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Predictive accuracy of machine learning for radiation-induced 
temporal lobe injury in nasopharyngeal carcinoma patients: a 
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Background: Radiotherapy is a common treatment for nasopharyngeal carcinoma (NPC) but can cause 
radiation-induced temporal lobe injury (RTLI), resulting in irreversible damage. Predicting RTLI at the 
early stage may help with that issue by personalized adjustment of radiation dose based on the predicted 
risk. Machine learning (ML) models have recently been used to predict RTLI but their predictive accuracy 
remains unclear because the reported concordance index (C-index) varied widely from around 0.31 to 0.97. 
Therefore, a meta-analysis was needed.
Methods: The PubMed, Web of Science, Embase, and Cochrane Library databases were searched 
from inception to November 2022. Studies that fully develop one or more ML risk models of RTLI after 
radiotherapy for NPC were included. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was 
used to assess the risk of bias in the included research. The primary outcome of this review was the C-index, 
specificity (Spe), and sensitivity (Sen). 
Results: The meta-analysis included 14 studies with 15,573 NPC patients reporting a total of 72 prediction 
models. Overall, 94.44% of models were found to have a high risk of bias. Radiomics was included in  
57 models, dosimetric predictors in 28, and clinical data in 27. The pooled C-index for ML models 
predicting RTLI was 0.77 [95% confidence interval (CI): 0.75–0.79] in the training set and 0.78 (95% CI: 
0.75–0.81) in the validation set. The pooled Sen was 0.75 (95% CI: 0.69–0.80) in the training set and 0.70 
(95% CI: 0.66–0.73) in the validation set and the pooled Spe was 0.78 (95% CI: 0.73–0.82) in the training 
set and 0.79 (95% CI: 0.75–0.82) in the validation set. Models with radiomics and clinical data achieved the 
most excellent discriminative performance, with a pooled C-index of 0.895.
Conclusions: ML models can accurately predict RTLI at an early stage, allowing for timely interventions 
to prevent further damage. The kind of ML methods and the selection of predictors may influence the 
predictive accuracy. 
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Introduction

Nasopharyngeal carcinoma (NPC) is a type of cancer that 
originates from the epithelium of the nasopharynx. The 
age-standardized incidence of NPC was 0.4 per 100,000 
to 3.0 per 100,000 (1). In 2012, there were over 129,000 
new cases, with 71% of them occurring in the east and 
southeast parts of Asia (1). Radiotherapy is the mainstay 
treatment of NPC (2). For patients with locoregionally 
advanced NPC, concurrent chemoradiotherapy was also 
applied (3). However, 2.3–16% of patients who undergo 
this treatment may experience radiation-induced temporal 
lobe injury (RTLI) (4), which can cause irreversible 
damage to emotional and cognitive functions (5,6). To 
mitigate this risk, intensity modulation has been used 
during radiotherapy, and temporal lobe dose tolerance 
has been established since several dosimetric predictors 
are significantly associated with RTLI (7). However, dose 
tolerance varies among individuals, and it is more practical 
to adjust the dose according to the individual’s risk of RTLI, 
which highlights the importance of predictive models 
of RTLI. Although previous studies have attempted to 
create predictive models of RTLI, including normal tissue 
complication probability (NTCP) models (8-10), most of 
these models have only included dosimetric predictors and 
have not provided sufficient predictive accuracy. Recently, 

additional variables, such as radiomics and clinical data, 
have been incorporated into predictive models. Radiomics, 
which is high-dimensional mineable data (11), can contain 
many details of RTLI and thus improve prediction accuracy. 
However, previous models were constructed without 
radiomics due to the limitations of manual data processing 
in handling large volumes of complex data. An increasing 
number of promising studies have attempted to employ 
machine learning (ML) approaches to develop prediction 
models relying on radiomics (12,13). The biggest strength 
of this kind of model is the personalized prediction at the 
early stage of RTLI whereas the biggest weakness is the 
dependence on imaging data, which may lead to possible 
additional medical expenses. ML was used to develop 
predictive models of NPC prognosis and was proven to 
have great predictive performance (14). Nevertheless, the 
predictive accuracy of ML models of RTLI is still debated 
since it varies from around 0.31 to 0.97, which may be 
caused by different variables and ML approaches (15,16). 
Also, there is a lack of relevant evidence-based information. 
Therefore, it is essential to conduct a meta-analysis to 
evaluate the predictive accuracy of ML for RTLI after 
radiotherapy. We present this article in accordance with the 
PRISMA reporting checklist (17) (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-859/rc).

Methods

The quality of this meta-analysis was assessed using 
AMSTAR2 (18). The systematic review was registered on 
PROSPERO (No. CRD42023380907).

Inclusion and exclusion criteria

Inclusion criteria
A study was included when it was nested case-control 
studies, cohort studies, case-control studies, or case-cohort 
studies that investigate the predictive value of ML for RTLI 
in NPC patients; it fully developed one or more ML risk 
models of RTLI after radiotherapy for NPC; it was with 
or without external validation; it used at least one outcome 
parameter, such as receiver operating characteristic (ROC) 
curve, C-statistic, concordance index (C-index), accuracy, 
sensitivity (Sen), specificity (Spe), diagnostic 4 grid table, 
confusion matrix, F1 score, and calibration curve; it 
developed different models even if they are based on the 
same cohort; and it was written in English.

Highlight box

Key findings 
• This study presented evidence-based data for the first time on 

machine learning (ML) models predicting radiation-induced 
temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) 
patients. The best discrimination was achieved by models that 
utilized both radiomics and clinical features.  

What is known and what is new?  
• Previous studies attempted to create predictive models of RTLI 

such as NTCP models. However, most variables in these models 
only contained dosimetric predictors, and no study provided 
predictive accuracy.

• Recently, ML models have been employed for early RTLI 
prediction, utilizing radiomics and clinical data as predictors, but 
their predictive accuracy remained unclear. 

What is the implication, and what should change now? 
• ML models have been shown to predict RTLI effectively and can 

prevent serious RTLI at an early stage. Clinicians can use these 
models to adjust personalized radiotherapy treatment plans and 
improve patient outcomes. 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-859/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-859/rc
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Exclusion criteria
A study was excluded when it was randomized controlled 
trials (RCTs), review articles, meta-analyses, guidelines, 
or expert opinions; the sample size of RTLI patients was 
less than 10 (19); it included only risk factor analysis and 
an incomplete ML model; any of the outcome parameters 
listed above were unavailable; it included only validation 
of a mature predictive model; or it was research on the 
accuracy of univariate factor prediction.

