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Introduction

Background

Lung cancer is a very common malignancy worldwide. 
According to World Health Organization (WHO) statistics, 
there were 4.57 million new cancer cases in China in 2020, 
including 820,000 lung cancer cases. Out of 3 million cancer 

deaths, a total of 710,000 lung cancer patients died in 2020 (1),  
thus, making lung cancer rank first in both new cases and 
mortality rates in China. Lung cancer is subdivided into 
two types: small cell lung cancer (SCLC) and non-small 
cell lung cancer (NSCLC); however, the latter occupies 
80–85% of the entire lung cancer cases (2), and has a poor 
prognosis. Lung adenocarcinoma (LUAD) represents a 
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major NSCLC subtype. LUAD mainly originated from 
bronchial mucosa epithelium, and a few from mucous 
glands of large bronchi. It is the most common type of lung 
cancer among non-smokers, more common in women than 
in men, and more likely to occur in young people than other 
types of lung cancer. It takes ≥10 years for lung cancer to 
progress through different stages. Often, the symptoms of 
physical discomfort, such as cough and fatigue, are ignored 
and are considered symptoms of other diseases. Therefore, 
detection of early stages of lung cancer becomes difficult as 
undetected I/II stages often develop into full-blown lung 
cancer cases. If diagnosed early, the initial stages can be 
surgically treated. Hence, early detection and treatment of 
cancer are recommended for a good prognosis since it is 
difficult to treat lung cancer in its advanced stages.

Lipids, along with nucleic acids and proteins, are 
the essential structural units that form cells and help in 
biofilm formation. Since lipids are important for cellular 
metabolism and storage, they exert a critical influence on 
signal transduction in various cell processes. Regulating lipid 
metabolism processes, like lipid absorption, biosynthesis, 
and hydrolysis, are critical for maintaining homeostasis. 
During tumor progression, nutrient availability in the 
tumor microenvironment (TME) constantly changes; thus, 

cancer cells maintain their growth, invasion, migration, 
metastasis, and survival through lipid metabolism.

Rationale and knowledge gap

An elevated rate of lipid synthesis contributes to fast 
tumor cell growth as well as fulfilling their increased 
energy demands. Furthermore, critical genes related to 
lipid generation like fatty acid synthase (FAS), acetyl-
CoA carboxylase (ACC), ATP citrate lyase (ACLY), and 
a transcription factor (TF) Sterol regulatory element-
binding protein 1 (SREBP1), modulate gene expressions 
and can inhibit carcinogenesis; moreover, cancer cell 
proliferation can be efficiently suppressed by chemical 
inhibitors or gene knockouts (3). Another lipid metabolism 
enzyme related to cancer progression is Stearoyl-CoA 
Desaturase-1 (SCD1), which converts saturated fatty acids 
(SFA) into monounsaturated fatty acids (MUFA). SCD1 
inhibition in lung cancer cells markedly suppresses the  
in-vitro tumor cell growth, invasion, survival, and in-vivo 
tumorigenicity (4). Moreover, SCD1 inhibition occurs by 
the reduction of MUFA content to prevent the G1/S phase 
cell cycle progression while inducing apoptosis (4), thus, 
exerting a critical effect on lung carcinogenesis (5). It has 
also been demonstrated that upregulated SCD1 expression 
may promote cancer development by either activating the 
AKT signaling pathway or inhibiting AMPK and GSK3 
pathways, thereby promoting downstream β-catenin activity 
and activating tumor growth signals in other tumors like 
prostate cancer.

Objective

Lipid metabolism can be a useful prognostic marker 
for several malignant tumors (6-8). However, various 
lipid metabolism changes and their potential to become 
biomarkers related to the survival and treatment of LUAD 
require further exploration.

Based on cl inical  data of  The Cancer Genome 
Atlas (TCGA)-derived LUAD cases, the present study 
constructed one lipid metabolism-related prognosis 
prediction model and verified it internally as well as 
externally. Additionally, functional enrichment and TME 
analyses were also performed to explore its working 
mechanism, which can be used later for providing 
personalized treatment and improving patient survival. We 

Highlight box

Key findings 
•	 A new prognostic model related to lipid metabolism was 

constructed.

