs. The results exhibited that our model was associated
with drug sensitivity and immune checkpoint and validated
the finding of whether patients were suitable to receive
immunotherapy or chemotherapy.

In conclusion, the prognostic model consisted of 11
genes, namely, LDHA, SEC14L3, LPL, ACSS3, GAPDH,
ESYT3, SEC14L4, CYP17A1, CFTR, SLCI6AI1, and
CIDEC, most of which were related to tumor proliferation,
migration, and invasion. For example, LDHA lactate
dehydrogenase, a key enzyme in the glycolytic pathway,
is closely related to the occurrence, metastasis as well as
poor tumor survival, like breast cancer (BC), lung cancer,
and gastric cancer (GC) (23-25). Additionally, ACSS3
can suppress prostate cancer development (26), as well
as enhance GC and bladder cancer cell growth, invasion,
and migration, thus, reducing patients’ OS time (27,28).

© Translational Cancer Research. All rights reserved.

Haiyan’s study (29) indicated that high expression of ESYT3
in BC enhanced cancer cell growth and migration, thereby
promoting BC occurrence and development along with
poor patient survival. Another study by Zhao (30) showed
that a low expression of ESYT3 in LUAD affected cell cycle
pathways and the patient’s prognosis. The CFTR is an ion
channel. A study (31) reported that CFTR affected cancer
cell growth by regulating the cell cycle and influenced cell
migration by regulating metabolic pathways. Chuang’s
results (32) showed that CYPI7A1, a member of the
cytochrome P450 family, enhanced glioma cell growth.
Based on the characteristics of the 11 genes in our study, a
risk score was performed for each LUAD patient to identify
high-risk patients.

This feature was validated in LUAD internal cohort
outcomes. Moreover, the assessment of clinical parameters,
including age, gender, smoking status, and pathological
TNM staging, displayed that our model was only
associated with the risk score, suggesting that the risk score
independently predicted the prognosis. Although these
characteristics correlated with prognosis prediction among
different cohorts, we focused on its associated mechanisms.
A total of 131 DEGs were found in both risk groups.
Based on GO and KEGG enrichment analyses, the DEGs
showed major enrichment in the humoral immune response
pathway, thereby indicating the interplay of different
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Figure 5 Differences in susceptibility to common anticancer drugs between high and low risk groups. (A) IC50 of cisplatin between high
and low risk groups. (B) IC50 of docetaxel between high and low risk groups. (C) IC50 of doxorubicin between high and low risk groups.
(D) IC50 of erlotinib between high and low risk groups. (E) IC50 of etoposide between high and low risk groups. (F) IC50 of gemcitabine
between high and low risk groups. (G) IC50 of paclitaxel between high and low risk groups. (H) IC50 of rapamycin between high and low
risk groups. (I) IC50 of vinorelbine between high and low risk groups. IC50, half maximal inhibitory concentration.

immune activities. In our as-established model, TP53 and
TTN displayed more mutations in the high-risk category
as compared to low-risk groups. Mutations of these two
genes are associated with immunotherapy (33). A study
has shown that p53 deletion or mutation may affect T cell
activity and thus lead to immune evasion (34). Hence, the
correlation between LMDG, immunotherapeutic response,

© Translational Cancer Research. All rights reserved.

and immune microenvironment was further explored. Our
results showed that low-risk patients displayed an increased
immune cell [interstitial dendritic cells (iDCs), Mast cells,
and neutrophils] enrichment relative to their high-risk
counterparts. However, based on immune response results,
low-risk patients had reduced expression levels compared
with the high-risk group, thus advocating enhanced
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immune activity of high-risk patients. Besides, the most
important pathway in high versus low-risk groups was the
humoral immune response, suggesting that immune and
inflammatory activities were potential mechanisms affecting
LUAD recurrence and survival.

Finally, we also predicted the therapeutic response of
commonly used chemotherapy agents by analyzing whether
the characteristic model was effective in predicting LUAD
prognosis. Consequently, IC50 levels of nine common
chemotherapy drugs increased among the low-risk cases
relative to their high-risk counterparts, indicating that cases
displaying high-risk scores showed high chemosensitivity.
Nine conventional chemotherapy drugs used for treating
LUAD include cisplatin, docetaxel, etoposide, gemcitabine,
paclitaxel, vinorelbine, doxorubicin, erlotinib, and sorafenib
(35-39). Our results also indicate that our signature might
be utilized for personalizing treatments for LUAD cases.
Additionally, the nomogram built for predicting LUAD
prognosis can also provide better clinical guidance. The
figure also demonstrates the importance of LMDG in
predicting LUAD prognosis.

Although our characteristic model provides new hope
for predicting LUAD survival, immunotherapy, and
chemotherapy response, this study had a few limitations. All
data sources were from public databases and needed to be
verified experimentally. Collectively, the lipid metabolism
prognostic model was built for LUAD patients, which can
be used to effectively predict immune checkpoint inhibitors
and chemotherapeutic responses, thereby targeting patients
for personalized treatments.

Conclusions

The prognosis model of 11 genes related to lipid metabolism
was constructed for LUAD, and a new idea was provided
for the treatment of high-risk lung adenocarcinoma patients
based on immune function mutation.
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