Search strategy

We searched the Web of Science, PubMed, Embase, 
and Cochrane Library databases from their inception 
to November 2022. We used Medical Subject Heading 
(MeSH) terms and text word terms related to NPC, ML, 
and radiotherapy were used for the literature search, with 
no language or region restrictions. The full search strategy 
is provided in Table S1.

Study selection

We imported the searched articles into Endnote and 
removed duplicates. After screening the titles and abstracts, 
we discarded studies that did not meet the criteria and 
considered the remaining studies as potentially eligible. 
We downloaded the full texts of these studies and evaluated 
them. Based on the inclusion/exclusion criteria, we 
either included or excluded the remaining studies. Two 
independent reviewers, Li Y and Guo Y carried out the 
selection procedure. Any disagreements between the 
reviewers were resolved by consensus or by a third reviewer, 
if required.

Data extraction

We generated a standardized table to record information 
from the literature, including the title, author, year of 
publication, country, type of study, duration of follow-
up, treatment, number of total patients, number of RTLI 
patients, number of test/train patients, type of model, type 
of predictors, method of predictor selection, statistical 
outcomes, and outcome parameter. We extracted the data 
from the included studies according to this table. The 
process of data extraction was carried out independently 
by two reviewers, Li Y and Gong F, and any disagreements 

were resolved through consensus or with the involvement 
of a third reviewer if necessary.

Quality assessment

We used the Prediction model Risk Of Bias Assessment 
Tool (PROBAST) to assess the quality of the included 
records. PROBAST has four domains: participants, 
predictors, outcome, and analysis. The risk of bias in the 
study was evaluated through these domains, while the 
applicability was evaluated in the first three domains. 
Each domain contains 2, 3, 6, and 9 signaling questions, 
respectively. There were three possible answers to each 
question: Yes/Probably Yes, No/Probably No, and No 
information. A domain was judged to have a minimal risk of 
bias only if all responses to the questions were Yes/Probably 
Yes. The entire study was considered to have a low risk of 
bias only when all domains were rated as low risk of bias. If 
a domain had at least one question with the response No/
Probably No, it was considered high risk. The entire study 
was considered to have a high risk of bias if at least one 
domain was considered high risk. The quality assessment 
process was carried out independently by two reviewers, Li 
Y and Gong F, with any disagreements resolved through 
consensus or with the involvement of a third reviewer if 
necessary.

Data synthesis and statistical analysis

The primary outcome of this review was the C-index. We 
also considered Sen, and Spe as the main outcomes, as the 
C-index alone may not be sufficient to express the predictive 
accuracy of ML when there is a difference in the number 
of individuals between the RTLI group and the non-RTLI 
group. We performed a meta-analysis based on the outcome 
parameter above. If both the 95% confidence interval (CI) 
and the standard error of the C-index were unavailable, we 
estimated the standard error using the formula (20). We 
used a random-effects model to conduct the meta-analysis 
based on the C-index given the differences in predictors 
used by each ML model. Furthermore, for the Sen and Spe 
meta-analysis, we utilized a bivariate mixed-effects model. 
Sensitivity analyses were conducted to evaluate the stability 
of the meta-analysis. Publication bias was evaluated by 
Egger’s test. We conducted these analyses using Stata 15.1 
(StataCorp., College Station, TX, USA).

https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
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Results

Study selection

Figure 1 depicts the study selection process. Initially, we 
identified 699 unique records, and after assessing the titles 
and abstracts, we excluded 675 articles, leaving 24 for full-
text review. Following a review of the full text of the papers, 
we excluded 10 studies (Table S2), primarily because they 
did not provide a complete ML model. Finally, our review 
finally included 14 studies (4,15,16,21-31).

Characteristics of included studies

Our review included 8 cohort studies, 5 case-control 
studies, and 1 nested case-control study. All were single-
center studies conducted in China. The included studies 
involved 15,573 NPC patients, with 2,267 (14.56%) of 
them identified as having RTLI. The authors, last author, 
publication year, center location, data source, patient 
inclusion and exclusion criteria, determined criteria of the 

outcome, time of predictor assessment, and time of outcome 
assessment of included studies are provided in available 
online: https://cdn.amegroups.cn/static/public/tcr-23-859-
1.xlsx.

Characteristics of included prediction models

The included studies reported a total of 72 prediction 
models. These models were developed using 10 ML 
methods, including random forest (RF), Naïve Bayes (NB), 
k-nearest neighbors (KNN), Adaboost (AB), support vector 
machines (SVM), generalized linear regression (GLR), 
logistic regression (LR), Gradient Boosting Trees (GBT), 
Decision Tree (DT), and Cox proportional hazards (Cox). 
Radiomics was employed as one of the variables in 57 
models, dosimetric predictors in 28 models, and clinical 
data in 27 models. Age, T/N/overall stage, and gender 
were the first three major clinical factors in the studies with 
clinical data models, accounting for 83.33%, 66.67%, and 
33.33%, respectively.
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Figure 1 Flow diagram of literature search and selection. RTLI, radiation-induced temporal lobe injury.

https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
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Risk of bias assessment

Table S3 presents the results of the risk of bias assessment 
for each model in the included articles using the PROBAST 
tool. Figure 2 shows the proportion of models with different 
risks of bias for each domain. Overall, 94.44% of models 
were found to have a high risk of bias, primarily due to the 
high risk of bias in the analysis domain (81.94%). This was 
mainly because of the unreasonable number of participants 
(70.83%) or not accounting for model overfitting and 
optimism (9.72%) in model performance. Sensitivity 
analyses showed that the impact of models with a high 
risk of bias on this meta-analysis is acceptable (Figure S1). 
Egger’s test showed that there was a publication bias in 
included models (P<0.01).

Meta-analysis

The included studies reported 48 models and 37 independent 
validation sets, with most models demonstrating good 
discrimination.