What is known and what is new? 
•	 In previous studies, it was generally found that LDHA, ACSS3, 

ESYT3, CFTR, CYP17A1 were differentially expressed in various 
types of cancer. At present, there is no comprehensive screening 
and systematic evaluation of LMDG in LUAD.

•	 This study screened the differentially expressed genes of lipid 
metabolism (LMDG), revealing its prognostic value and clinical 
and pathological parameters. In addition, a risk model involving 
LMDG is constructed using the minimum absolute contraction 
and selection operator (LASSO).

What is the implication, and what should change now?
•	 This study provides a risk model for prognostic evaluation and 

identifies potential therapeutic targets for LUAD.
•	 Additional clinical data are needed to validate the model. 

In addition, the interaction mechanism between LMDG 
and downstream molecules needs to be further explored.
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present this manuscript in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-375/rc).

Methods

Data extraction and differentially expressed genes (DEGs)

The clinical characteristics and RNA-seq data of TCGA-
LUAD cases were provided by the University of California 
Santa Cruz (UCSC) Xena website (https://xena.ucsc.edu) 
and were log2-transformed as well as normalized to select 
DEGs. Out of the total 5,395 differential LUAD genes 
meeting the threshold values: |logFC| >1 and P<0.05, 2022 
DEGs with logFC value >1 and 3,373 genes were divided 
into up- and down-regulated gene expression groups, 
respectively.

Based on Molecular Signatures Database (MSigDB) 
and Gene Set Enrichment Analysis (GSEA, https://www.
gsea-msigdb.org/gsea) database, we searched for lipid 
metabolism-related genes (LMRGs) with the keyword 
“datasets with lipid metabolism”. Simultaneously, LMRGs 
were extracted from the Gene Card and repetitive GSEA 
genes were deleted; these genes were later intersected with 
LUAD DEGs to obtain lipid metabolism-related DEGs 
(LMDGs). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

DEGs and functional analyses

The identified LMDGs were subjected to a differential 
analysis with the edgeR Bioconductor package (https://
bioconductor.org/packages/release/bioc/) in the TCGA 
cohort, followed by volcano plot visualization. DEGs were 
identified at the thresholds of P<0.05 and |logFC| >1. 
Furthermore, DEGs were intersected with lipid metabolism 
genes to obtain LMDGs in subsequent analyses. A Venn 
diagram visualized overlapping datasets.

Gene expression RNA sequence profiles obtained at 
the UCSC Xena website (https://xena.ucsc.edu) and Gene 
Expression Omnibus (GEO) datasets (GSE30219 and 
GSE72094) were designated as training and validation 
cohorts, respectively.

Gene functional enrichment represents an essential 
process that translates high-throughput-derived molecular 
results for obtaining biological significance. Statistical 
analysis and visualization of LMDG functions were carried 
out with the R software cluster Profiler package by Gene 

Ontology (GO) as well as the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis. Moreover, P<0.05 denoted 
statistical difference.

Prognosis prediction model establishment

LMDGs underwent univariate Cox proportional hazards 
regression for selecting significant overall survival (OS)-
related genes from the TCGA training cohort. Thereafter, 
genes obtained were analyzed by LASSO Cox regression. 
Afterward, LMDGs were incorporated into the multivariate 
model. A risk score was determined by genes that had 
nonzero coefficients. Therefore, the patient risk scores 
were determined as: risk score =gene1 expression* j1 + 
gene2 expression* j2 + … + genex expression*jx, with j 
representing the coefficient. Thereafter, TCGA-LUAD 
cases were classified as high- or low-risk groups based on 
the median risk score. There are 248 patients at high risk 
and 249 patients at low risk. For both GEO validation 
cohorts, the above formula and threshold were used.

We used univariate and multivariate regression analyses 
together to analyze if the LMDG-based prognosis 
prediction model independently predicted patient 
prognosis. Kaplan-Meier (KM) survival analysis was utilized 
to analyze the patient survival, while the group differences 
were analyzed by a log-rank test. The ROC curve was 
later plotted to analyze the sensitivity and specificity of our 
prognosis model. The model discrimination was determined 
based on the AUC values.

