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Introduction

Background

Colorectal cancer (CRC) is the third-most prevalent 
and second-most deadly malignancy, with approximately 
1.9 million new cases and nearly 900,000 deaths in  

2020 (1). It is estimated that the incidence of CRC will rise to  
3.2 million new cases and result in 1.6 million deaths 
within the next two decades (2). Early-stage patients have a 
relatively favorable prognosis with various treatment options 
such as local endoscopic excision, local surgical excision, 
and adjacent postoperative chemotherapy (3). However, 
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the 5-year overall survival (OS) of patients in the advanced 
stage is still less than 40% due to metastases and treatment  
failure (4). Thus, it is necessary to investigate possible 
biomarkers and signatures to facilitate early diagnosis and 
provide a more targeted, personalized treatment.

Rationale and knowledge gap

Although cancer arises as a result of mutations occurring in 
cancer cells, non-mutant cells in the tumor microenvironment 
(TME) also play a significant role in cancer growth (5). 
Cancer-associated fibroblasts (CAFs), which comprise the 
majority of the stromal cells in the TME (6), regulate the 
development and spread of cancer through a variety of 
mechanisms (7). CAFs produce extracellular matrix (ECM) 
components such as collagen and fibronectin, as well as 
matrix metalloproteinases that degrade the ECM (8,9). 
Numerous studies have demonstrated that CAFs produce 
a variety of tumor-promoting molecules such as cytokines 
and chemokines, which promote angiogenesis and cancer 
cell proliferation (10-12). Additionally, prior studies 
discovered that CAFs encourage matrix deposition and 
crosslinking, thereby increasing the stiffness of tumor tissue 
(13,14). Consequently, increasing mechanical stress causes 

blood vessels to collapse, resulting in hypoxia, stimulating 
tumor invasiveness, and reducing treatment efficacy 
(15,16). Moreover, it has been demonstrated that CAFs 
contribute to poor immunotherapy response in CRC mouse  
models (17).

Over the past few years, there has been a significant 
expansion in gene sequencing technology. Techniques 
such as microarray and RNA-seq, in conjunction with 
multiple bioinformatics tools, have been widely used to 
investigate the underlying mechanisms of CRC. As a 
systematic bioinformatics algorithm, weighted gene co-
expression network analysis (WGCNA) is a novel method 
for investigating the relationship between genes and clinical 
phenotypes (18). Multiple attempts have been made to 
identify CAF markers by WGCNA in a variety of cancer 
types, including breast cancer (19), bladder cancer (20), 
and renal cell carcinoma (21). However, different cancers 
have distinct CAF genes (22), and few researchers have 
conducted systematic analyses of the prognostic significance 
of CAF-related genes in CRC.

Objective

Therefore, this study aimed to develop a reliable, CAF-
related mRNA signature panel for predicting OS and 
therapy response in CRC patients. By employing WGCNA, 
we explored the gene modules that are most relevant 
for CAFs. Then, we used the least absolute shrinkage 
and selection operator (LASSO) method to identify a 
CAF-related, three-gene signature (BOC, COLEC12, 
DACT3). On the basis of their Riskscores, we divided 
patients into two risk groups and validated the signature’s 
prognostic value and ability to predict drug sensitivity in 
an independent dataset. Thus, these three genes have the 
potential to serve as biomarkers of cancer progression and 
may help develop a novel anti-CAF therapeutic approach 
in CRC. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-261/rc).

Methods

Public data acquisition

Figure 1 presents an overview of the workflow of this 
study. We obtained level 3 RNA-sequencing data from 
The Cancer Genome Atlas Colon Adenocarcinoma 
(TCGA-COAD) and The Cancer Genome Atlas Rectum 
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Adenocarcinoma (TCGA-READ) via the R package 
TCGAbiolinks (23). The voom function in the R package 
limma (version 3.52.2) was used to normalize the raw counts 
for subsequent WGCNA analysis (24). The voom algorithm 
computes the mean variance of log counts and assigns a 
precision weight to each observation (25). Thereby, all 
bioinformatics workflows originally designed for microarray 
analysis can be applied to these data.