C-index
As shown in Table 1, the pooled C-index of the models 
was 0.769 (95% CI: 0.749–0.790) in the training set and 
0.781 (95% CI: 0.754–0.808) in the validation set. The 
most common ML methods used to develop models 
were LR, SVM, and RF, all of which exhibited acceptable 
discrimination. For example, RF models performed well 
in predicting RTLI, with pooled C-index of 0.815 (95% 
CI: 0.781–0.850) in the training set, and 0.764 (95% CI: 

0.710–0.818) in the validation set. We also investigated how 
models with different variables may perform. There were 
31 models developed using radiomics data which was the 
most common variable in the included studies. The pooled 
C-index of these models was 0.745 (95% CI: 0.716–0.774) 
in the training set and 0.812 (95% CI: 0.766–0.859) in the 
validation set. The best-performing models were those 
established using both radiomics data and clinical data 
with a pooled C-index of 0.895 (95% CI: 0.860–0.930) in 
the training set and 0.880 (95% CI: 0.810–0.950) in the 
validation set (Table 1). Figure S2 showed the forest plots of 
meta-analysis. Sensitivity analyses excluding any one model 
included in this meta-analysis yielded results that were 
consistent with the primary analysis (Figure S1).

Sen and Spe
As shown in Table 2, the summary of Sen was 0.75 (95% 
CI: 0.69–0.80) in the training set and 0.70 (95% CI: 
0.66–0.73) in the validation set. Additionally, the summary 
of Spe was 0.78 (95% CI: 0.73–0.82) in the training set 
and 0.79 (95% CI: 0.75–0.82) in the validation set. Among 
models developed using different ML methods, those 
developed using SVM showed the highest Sen (pooled Sen 
in the training set 0.80, 95% CI: 0.70–0.87; pooled Sen in 
the validation set 0.72, 95% CI: 0.57–0.83), while those 
developed using RF showed the highest Spe (pooled Spe 
in the training set 0.83, 95% CI: 0.63–0.94; pooled Spe in 
the validation set 0.76, 95% CI: 0.68–0.82). Among models 
developed using different variables, those established using 
radiomics data, clinical data, and dosimetric predictors 
showed the highest Sen (pooled Sen in the training set 0.78, 
95% CI: 0.71–0.83; pooled Sen in the validation set 0.71, 
95% CI: 0.62–0.79), while those established using both 
radiomics data and clinical data showed the highest Spe 
(pooled Spe in the training set 0.88, 95% CI: 0.78–0.98; 
pooled Spe in the validation set 0.90, 95% CI: 0.84–0.96).

Discussion

The meta-analysis results indicate that ML is a robust 
technique for predicting RTLI, with radiomics playing 
a crucial role as a predictor. LR, SVM, and RF were the 
most common ML methods used to develop models and 
all performed well in predicting RTLI, which provided a 
solution for NPC patients that the radiation dose could 
be reduced individually at the early stage in the patients 
with high predicted risk of RTLI. Models developed with 
both radiomics and clinical features demonstrated the best 
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Figure 2 The proportion of models reported by included studies 
with different risks of bias for each PROBAST domain. ROB, risk 
of bias; PROBAST, Prediction model Risk of Bias Assessment 
Tool.

https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf


Li et al. ML predicts temporal lobe injury in NPC2366

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(9):2361-2370 | https://dx.doi.org/10.21037/tcr-23-859

Table 1 Meta-analysis for C-index of models, in the training and validation sets separately

Subgroup
Training set Validation set

Number C-index Number C-index

ML method type

RF 7 0.815 (0.781–0.850) 7 0.764 (0.710–0.818)

SVM 8 0.756 (0.668–0.844) 7 0.898 (0.843–0.953)

Cox 6 0.793 (0.763–0.823) 2 0.753 (0.730–0.775)

LR 14 0.810 (0.773–0.847) 17 0.780 (0.725–0.835)

AB 3 0.687 (0.580–0.794)

KNN 4 0.649 (0.509–0.789) 4 0.608 (0.411–0.805)

GLR 3 0.562 (0.510–0.613)

NB 1 0.83

DT 1 0.72

GBT 1 0.88

Variable type

R 31 0.745 (0.716–0.774) 7 0.812 (0.766–0.859)

D 5 0.781 (0.741–0.821) 3 0.728 (0.707–0.748)

C+D 5 0.791 (0.759–0.822) 4 0.776 (0.749–0.802)

C 1 0.74 2 0.705 (0.640–0.770)

R+C 2 0.895 (0.860–0.930) 2 0.880 (0.810–0.950)

R+C+D 4 0.827 (0.805–0.849) 19 0.768 (0.721–0.815)

Overall 48 0.769 (0.749–0.790) 37 0.781 (0.754–0.808)

C-index, concordance index; ML, machine learning; RF, random forest; SVM, support vector machines; Cox, Cox proportional hazards; 
LR, logistic regression; AB, AdaBoost; KNN, k-nearest neighbors; GLR, generalized linear regression; NB, Naïve Bayes; DT, Decision Tree; 
GBT, Gradient Boosting Trees; R, radiomics; D, dosimetric predictors; C, clinical data. 

discrimination, with age and T/N/overall stage being the 
most commonly used clinical features. These findings can 
serve as a reference for future research in this area.

The radical treatment for NPC always involves 
the delivery of radiotherapy but RTLI is a severe late 
complication that can cause irreversible emotional and 
cognitive impairment. Medications such as bevacizumab 
and corticosteroids can be administered for RTLI to 
alleviate symptoms and prevent further deterioration 
(32,33). More importantly, researchers have focused on 
adjusting radiation doses to find the most appropriate 
dose to prevent RTLI, using the “as low as reasonably 
practicable” principle (34). However, inconsistent results 
have been reported, with some identifying D1cc as the most 
important predictor and a tolerance dose of 62.8 Gy (8,9), 
while others found D2cc (10) and D0.5cc (35) to be the best 

predictor. Given the inconsistent findings and differentiated 
actual tolerance dose of each person, it is challenging to 
recommend a tolerance dose. Additionally, the proximity 
of targets to organs at risk involves a delicate balancing act 
that involves tumor coverage and normal tissue. Therefore, 
more studies are focusing on predicting RTLI, enabling 
clinicians to estimate the risk before radiotherapy and make 
individualized radiation plans or adjust the dose in a timely 
manner.