Nomogram establishment and verification

We built a prognosis prediction nomogram for assessing the 
3-and 5-year survival probabilities of LUAD cases using the 
rms R package. Various independent parameters were also 
included like age, gender, pathological stage, tumor node 
metastasis classification (TNM) staging, and risk scores. 
Nomogram discrimination and calibration were determined 
by C-index and calibration curves relative to the actual 
survival, respectively.

Prediction of chemotherapy drug response

Additionally, the chemotherapeutic responses were 
predicted in LUAD cases according to the Genomics 
of Drug Sensitivity in Cancer (GDSC) database. We 
chose nine common drugs, including cisplatin, docetaxel, 
doxorubicin, erlotinib, etoposide, gemcitabine, paclitaxel, 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-375/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-375/rc
https://xena.ucsc.edu
https://www.gsea-msigdb.org/gsea
https://www.gsea-msigdb.org/gsea
https://bioconductor.org/packages/release/bioc/
https://bioconductor.org/packages/release/bioc/
https://xena.ucsc.edu
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rapamycin, and vinorelbine. Our results were calculated 
with a pRRophetic R package along with the determination 
of the drug’s half-maximal inhibitory concentration (IC50) 
values.

Statistical analysis

Wilcoxon rank-sum test was utilized to select DEGs, while 
Fisher’s exact test was utilized for comparing variables. 
Prognosis-associated genes were identified through 
univariate OS Cox regression analysis.

KM analysis and the log-rank test were conducted 
to compare patient survival between different groups. 
Spearman’s correlation analysis was carried out to analyze 
the relationship between the prediction model’s risk and 
immune scores, respectively. R software (version 4.0.0, 
R-project.org), along with associated packages, was used for 
statistical analysis. Furthermore, P≤0.05 denoted statistical 
difference.

Results

Identification of LMDGs within LUADs

TCGA-LUAD data were obtained from the UCSC Xena 
website after performing the Wilcoxon rank-sum test 
with threshold values of P<0.05 and Log2FC <−1 or >1. 
We obtained 5,395 differential genes from LUAD and 
adjacent normal tissues. Additionally, 1,133 LMRG genes 
were found from the GESA and Gene Card databases, of 
which 273 were differential genes in TCGA-LUAD DEGs 
(Table S1). Moreover, 117 and 156 genes showed down- 
and up-regulation, which were observed from the volcano 
plot and heatmap, respectively (Figure 1A,1B). Lastly, the 
intersection of LUAD-DEGs with LMRGs was represented 
by the Venn diagram (Figure 1C).

Functional analysis of LMDGs

For exploring LMDG functions, we carried out GO and 
KEGG enrichment analyses. Based on GO enrichment, 
LMDGs were correlated with fatty acid metabolism, 
organic acid biosynthesis, and glycerol lipid metabolism 
(Figure 1D). A subsequent KEGG enrichment analysis 
discovered that LMDGs were significantly responsible 
for the peroxisome proliferator-activated receptor (PPAR) 
pathway and glycerophospholipid metabolism (Figure 1E).

Prognosis prediction nomogram based on LMDGs

Univariate Cox regression analysis detected 83 LMDGs 
significantly associated with OS (Figure 2A). Figure 2B,2C 
displays a differential analysis of LMDGs in LUAD cases 
compared with the healthy controls (normal people without 
lung cancer). To avoid model overfitting, we conducted 
LASSO regression analysis (Figure 2D,2E) which identified 
11 genes (LDHA, SEC14L3, LPL, ACSS3, GAPDH, 
ESYT3, SEC14L4, CYP17A1, CFTR, SLC16A1, and 
CIDEC) from risk score equation: Risk score = (LDHA * 
0.028984915874997 − SEC14L3 × 0.261183701168222 − 
LPL * 0.0337878152386764 − ACSS3 × 0.178280741516102 
+  G A P D H  *  0 . 1 2 8 1 9 3 5 8 9 0 6 1 9 9 2  −  E S Y T 3  × 
0.0811858233929162 − SEC14L4 × 0.13673431029615 
−  C Y P 1 7 A 1  ×  0 . 1 6 6 7 8 0 9 6 1 1 0 0 7 8  −  C F T R  * 
0.0334880885905273 + SLC16A1 × 0.00307791690707033 
+ CIDEC * 0.0685768082639508).