We incorporated several GPL570-based microarray 
datasets from the Gene Expression Omnibus (GEO) 
database. Using the R package GEOquery (version 2.64.2), 

we downloaded the raw .cel files from several CRC patient 
datasets (26). Then, we utilized the justRMA function 
within the R package affy (version 1.74.0) to read and 
normalize the raw data using the Robust Multichip Average 
(RMA) algorithm (27,28). The missing values were then 
filled in using the K-Nearest Neighbor (KNN) algorithm 
from the R package impute (version 1.70.0) (29). Lastly, 
we merged the datasets into a single meta-cohort using the 
ComBat algorithm from the R package sva (version 3.44.0) 
to eliminate batch effects across datasets (30). The probes 
were converted into gene symbols in accordance with the 
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Figure 1 Workflow of the study. TCGA, The Cancer Genome Atlas Program; COAD, colon adenocarcinoma; READ, rectum 
adenocarcinoma; EPIC, the Estimate the Proportion of Immune and Cancer cells; MCP-counter, the Microenvironment Cell Populations-
counter; ESTIMATE, Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data; WGCNA, Weighted 
Gene Co-expression Network Analysis; LASSO, the Least Absolute Shrinkage and Selection Operator; GSEA, Gene Set Enrichment 
Analysis.
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annotation files. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

CAF abundance estimation

The Microenvironment Cell Populations-counter (MCP-
counter) algorithm (31), the Estimate the Proportion of 
Immune and Cancer cells (EPIC) algorithm (32), and the 
gene signature enrichment-based xCell algorithm (33) 
can all be used to estimate CAF abundances. Therefore, 
we downloaded the R package Immunedeconv (version 
2.1.0) from GitHub and computed the CAF abundances 
for each sample using the aforementioned techniques (34). 
In addition, we applied the Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expression 
data (ESTIMATE) program using the R package estimate 
(version 1.0.13) to construct the stromal score, which 
reflects the stromal infiltration levels of each sample (35).

Weighted gene co-expression network construction

Each dataset’s weighted co-expression network was constructed 
using the R package WGCNA (version 1.71) (18). Following 
data collection, we eliminated outlier samples based on 
their standardized connectivity (Z.K Score), a technique 
advised by WGCNA authors. After data preprocessing, 
we calculated Pearson’s correlation coefficient between 
any two genes and created a similarity matrix. In our 
study, we adopted the unsigned co-expression measure for 
the network, which indicates that positive and negative 
correlations cannot be distinguished. To create an adjacency 
matrix, we must next establish a soft thresholding power to 
which the expression similarity is elevated. To accomplish 
this, we computed the scale independence and average 
connection degree of modules with varying power using the 
gradient approach. Then, we selected the optimal power 
β to guarantee that the network was scale-free without 
sacrificing connection. Following this, we constructed a 
topological overlap matrix (TOM) based on the adjacency 
matrix and computed the dissimilarity matrix (1-TOM) for 
subsequent studies.

Identification of modules associated with CAFs

In the follow-up phase of the study, we employed a dynamic, 
hybrid, tree-cutting technique to construct a hierarchical 
clustering tree from a dissimilarity matrix to partition genes 
into many modules. The minimum size of the module was 

set at 50, and comparable modules were discovered and 
merged using a height cutoff of 0.25. As noted, the EPIC 
and Stromal scores for each sample were determined as 
clinical, principal characteristics. Principal component 
analysis (PCA) was used to derive the module eigengenes 
(MEs), the mathematically best summary of the module 
expression, for each module. Utilizing Pearson’s correlation 
test, we analyzed the relationship between module MEs and 
characteristics. The heatmap depicting the module-to-trait 
connection displayed the associated Pearson’s correlation 
coefficient and P values. We chose hub genes based on 
module membership and gene importance in modules 
substantially linked to CAF abundance.

Module preservation validation

We plotted a histogram of network connectivity and a 
corresponding log-log plot of the specified power using the 
scaleFreePlot function. The near-straight-line relationship 
showed the approximate scale-free topology. To assess 
the reproducibility of the modules, we conducted the 
preservation test using an independent dataset, the GPL570 
meta-cohort. Module preservation statistics help determine 
if a certain module defined in the reference network is also 
present in another dataset (36). The creator of WGCNA 
offered two composite statistics for preservation. The first 
composite statistic, Zsummary, summarizes the individual 
Z statistic values for each module that result from the 
permutation test. Zsummary <2 implies no preservation, but 
Zsummary >10 suggests substantial preservation evidence. 
The alternative technique is median rank statistics, which 
is based on the observed preservation statistics’ ranks. A 
module with a lower median rank is often better preserved 
than one with a higher median rank.

Univariate and LASSO cox analysis

The common genes between CAF-related hub genes 
from two datasets were extracted for further analysis. We 
performed a univariate Cox regression analysis in GSE39582, 
using the R package survival (version 3.3.1) (37), to identify 
survival-associated genes. These predictive genes were 
then included in the LASSO-cox analysis. The LASSO 
regression is a regularization approach that picks a smaller 
number of variables, hence, promoting a simple and sparse 
model. LASSO regression applies an L1-norm penalty, 
which equals the absolute value of the magnitude of the 
coefficient (38). The R package glmnet (version 4.1.4) was 
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applied to build an optimized and streamlined LASSO-cox 
model for predicting patient risk and prognosis (39). Ten-
fold cross-validation was utilized to identify the ideal penalty 
parameter value. The Riskscore formula was as follows:

n

i 1
Riskscore i iCoef Exp

=

= ×∑ 	 [1]

For additional validation, the CRC patients in GSE39582 
and TCGA were separated into high-risk and low-risk 
groups based on their respective Riskscores.