Radiomics was viewed as a valuable feature that should 
be explored for use in developing RTLI prediction models. 
It has been frequently employed in radiation-induced 
toxicity prediction models and has outperformed clinical 
and dosimetric parameters in predicting toxicities such 
as xerostomia in NPC patients, cardiac toxicity in breast 
cancer patients, and lung damage in esophageal cancer 
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patients after radiotherapy (36). As expected, radiomics 
performed well in predicting RTLI as it can detect 
microstructural changes in the temporal lobe early (11), 
enhancing prediction accuracy, as seen in the meta-analysis 
for each subgroup above. ML methods are required to 
process high-dimensional mineable data like radiomics, and 
these methods have been shown to play a crucial part in 
predictive models based on radiomics and standard clinical 
characteristics, such as predicting rapidly deteriorating 
mild cognitive impairment in Alzheimer’s disease (13) and 
the prognosis of acute ischemic stroke (12). LR is the most 
often used ML approach for building models due to its 
ease of use and consistently good performance. However, 
to determine the best-performing model, comparisons of 
various ML methods based on the same dataset should be 
made (15,23,24). As indicated in the meta-analysis above, 
SVM appears to have the highest performance, particularly 
in the validation set, although further comparison studies 
are needed to confirm this finding.

In addition, age and T/N/overall stage were shown 

to be major clinical predictors in several studies (4,24), 
emphasizing the need for paying attention to the RTLI 
risk of elderly or have advanced-stage NPC patients and 
developing specific radiation strategies for them. Elderly 
patients may have a lower tolerance dose due to their 
susceptibility to cerebrovascular injury, which significantly 
affects RTLI (37). Moreover, patients with advanced-
stage NPC are treated with higher doses in a wider area to 
control tumors, resulting in more damage to normal brain 
tissue (5,34).

The greatest strength of our study is its originality. 
This is the first study to present evidence-based data 
for ML models predicting RTLI in NPC patients after 
radiotherapy. Besides, the quality of this meta-analysis was 
high based on AMSTAR2 (Appendix 1). Nevertheless, 
this research has several limitations. First, although we 
conducted a comprehensive search, the number of included 
studies was relatively limited and all included studies were 
conducted in China, due to the geographical distribution of 
the disease. Second, since only a few models were included, 

Table 2 Meta-analysis for sensitivity and specificity of models, in the training and validation sets separately

Subgroup
Training set Validation set

Number Sen Spe Number Sen Spe

ML method type

RF 4 0.63 (0.30–0.87) 0.83 (0.63–0.94) 7 0.67 (0.58–0.74) 0.76 (0.68–0.82)

SVM 5 0.80 (0.70–0.87) 0.80 (0.65–0.89) 7 0.72 (0.57–0.83) 0.81 (0.72–0.87)

LR 14 0.73 (0.67–0.78) 0.78 (0.72–0.83) 16 0.70 (0.65–0.75) 0.78 (0.73–0.83)

KNN 1 0.950 0.690 3 0.59 (0.42–0.75) 0.84 (0.75–0.90)

NB 1 0.800 0.690

DT 1 0.770 0.650

GBT 1 0.840 0.780

Variable type

R 15 0.75 (0.64–0.83) 0.79 (0.72–0.85) 7 0.70 (0.63–0.76) 0.78 (0.65–0.87)

D 3 0.78 (0.67–0.86) 0.66 (0.62–0.71) 2 0.57 (0.46–0.66) 0.74 (0.72–0.77)

C+D 3 0.72 (0.62–0.80) 0.72 (0.69–0.75) 3 0.68 (0.59–0.76) 0.76 (0.70–0.80)

C 1 0.590 0.870 1 0.59 0.71

R+C 2 0.75 (0.72–0.79) 0.88 (0.78–0.98) 2 0.76 (0.71–0.81) 0.90 (0.84–0.96)

R+C+D 3 0.78 (0.71–0.83) 0.75 (0.69–0.80) 18 0.71 (0.62–0.79) 0.79 (0.73–0.83)

Overall 27 0.75 (0.69–0.80) 0.78 (0.73–0.82) 33 0.70 (0.66–0.73) 0.79 (0.75–0.82)

Sen, sensitivity; Spe, specificity; ML, machine learning; RF, random forest; SVM, support vector machines; LR, logistic regression; KNN, 
k-nearest neighbors; NB, Naïve Bayes; DT, Decision Tree; GBT, Gradient Boosting Trees; R, radiomics; D, dosimetric predictors; C, clinical 
data.

https://cdn.amegroups.cn/static/public/TCR-23-859-Supplementary.pdf
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further research is required to design and identify the most 
optimal ML model for predicting RTLI. Third, there was 
a publication bias in included models, which may cause the 
overestimation of prediction accuracy of them. Fourth, it 
would be better to verify if the SVM is the ML method 
with highest predictive performance in more clinical 
experimental research.

Conclusions

Our study demonstrated that ML methods can effectively 
predict RTLI in NPC patients after radiotherapy. While the 
primary goal of radiotherapy is to maximize survival with 
the appropriate radiation dose, stratifying the risk of RTLI 
through ML can help adjust personalized radiation doses 
for NPC patients. Therefore, more multicenter and multi-
ethnic studies are necessary to develop tools for predicting 
RTLI, particularly ML models with radiomics, to prevent 
or mitigate it by timely adjusting the treatment.
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Table S1 Literature search strategy
1. PubMed

Search 
number

Query Results

#1 "Nasopharyngeal Carcinoma"[Mesh] 5,718

#2 ((((((((((((((((((((((((Nasopharyngeal Carcinoma[Title/Abstract]) OR (Nasopharyngeal Carcinomas[Title/Abstract])) 
OR (nasopharynx tumor[Title/Abstract])) OR (epipharynx tumor[Title/Abstract])) OR (epipharynx tumour[Title/
Abstract])) OR (nasopharyngeal neoplasms[Title/Abstract])) OR (nasopharyngeal tumor[Title/Abstract])) OR 
(nasopharyngeal tumour[Title/Abstract])) OR (nasopharynx tumour[Title/Abstract])) OR (rhinopharyngeal tumor[Title/
Abstract])) OR (rhinopharynx tumor[Title/Abstract])) OR (rhinopharynx tumour[Title/Abstract])) OR (nasopharynx 
cancer[Title/Abstract])) OR (epipharynx cancer[Title/Abstract])) OR (nasopharyngeal cancer[Title/Abstract])) OR 
(rhinopharyngioma[Title/Abstract])) OR (rhinopharynx cancer[Title/Abstract])) OR (epipharyngeal carcinoma[Title/
Abstract])) OR (epipharynx carcinoma[Title/Abstract])) OR (naso-pharyngeal carcinoma[Title/Abstract])) OR 
(nasopharyngeal carcinoma[Title/Abstract])) OR (postnasal space carcinoma[Title/Abstract])) OR (rhino-pharyngeal 
carcinoma[Title/Abstract])) OR (rhinopharyngeal carcinoma[Title/Abstract])) OR (rhinopharynx carcinoma[Title/
Abstract])