LMDG-based signature’s prognostic value

TCGA-derived cases were divided into high-or low-risk 
groups based on the median risk score (Figure 3A,3B). 
Figure 3C displays additional details of 11 genes in both 
groups. A time-dependent ROC curve analysis was 
conducted to analyze our signature performance, with 
AUCs of 0.668, 0.678, and 0.722 for predicting 1-, 3-, 
and 5-year OS, respectively (Figure 3D). Additionally, all 
high-risk cases displayed poorer OS (Figure 3E, P<0.05), 
suggesting that our 11 genes-based risk model was highly 
accurate in predicting OS for LUADs.

Stability of LMDG-based risk score signature

For checking our LMDG-based signature’s performance, 
we classified validation cohorts (GSE30219 and GSE72094) 
as low- or high-risk groups based on the threshold and 
risk score formula in the TCGA cohort (Figure 3). Based 
on survival analysis (Figure 3F,3H), all high-risk cases 
depicted poorer OS compared with the low-risk cases of 
GSE30219 (P=0.0001718) and GSE72094 (P=0.0001061). 
For GSE30219, the AUCs for predicting the OS at 1, 
3, and 5 years were 0.631, 0.674, and 0.673, respectively  
(Figure 3G). For the GSE72094 cohort, AUCs were 0.643, 
0.690, and 0.619, respectively (Figure 3I). Therefore, these 
findings confirmed that our constructed signature was 
robust and universal.

https://cdn.amegroups.cn/static/public/TCR-23-375-Supplementary.pdf
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Figure 2 Construction of a prognostic gene signature in lipid metabolism-related DEGs. (A) Univariate Cox regression analysis showed 
that the top ten differential genes related to lipid metabolism were significantly correlated with OS. (B,C) The expression of 83 LMDGs 
associated with OS. (D) LASSO coefficient profile plots of the 83 prognostic-related genes showing that the variations in the size of the 
coefficients of parameters shrink with an increasing value of the k penalty. (E) Penalty plots of the LASSO model of 83 prognostic genes, 
with error bars representing standard errors, to identify the most useful prognostic genes. *, P<0.05; **, P<0.01; ***, P<0.005. DEGs, 
differentially expressed genes; OS, overall survival; LMDGs, lipid metabolism-related differential genes; LASSO, least absolute shrinkage 
and selection operator;  ns, no significance.
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LMDG-based signature independently predicted the 
patient’s prognosis

Because our constructed LMDG-based signature was 
extensively verified with independent cohorts, univariate 
and multivariate Cox regression analyses were conducted to 
evaluate whether our LMRG-based signature independently 
predicted early LUAD prognosis. Based on this, the risk 
score independently predicted poor OS (Figure 3J, HR 
=6.816, 95% CI: 3.282–14.158, P<0.001) after adjusting 
additional.

Biological pathway enrichment, along with functional 
annotation

Since the as-constructed LMDG-based signature performed 
well in predicting LUAD prognosis, we analyzed its 
associated mechanisms. Firstly, we completed a differential 
analysis of both groups (|log2 FC| ≥1, adjusted P<0.05). 
As a result, for the high-risk group, 97 and 34 genes 
showed up- and down-regulation, respectively (Figure 4A).  
Afterward, these DEGs underwent GO and KEGG 
analyses. Moreover, a biological process analysis showed 

Figure 3 Construction of LMDGs formula and verification of its stability. (A) Distribution of risk scores in training sets. (B) Survival state 
and survival time distribution of training set. (C) Heatmaps of the 11 prognostic genes in the training set. (D) Time-related ROC analysis 
exhibited the prognostic value of the LMDGs in the training set. (E) Kaplan-Meier survival curve of patients with high and low risk in the 
training set. (F) Kaplan-Meier survival curve of patients with high and low risk in the GSE30219. (G) Time-related ROC analysis exhibited 
the prognostic value of the LMDGs in the GSE30219. (H) Kaplan-Meier survival curve of patients with high and low risk in the GSE72094. 
(I) Time-related ROC analysis exhibited the prognostic value of the LMDGs in the GSE72094. (J) The forest map shows the survival of 
high and low risk patients under different conditions in the training set. AUC, area under the curve; CI, confidence interval; LMDGs, lipid 
metabolism-related differential genes; ROC, receiver operating characteristic.
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that hypoxia and humoral immune response enriched DEGs 
(Figure 4B,4C).

Determination of lipid metabolism gene-related risk score-
related mutation landscape

A comparison of both risk groups regarding their mutation 
landscapes revealed that the high-risk group exhibited a 
higher mutation frequency; moreover, TTN and TP53 were 
the most frequent mutations among them (Figure 4D,4E).

Immune status analysis

The relationship between the lipid metabolism DEGs-
related risk score and the immune status of TCGA patients 
was analyzed, which showed significant changes in the 
immune cells (Figure 4F,4G). There were significant 
differences in immune-related pathways, such as type II 
interferon (IFN) response (Figure 4H). A comparison of 
immune checkpoint-related genes between the two groups 
revealed that the high-risk patients showed a significant 
reduction in expressions of CD40LG, CD160, TNFSF15, 
BTLA, TNFSF14, CD200R1, and IDO2 (Figure 4I). 
Based on this, high-risk patients displayed enhanced tumor 
immune activities when compared with the low-risk cases.

Prediction of chemotherapy responses in cases with diverse 
lipid metabolism-related risk score

Additionally, chemotherapeutic responses were predicted for 
both risk groups by using the GDSC database to determine 
possible treatments. Nine common drugs for treating 
NSCLC were adopted in further analyses. Subsequently, 
IC50 values of nine agents (cisplatin, docetaxel, doxorubicin, 
gemcitabine, erlotinib, etoposide, paclitaxel, rapamycin, 
and vinorelbine) were significantly increased among low-
risk cases relative to their high-risk counterparts (Figure 5),  
suggesting the higher chemoresistance of LUAD cases 
which displayed lower risk scores when compared with 
those having increased risk scores.

Nomogram establishment and validation for lipid 
metabolism gene-related risk score

Based on clinical factors like age, TNM staging, gender, 
smoking status, and LMDG, a nomogram was established 
(Figure 6). As shown, the risk factors were related to specific 
estimates for an accurate survival prediction at 1, 3, and  

5 years (Figure 7A-7C). Thus, our results exhibited the 
clinical efficacy of LMDGs-based signature in LUAD.

Discussion

Lung cancer is one of the most common malignancies 
worldwide, accounting for a higher number of new cases and 
mortality. LUAD is a frequently seen pathological subtype, 
occupying around 40% of all lung cancer subtypes (9).  
Due to its low early diagnosis rate and poor prognosis, 
exploring an efficient and stable prognosis model for 
its treatment regime is of great importance. Metabolic 
reprogramming exerts a critical effect on carcinogenesis and 
cancer progression as cancer cells use metabolic pathways 
for maintaining rapid proliferation, survival, migration, 
and invasion (10). Additionally, lipid metabolism is closely 
associated with biofilm formation, signaling, and energy 
generation, thus, affecting the interactions between immune 
response, drug resistance, and TME within a variety of 
malignant tumors (11,12). Another study (13) reported 
that lipid metabolism disorders might be associated with 
cancer occurrence and migration. Our study focused on 
exploring the relationship of lipid metabolism with LUAD 
by including lipid metabolism genes for improving the 
accuracy of prognosis prediction and providing appropriate 
clinical interventions. Among all prognostic biomarkers, few 
specific biological processes-based polygenic markers were 
superior in predicting cancer prognosis (14-16). Therefore, 
we investigated the role of prognostic gene signatures in 
early LUAD cases showing lipid metabolism changes.