20,075

#3 (((((((((((((((((((((((((Nasopharyngeal Carcinoma[Title/Abstract]) OR (Nasopharyngeal Carcinomas[Title/Abstract])) 
OR (nasopharynx tumor[Title/Abstract])) OR (epipharynx tumor[Title/Abstract])) OR (epipharynx tumour[Title/
Abstract])) OR (nasopharyngeal neoplasms[Title/Abstract])) OR (nasopharyngeal tumor[Title/Abstract])) OR 
(nasopharyngeal tumour[Title/Abstract])) OR (nasopharynx tumour[Title/Abstract])) OR (rhinopharyngeal tumor[Title/
Abstract])) OR (rhinopharynx tumor[Title/Abstract])) OR (rhinopharynx tumour[Title/Abstract])) OR (nasopharynx 
cancer[Title/Abstract])) OR (epipharynx cancer[Title/Abstract])) OR (nasopharyngeal cancer[Title/Abstract])) OR 
(rhinopharyngioma[Title/Abstract])) OR (rhinopharynx cancer[Title/Abstract])) OR (epipharyngeal carcinoma[Title/
Abstract])) OR (epipharynx carcinoma[Title/Abstract])) OR (naso-pharyngeal carcinoma[Title/Abstract])) OR 
(nasopharyngeal carcinoma[Title/Abstract])) OR (postnasal space carcinoma[Title/Abstract])) OR (rhino-pharyngeal 
carcinoma[Title/Abstract])) OR (rhinopharyngeal carcinoma[Title/Abstract])) OR (rhinopharynx carcinoma[Title/
Abstract])) OR ("Nasopharyngeal Carcinoma"[Mesh])

20,192

#4 "Machine Learning"[Mesh] 51,433

#5 ((((((((((((((((((((((((machine learning[Title/Abstract]) OR (Transfer Learning[Title/Abstract])) OR (Deep learning[Title/
Abstract])) OR (Hierarchical Learning[Title/Abstract])) OR (Ensemble Learning[Title/Abstract])) OR (artificial 
intelligence[Title/Abstract])) OR (Prediction model[Title/Abstract])) OR (random forest[Title/Abstract])) OR (neural 
network[Title/Abstract])) OR (ANN[Title/Abstract])) OR (Support vector machine[Title/Abstract])) OR (SVM[Title/
Abstract])) OR (Gradient Boosting Machine[Title/Abstract])) OR (GBM[Title/Abstract])) OR (Nomogram[Title/
Abstract])) OR (XGboost[Title/Abstract])) OR (Adaboose[Title/Abstract])) OR (Decision tree[Title/Abstract])) OR 
(External validation[Title/Abstract])) OR (Risk Prediction[Title/Abstract])) OR (Risk-Prediction[Title/Abstract])) OR 
(Radiomics[Title/Abstract])) OR (Radiomic[Title/Abstract])) OR (statistical learning[Title/Abstract])) OR (predictive 
analytics[Title/Abstract])

265,748

#6 (((((((((((((((((((((((((machine learning[Title/Abstract]) OR (Transfer Learning[Title/Abstract])) OR (Deep learning[Title/
Abstract])) OR (Hierarchical Learning[Title/Abstract])) OR (Ensemble Learning[Title/Abstract])) OR (artificial 
intelligence[Title/Abstract])) OR (Prediction model[Title/Abstract])) OR (random forest[Title/Abstract])) OR (neural 
network[Title/Abstract])) OR (ANN[Title/Abstract])) OR (Support vector machine[Title/Abstract])) OR (SVM[Title/
Abstract])) OR (Gradient Boosting Machine[Title/Abstract])) OR (GBM[Title/Abstract])) OR (Nomogram[Title/
Abstract])) OR (XGboost[Title/Abstract])) OR (Adaboose[Title/Abstract])) OR (Decision tree[Title/Abstract])) OR 
(External validation[Title/Abstract])) OR (Risk Prediction[Title/Abstract])) OR (Risk-Prediction[Title/Abstract])) OR 
(Radiomics[Title/Abstract])) OR (Radiomic[Title/Abstract])) OR (statistical learning[Title/Abstract])) OR (predictive 
analytics[Title/Abstract])) OR ("Machine Learning"[Mesh])

271,051

#7 "Radiotherapy"[Mesh] 204,166

#8 (((((((((((((Radiotherapies[Title/Abstract]) OR (Radiotherapy[Title/Abstract])) OR (Radiation Therapy[Title/Abstract])) 
OR (Radiation Therapies[Title/Abstract])) OR (Radiation Treatment[Title/Abstract])) OR (Radiation Treatments[Title/
Abstract])) OR (Targeted Radiotherapies[Title/Abstract])) OR (Targeted Radiotherapy[Title/Abstract])) OR (Targeted 
Radiation Therapy[Title/Abstract])) OR (Targeted Radiation Therapies[Title/Abstract])) OR (bioradiant therapy[Title/
Abstract])) OR (x ray therapy[Title/Abstract])) OR (x ray treatment[Title/Abstract])) OR (x-ray therapy[Title/Abstract])

282,256

#9 ((((((((((((((Radiotherapies[Title/Abstract]) OR (Radiotherapy[Title/Abstract])) OR (Radiation Therapy[Title/Abstract])) 
OR (Radiation Therapies[Title/Abstract])) OR (Radiation Treatment[Title/Abstract])) OR (Radiation Treatments[Title/
Abstract])) OR (Targeted Radiotherapies[Title/Abstract])) OR (Targeted Radiotherapy[Title/Abstract])) OR (Targeted 
Radiation Therapy[Title/Abstract])) OR (Targeted Radiation Therapies[Title/Abstract])) OR (bioradiant therapy[Title/
Abstract])) OR (x ray therapy[Title/Abstract])) OR (x ray treatment[Title/Abstract])) OR (x-ray therapy[Title/Abstract])) 
OR ("Radiotherapy"[Mesh])

376,249

#10 ((((((((((((((((Radiotherapies[Title/Abstract]) OR (Radiotherapy[Title/Abstract])) OR (Radiation Therapy[Title/Abstract])) 
OR (Radiation Therapies[Title/Abstract])) OR (Radiation Treatment[Title/Abstract])) OR (Radiation Treatments[Title/
Abstract])) OR (Targeted Radiotherapies[Title/Abstract])) OR (Targeted Radiotherapy[Title/Abstract])) OR (Targeted 
Radiation Therapy[Title/Abstract])) OR (Targeted Radiation Therapies[Title/Abstract])) OR (bioradiant therapy[Title/
Abstract])) OR (x ray therapy[Title/Abstract])) OR (x ray treatment[Title/Abstract])) OR (x-ray therapy[Title/Abstract])) 
OR ("Radiotherapy"[Mesh])) AND ((((((((((((((((((((((((((machine learning[Title/Abstract]) OR (Transfer Learning[Title/
Abstract])) OR (Deep learning[Title/Abstract])) OR (Hierarchical Learning[Title/Abstract])) OR (Ensemble Learning[Title/
Abstract])) OR (artificial intelligence[Title/Abstract])) OR (Prediction model[Title/Abstract])) OR (random forest[Title/
Abstract])) OR (neural network[Title/Abstract])) OR (ANN[Title/Abstract])) OR (Support vector machine[Title/
Abstract])) OR (SVM[Title/Abstract])) OR (Gradient Boosting Machine[Title/Abstract])) OR (GBM[Title/Abstract])) OR 
(Nomogram[Title/Abstract])) OR (XGboost[Title/Abstract])) OR (Adaboose[Title/Abstract])) OR (Decision tree[Title/
Abstract])) OR (External validation[Title/Abstract])) OR (Risk Prediction[Title/Abstract])) OR (Risk-Prediction[Title/
Abstract])) OR (Radiomics[Title/Abstract])) OR (Radiomic[Title/Abstract])) OR (statistical learning[Title/Abstract])) 
OR (predictive analytics[Title/Abstract])) OR ("Machine Learning"[Mesh]))) AND ((((((((((((((((((((((((((Nasopharyngeal 
Carcinoma[Title/Abstract]) OR (Nasopharyngeal Carcinomas[Title/Abstract])) OR (nasopharynx tumor[Title/Abstract])) 
OR (epipharynx tumor[Title/Abstract])) OR (epipharynx tumour[Title/Abstract])) OR (nasopharyngeal neoplasms[Title/
Abstract])) OR (nasopharyngeal tumor[Title/Abstract])) OR (nasopharyngeal tumour[Title/Abstract])) OR (nasopharynx 
tumour[Title/Abstract])) OR (rhinopharyngeal tumor[Title/Abstract])) OR (rhinopharynx tumor[Title/Abstract])) OR 
(rhinopharynx tumour[Title/Abstract])) OR (nasopharynx cancer[Title/Abstract])) OR (epipharynx cancer[Title/
Abstract])) OR (nasopharyngeal cancer[Title/Abstract])) OR (rhinopharyngioma[Title/Abstract])) OR (rhinopharynx 
cancer[Title/Abstract])) OR (epipharyngeal carcinoma[Title/Abstract])) OR (epipharynx carcinoma[Title/Abstract])) OR 
(naso-pharyngeal carcinoma[Title/Abstract])) OR (nasopharyngeal carcinoma[Title/Abstract])) OR (postnasal space 
carcinoma[Title/Abstract])) OR (rhino-pharyngeal carcinoma[Title/Abstract])) OR (rhinopharyngeal carcinoma[Title/
Abstract])) OR (rhinopharynx carcinoma[Title/Abstract])) OR ("Nasopharyngeal Carcinoma"[Mesh]))

217
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2. Cochrane

Search number Query Results

#1 MeSH descriptor: [Nasopharyngeal Carcinoma] explode all trees 256

#2 (Nasopharyngeal Carcinoma):ti,ab,kw OR (Nasopharyngeal Carcinomas):ti,ab,kw OR (nasopharynx 
tumor):ti,ab,kw OR (epipharynx tumor):ti,ab,kw OR (epipharynx tumour):ti,ab,kw (Word variations have 
been searched)

1767

#3 (nasopharyngeal neoplasms):ti,ab,kw OR (nasopharyngeal tumor):ti,ab,kw OR (nasopharyngeal 
tumour):ti,ab,kw OR (nasopharynx tumour):ti,ab,kw OR (rhinopharyngeal tumor):ti,ab,kw (Word 
variations have been searched)

1308

#4 (rhinopharynx tumor):ti,ab,kw OR (rhinopharynx tumour):ti,ab,kw OR (nasopharynx cancer):ti,ab,kw 
OR (epipharynx cancer):ti,ab,kw OR (nasopharyngeal cancer):ti,ab,kw (Word variations have been 
searched)

1144

#5 (rhinopharyngioma):ti,ab,kw OR (rhinopharynx cancer):ti,ab,kw OR (epipharyngeal carcinoma):ti,ab,kw 
OR (epipharynx carcinoma):ti,ab,kw OR (naso-pharyngeal carcinoma):ti,ab,kw (Word variations have 
been searched)

6

#6 (nasopharyngeal carcinoma):ti,ab,kw OR (postnasal space carcinoma):ti,ab,kw OR (rhino-pharyngeal 
carcinoma):ti,ab,kw OR (rhinopharyngeal carcinoma):ti,ab,kw OR (rhinopharynx carcinoma):ti,ab,kw 
(Word variations have been searched)

1749

#7 #1 OR #2 OR #3 OR #4 OR #5 OR #6 2608

#8 MeSH descriptor: [Machine Learning] explode all trees 274

#9 (machine learning):ti,ab,kw OR (Transfer Learning):ti,ab,kw OR (Deep learning):ti,ab,kw OR (Hierarchical 
Learning):ti,ab,kw OR (Ensemble Learning):ti,ab,kw (Word variations have been searched)

5292

#10 (artificial intelligence):ti,ab,kw OR (Prediction model):ti,ab,kw OR (random forest):ti,ab,kw OR (neural 
network):ti,ab,kw OR (ANN):ti,ab,kw (Word variations have been searched)