In this study, 273 LMDGs were identified through 
intersecting lipid metabolism genes with LUAD DEGs 
from three databases, GSEA, Gene Card, and UCSC. An 
enrichment analysis proved that the DEGs were associated 
with fatty acid metabolism, which is the basic substrate 
required for energy storage, membrane synthesis, and 
signal analysis in tumor cells (17). Through a univariate 
Cox regression analysis, 83 LMDGS were significantly 
correlated with patient survival. Finally, 11 genes were 
selected from TCGA and GEO datasets through LASSO 
analysis as prognostic gene signatures and were included 
in LUAD prognostic formula, which classified cases as 
low- or high-risk groups. This signature was verified based 
on internal subsets and external validation sets. However, 
OS was significantly different in low-risk when compared 
with the high-risk groups, showing that our signature 
model was associated with multiple lipid metabolic 
pathways. A multivariate Cox regression revealed that risk 
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Figure 4 Analysis of biological processes, pathways, mutations and immune status related to LMDGs. (A) Heatmap of the differentially 
expressed genes between the high and low risk groups. (B) Cluster maps showing DEGs in GO enrichment analysis. (C) The circos diagram 
shows the pathway of differential genes in KEGG enrichment analysis. (D,E) Comparison of mutation landscape between high and low 
risk groups. (F) Heatmap for immune responses based on MCPCOUNTER, CIBERSORT, QUANTISEQ, TIMER, CIBERSORT-ABS, 
EPIC, and XCELL algorithms among high and low risk group. (G) Immune cell infiltration levels in high and low risk groups. (H) Immune 
pathways analysis in high and low risk groups. (I) Expression of immune checkpoints in high and low risk groups. *, P<0.05; **, P<0.01; ***, 
P<0.005. LMDGs, lipid metabolism-related differential genes; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; ns, no significance; FC, fold change; TMB, tumor mutational burden; NS, not significant.

score independently predicted the patient’s prognosis. 
Additionally,  the signature’s prognosis prediction 
mechanism in LUAD cases was significantly associated with 
humoral immune response. The human immune system 
has a strong antitumor capacity, and immunotherapy is 
proposed as an effective treatment for tumors. Several 
studies suggest that immunotherapy can significantly 
improve the survival  of  LUAD pat ients  (18-22) . 
Furthermore, we explored the relationship of the LMDG 
model with immune status and response to chemotherapy 
drugs. The results exhibited that our model was associated 
with drug sensitivity and immune checkpoint and validated 
the finding of whether patients were suitable to receive 
immunotherapy or chemotherapy.

In conclusion, the prognostic model consisted of 11 
genes, namely, LDHA, SEC14L3, LPL, ACSS3, GAPDH, 
ESYT3, SEC14L4, CYP17A1, CFTR, SLC16A1, and 
CIDEC, most of which were related to tumor proliferation, 
migration, and invasion. For example, LDHA lactate 
dehydrogenase, a key enzyme in the glycolytic pathway, 
is closely related to the occurrence, metastasis as well as 
poor tumor survival, like breast cancer (BC), lung cancer, 
and gastric cancer (GC) (23-25). Additionally, ACSS3 
can suppress prostate cancer development (26), as well 
as enhance GC and bladder cancer cell growth, invasion, 
and migration, thus, reducing patients’ OS time (27,28). 

Haiyan’s study (29) indicated that high expression of ESYT3 
in BC enhanced cancer cell growth and migration, thereby 
promoting BC occurrence and development along with 
poor patient survival. Another study by Zhao (30) showed 
that a low expression of ESYT3 in LUAD affected cell cycle 
pathways and the patient’s prognosis. The CFTR is an ion 
channel. A study (31) reported that CFTR affected cancer 
cell growth by regulating the cell cycle and influenced cell 
migration by regulating metabolic pathways. Chuang’s 
results (32) showed that CYP17A1, a member of the 
cytochrome P450 family, enhanced glioma cell growth. 
Based on the characteristics of the 11 genes in our study, a 
risk score was performed for each LUAD patient to identify 
high-risk patients.

This feature was validated in LUAD internal cohort 
outcomes. Moreover, the assessment of clinical parameters, 
including age, gender, smoking status, and pathological 
TNM staging, displayed that our model was only 
associated with the risk score, suggesting that the risk score 
independently predicted the prognosis. Although these 
characteristics correlated with prognosis prediction among 
different cohorts, we focused on its associated mechanisms. 
A total of 131 DEGs were found in both risk groups. 
Based on GO and KEGG enrichment analyses, the DEGs 
showed major enrichment in the humoral immune response 
pathway, thereby indicating the interplay of different 
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Figure 5 Differences in susceptibility to common anticancer drugs between high and low risk groups. (A) IC50 of cisplatin between high 
and low risk groups. (B) IC50 of docetaxel between high and low risk groups. (C) IC50 of doxorubicin between high and low risk groups. 
(D) IC50 of erlotinib between high and low risk groups. (E) IC50 of etoposide between high and low risk groups. (F) IC50 of gemcitabine 
between high and low risk groups. (G) IC50 of paclitaxel between high and low risk groups. (H) IC50 of rapamycin between high and low 
risk groups. (I) IC50 of vinorelbine between high and low risk groups. IC50, half maximal inhibitory concentration.

immune activities. In our as-established model, TP53 and 
TTN displayed more mutations in the high-risk category 
as compared to low-risk groups. Mutations of these two 
genes are associated with immunotherapy (33). A study 
has shown that p53 deletion or mutation may affect T cell 
activity and thus lead to immune evasion (34). Hence, the 
correlation between LMDG, immunotherapeutic response, 

and immune microenvironment was further explored. Our 
results showed that low-risk patients displayed an increased 
immune cell [interstitial dendritic cells (iDCs), Mast cells, 
and neutrophils] enrichment relative to their high-risk 
counterparts. However, based on immune response results, 
low-risk patients had reduced expression levels compared 
with the high-risk group, thus advocating enhanced 
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Figure 6 Construction and validation of LMDGs-related prognostic nomogram. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of 
LUAD patients. LMDGs, lipid metabolism-related differential genes; OS, overall survival; LUAD, lung adenocarcinoma.

Figure 7 Construction and validation of LMDGs-related prognostic nomogram. (A) The calibration curves for predicting patient survival at 
1-year OS. (B) The calibration curves for predicting patient survival at 3-year OS. (C) The calibration curves for predicting patient survival 
at 5-year OS. LMDGs, lipid metabolism-related differential genes; OS, overall survival.
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immune activity of high-risk patients. Besides, the most 
important pathway in high versus low-risk groups was the 
humoral immune response, suggesting that immune and 
inflammatory activities were potential mechanisms affecting 
LUAD recurrence and survival.

Finally, we also predicted the therapeutic response of 
commonly used chemotherapy agents by analyzing whether 
the characteristic model was effective in predicting LUAD 
prognosis. Consequently, IC50 levels of nine common 
chemotherapy drugs increased among the low-risk cases 
relative to their high-risk counterparts, indicating that cases 
displaying high-risk scores showed high chemosensitivity. 
Nine conventional chemotherapy drugs used for treating 
LUAD include cisplatin, docetaxel, etoposide, gemcitabine, 
paclitaxel, vinorelbine, doxorubicin, erlotinib, and sorafenib 
(35-39). Our results also indicate that our signature might 
be utilized for personalizing treatments for LUAD cases. 
Additionally, the nomogram built for predicting LUAD 
prognosis can also provide better clinical guidance. The 
figure also demonstrates the importance of LMDG in 
predicting LUAD prognosis.

Although our characteristic model provides new hope 
for predicting LUAD survival, immunotherapy, and 
chemotherapy response, this study had a few limitations. All 
data sources were from public databases and needed to be 
verified experimentally. Collectively, the lipid metabolism 
prognostic model was built for LUAD patients, which can 
be used to effectively predict immune checkpoint inhibitors 
and chemotherapeutic responses, thereby targeting patients 
for personalized treatments.

Conclusions

The prognosis model of 11 genes related to lipid metabolism 
was constructed for LUAD, and a new idea was provided 
for the treatment of high-risk lung adenocarcinoma patients 
based on immune function mutation.
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