30863

#11 (Support vector machine):ti,ab,kw OR (SVM):ti,ab,kw OR (Gradient Boosting Machine):ti,ab,kw OR 
(GBM):ti,ab,kw OR (Nomogram):ti,ab,kw (Word variations have been searched)

2866

#12 (XGboost):ti,ab,kw OR (Adaboose):ti,ab,kw OR (Decision tree):ti,ab,kw OR (External validation):ti,ab,kw 
OR (Risk Prediction):ti,ab,kw (Word variations have been searched)

29984

#13 (Risk-Prediction):ti,ab,kw OR (Radiomics):ti,ab,kw OR (Radiomic):ti,ab,kw OR (statistical 
learning):ti,ab,kw OR (predictive analytics):ti,ab,kw (Word variations have been searched)

8734

#14 #8 OR #9 OR #10 OR #11 OR #12 OR #13 60698

#15 MeSH descriptor: [Radiotherapy] explode all trees 6696

#16 (Radiotherapy):ti,ab,kw OR (Radiotherapies):ti,ab,kw OR (Radiation Therapy):ti,ab,kw OR (Radiation 
Therapies):ti,ab,kw OR (Radiation Treatment):ti,ab,kw (Word variations have been searched)

48473

#17 (Radiation Treatments):ti,ab,kw OR (Targeted Radiotherapies):ti,ab,kw OR (Targeted 
Radiotherapy):ti,ab,kw OR (Targeted Radiation Therapy):ti,ab,kw OR (Targeted Radiation 
Therapies):ti,ab,kw (Word variations have been searched)

22991

#18 (bioradiant therapy):ti,ab,kw OR (x ray therapy):ti,ab,kw OR (x ray treatment):ti,ab,kw OR (x-ray 
therapy):ti,ab,kw (Word variations have been searched)

14410

#19 #15 OR #16 OR #17 OR #18 61883

#20 #7 AND #14 AND #19 72



© Translational Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tcr-23-859

3. Embase

Search 
number

Query Results

#1 'nasopharynx tumor'/exp 32970

#2 'nasopharyngeal carcinomas':ab,ti OR 'nasopharynx tumor':ab,ti OR 'epipharynx tumor':ab,ti OR 'epipharynx 
tumour':ab,ti OR 'nasopharyngeal neoplasms':ab,ti OR 'nasopharyngeal tumor':ab,ti OR 'nasopharyngeal 
tumour':ab,ti OR 'nasopharynx tumour':ab,ti OR 'rhinopharyngeal tumor':ab,ti OR 'rhinopharynx tumor':ab,ti OR 
'rhinopharynx tumour':ab,ti OR 'nasopharynx cancer':ab,ti OR 'epipharynx cancer':ab,ti OR 'nasopharyngeal 
cancer':ab,ti OR rhinopharyngioma:ab,ti OR 'rhinopharynx cancer':ab,ti OR 'epipharyngeal carcinoma':ab,ti OR 
'epipharynx carcinoma':ab,ti OR 'naso-pharyngeal carcinoma':ab,ti OR 'nasopharyngeal carcinoma':ab,ti OR 
'postnasal space carcinoma':ab,ti OR 'rhino-pharyngeal carcinoma':ab,ti OR 'rhinopharyngeal carcinoma':ab,ti 
OR 'rhinopharynx carcinoma':ab,ti

21961

#3 #1 OR #2 34881

#4 'machine learning'/exp 348615

#5 'machine learning':ab,ti OR 'transfer learning':ab,ti OR 'deep learning':ab,ti OR 'hierarchical learning':ab,ti OR 
'ensemble learning':ab,ti OR 'artificial intelligence':ab,ti OR 'prediction model':ab,ti OR 'random forest':ab,ti 
OR 'neural network':ab,ti OR ann:ab,ti OR 'support vector machine':ab,ti OR svm:ab,ti OR 'gradient boosting 
machine':ab,ti OR gbm:ab,ti OR nomogram:ab,ti OR xgboost:ab,ti OR adaboose:ab,ti OR 'decision tree':ab,ti 
OR 'external validation':ab,ti OR 'risk prediction':ab,ti OR radiomics:ab,ti OR radiomic:ab,ti OR 'statistical 
learning':ab,ti OR 'predictive analytics':ab,ti

374079

#6 #4 OR #5 568645

#7 'radiotherapy'/exp 661590

#8 radiotherapy:ab,ti OR radiotherapies:ab,ti OR 'radiation therapy':ab,ti OR 'radiation therapies':ab,ti OR 'radiation 
treatment':ab,ti OR 'radiation treatments':ab,ti OR 'targeted radiotherapies':ab,ti OR 'targeted radiotherapy':ab,ti 
OR 'targeted radiation therapy':ab,ti OR 'targeted radiation therapies':ab,ti OR 'bioradiant therapy':ab,ti OR 'x 
ray therapy':ab,ti OR 'x ray treatment':ab,ti OR 'x-ray therapy':ab,ti

419142

#9 #8 OR #9 768587

#10 #3 AND #6 AND #9 456
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Table S2 List of excluded studies

DOI Title

10.1016/j.ijrobp.2022.01.047 NTCP Modeling for High-Grade Temporal Radionecroses in a Large Cohort of Patients Receiving 
Pencil Beam Scanning Proton Therapy for Skull Base and Head and Neck Tumors

10.1016/j.radonc.2022.06.008 Longitudinal study of irradiation-induced brain functional network alterations in patients with 
nasopharyngeal carcinoma

10.1186/s40644-019-0203-y Application of a machine learning method to whole brain white matter injury after radiotherapy 
for nasopharyngeal carcinoma

10.1002/hbm.23852 Radiation-induced brain structural and functional abnormalities in presymptomatic phase and 
outcome prediction

10.5599/admet.5.4.484 Identify the radiotherapy-induced abnormal changes in the patients with nasopharyngeal 
carcinoma

10.1016/j.ijrobp.2016.06.2111 Multimodal testing of DNA damage response markers for prediction of normal tissue toxicities 
following head and neck intensity modulated radiation therapy

10.1200/JCO.2022.40.16_suppl.e18063 Voxel-based radiomics outlines spatial heterogeneity of cerebral radiation necrosis (RN) 
associated with bevacizumab (Bev) response in head and neck radiotherapy (RT) patients

10.1016/j.ijrobp.2022.03.027 Efficacy and Safety of Apatinib for Radiation- induced Brain Injury Among Patients With Head 
and Neck Cancer: An Open-Label, Single-Arm, Phase 2 Study

10.3389/fonc.2021.720417 Blood-Brain Barrier Repair of Bevacizumab and Corticosteroid as Prediction of Clinical 
Improvement and Relapse Risk in Radiation-Induced Brain Necrosis: A Retrospective 
Observational Study

10.1158/1078-0432.CCR-20-1264 A radiomics model for predicting the response to bevacizumab in brain necrosis after 
radiotherapy

4. Web of Science

Search number Query Results

#1 "Nasopharyngeal Carcinoma (Topic) OR Nasopharyngeal Carcinomas (Topic) OR nasopharynx tumor 
(Topic) OR epipharynx tumor (Topic) OR epipharynx tumour (Topic) OR nasopharyngeal neoplasms 
(Topic) OR nasopharyngeal tumor (Topic) OR nasopharyngeal tumour (Topic) OR nasopharynx tumour 
(Topic) OR rhinopharyngeal tumor (Topic) OR rhinopharynx tumor (Topic) OR rhinopharynx tumour (Topic) 
OR nasopharynx cancer (Topic) OR epipharynx cancer (Topic) OR nasopharyngeal cancer (Topic) OR 
rhinopharyngioma (Topic) OR epipharyngeal carcinoma (Topic) OR rhinopharynx cancer (Topic) OR 
epipharynx carcinoma (Topic) OR naso-pharyngeal carcinoma (Topic) OR nasopharyngeal carcinoma 
(Topic) OR postnasal space carcinoma (Topic) OR rhino-pharyngeal carcinoma (Topic) OR rhinopharyngeal 
carcinoma (Topic) OR rhinopharynx carcinoma (Topic)"

25554

#2 "machine learning (Topic) OR Transfer Learning (Topic) OR Deep learning (Topic) OR Hierarchical Learning 
(Topic) OR Ensemble Learning (Topic) OR artificial intelligence (Topic) OR Prediction model (Topic) OR 
random forest (Topic) OR neural network (Topic) OR ANN (Topic) OR Support vector machine (Topic) OR 
SVM (Topic) OR Gradient Boosting Machine (Topic) OR GBM (Topic) OR Nomogram (Topic) OR XGboost 
(Topic) OR Adaboose (Topic) OR Decision tree (Topic) OR External validation (Topic) OR Risk Prediction 
(Topic) OR Risk-Prediction (Topic) OR Radiomics (Topic) OR Radiomic (Topic) OR statistical learning (Topic) 
OR predictive analytics (Topic)"

2088885

#3 "Radiotherapy (Topic) OR Radiotherapies (Topic) OR Radiation Therapy (Topic) OR Radiation Therapies 
(Topic) OR Radiation Treatment (Topic) OR Radiation Treatments (Topic) OR Targeted Radiotherapies 
(Topic) OR Targeted Radiotherapy (Topic) OR Targeted Radiation Therapy (Topic) OR Targeted Radiation 
Therapies (Topic) OR bioradiant therapy (Topic) OR x ray therapy (Topic) OR x ray treatment (Topic) OR 
x-ray therapy (Topic)"

565709

#4 "((#3) AND #2) AND #1" 463



Table S3 Risk of bias assessment

No. Author Year
Risk of bias for all the 

four domains

Participants Predictors Outcome Analysis

question1 question2 ALL question1 question2 question3 ALL question1 question2 question3 question4 question5 question6 ALL question1 question2 question3 question4 question5 question6 question7 question8 question9 ALL

1 Bin Zhang 2020 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

2 Bin Zhang 2020 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

3 Bin Zhang 2020 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

4 Dan-Wan Wen 2021 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low High

5 Dan-Wan Wen 2021 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low High

6 Dan-Wan Wen 2021 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low High Low High

7 Dan Bao 2022 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

8 Dan Bao 2022 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

9 Dan Bao 2022 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low High High

10 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

11 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

12 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

13 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

14 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

15 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

16 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

17 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

18 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

19 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

20 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

21 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

22 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

23 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

24 Liming Zhong 2020 High High Low High Low High Low High Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

25 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

26 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

27 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

28 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

29 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

30 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

31 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

32 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

33 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

34 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

35 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

36 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

37 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

38 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

39 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

40 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

41 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

42 X. Bin 2022 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

43 Wenqiang Guan 2020 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low High High

44 Jing Hou 2022 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low High

45 Jing Hou 2022 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low High

46 Jing Hou 2022 High High Low High Low High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High High High

47 Jiansheng Fang 2022 High High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Unclear

48 Jiansheng Fang 2022 High High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Unclear

49 Jiansheng Fang 2022 High High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Unclear

50 Jiansheng Fang 2022 High High Low High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Unclear

51 Jiazhou Wang 2019 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

52 Jiazhou Wang 2019 Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

53 Jiazhou Wang 2019 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low High Low Low Low Low Low Low Low Low High

54 Jiazhou Wang 2019 Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low

55 You-ming Zhang 2021 Unclear Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Low Low Low Low Low Low Low Unclear

56 Lin-Mei Zhao 2021 Unclear Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Low Low Low Low Low Low Low Unclear

57 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

58 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

59 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

60 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

61 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

62 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

63 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

64 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

65 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

66 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

67 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

68 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

69 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

70 Xiaoshan Lin 2022 High Low Low Low Low Low Low Low Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Unclear Low Low High

71 Ya-fei Kang 2022 High High Low High Low High Low High Low Unclear Low Unclear Low Low Unclear High Low Low Low Low Low Low Low Low High

72 Qing-Hua Du 2021 High Low Low Low Low Low Low Low Low Low Low Low Low Low Low Unclear Low Low Low Low Low Low High Low High
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Figure S1 Sensitivity analyses of included models about C-index.
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Figure S2 Forest plots of meta-analysis. (A) Performance sorted by variable (training set). (B) Performance sorted by variable (validation 
set). (C) Performance sorted by ML method (training set). (D) Performance sorted by ML method (validation set). ES, effect size; ML, 
machine learning; RF, random forest; KNN, k-nearest neighbors; AB, AdaBoost; GLR, generalized linear regression; SVM, support vector 
machines; LR, logistic regression; NB, Naive Bayes; DT, Decision Tree; GBT, Gradient Boosting Trees; Cox, cox proportional hazards.
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Appendix 1
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