Chemotherapy and immunotherapy responsepredictions

We calculated the chemotherapeutic response in various 
samples using the R package oncoPredict (version 0.2), 
which is based on the ridge regression model. oncoPredict 
is a significant improvement to pRRophetic that allows 
users to choose their own training datasets (40). In this 
work, we used the Genomics of Drug Sensitivity in Cancer 
2.0 (GDSC2; https://www.cancerrxgene.org/) database (41) 
as reference data and extrapolated half-maximal inhibitory 
concentration (IC50) values of 198 distinct medications for 
each sample.

In addition, we used the Tumor Immune Dysfunction 
and Exclusion (TIDE) method to estimate the immune 
checkpoint blockade response rate (42). The prediction 
of the immune response of each sample in TCGA and 
GSE39582 was obtained from the website, http://tide.
dfci.harvard.edu/, after data processing to fulfill the TIDE 
algorithm’s requirements. Furthermore, the IMvigor210 
anti-PD-L1 cohort (43) was also retrieved and evaluated.

Enrichment analysis

We performed the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
of common hub genes using the R package clusterProfiler 
(version 4.4.4) (44). In addition, we performed Gene Set 
Enrichment Analysis (GSEA) to investigate the enriched 
pathways in both risk groups (45). The number of 
permutations was set to 1,000, and a false discovery rate 
(FDR) of less than 0.25 was deemed statistically significant.

Single-sample GSEA (ssGSEA) is an extension of GSEA 
that permits the computation of the enrichment score for each 
sample. We retrieved the h.all.v7.4.symbols gene set from the 
MSigDB database (https://www.gsea-msigdb.org) (46) for 
ssGSEA via the R package GSVA (version 1.44.4) (47). P value 
<0.05 and FDR <0.25 indicated statistical significance.

Statistical analysis

We used the R 4.2.1 programming environment throughout 
our study, depending on its fundamental features and 
specialized packages and modules. Microsoft’s open R 
version 4.0.2 (https://mran.microsof.com/open) was used to 
improve the performance of multithreaded processes via the 
Intel® oneAPI Math Kernel Library (oneMKL). Pairwise 
comparisons were performed using the Wilcoxon rank-sum 
test. Spearman’s test was used to identify correlations between 
the screened genes. The log-rank test was selected for OS 
comparisons by utilizing the R survival package (version 3.3.1). 
Kaplan-Meier plots were generated using the R package 
survminer (version 0.4.9) (48). Specific statistical methods for 
assessing transcriptome data are discussed in the preceding 
section. P value <0.05 was considered statistically significant.

Results

Data processing and assessment of CAF abundance

We searched the GEO database and randomly selected six 
datasets based on the GPL570 platform with relatively large 
sample sizes. We picked GSE39582 (n=566) for prognostic 
model construction because of its more comprehensive 
clinical information and higher data quality. For module 
preservation purposes, the remaining five datasets 
[GSE14333 (n=290), GSE17537 (n=55), GSE101896 
(n=90), GSE143985 (n=122), and GSE161158 (n=250)] 
were merged into one meta-cohort. For TCGA data, we 
downloaded 616 tumor samples from TCGA-COAD and 
TCGA-READ and retrieved each sample’s raw counts 
of 19,934 mRNAs from 60,488 transcripts. After data 
normalization and preparation, we applied four methods 
to compute the CAF abundance and stromal score for 
each sample. As primary CAF-related metrics, we selected 
CAF abundance from the EPIC and stromal scores for 
the subsequent investigation. We separated the data into 
high-risk and low-risk groups on the basis of the optimal 
cutoff for each CAF parameter. The Kaplan-Meier plots of 
survival analysis demonstrated that groups with low CAF 
abundance had a more favorable prognosis than those with 
high CAF abundance (Figure 2). These findings suggest a 
correlation between CAFs and the OS of CRC patients, 
which warrants further research.

Identifying key genes related to CAFs by WGCNA

We performed WGCNA on the top 75% median absolute 

https://www.cancerrxgene.org/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.gsea-msigdb.org
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deviation expression profiles from the GSE39582 dataset 
and TCGA cohort. In GSE39582, the soft threshold was 
set to 5 based on the scale-independent plot (Figure 3A,3B). 
Subsequently, module identification was carried out and 
shown as a gene dendrogram (Figure 3C), where each 
branch of the cluster tree represents one gene and the 
color underneath it indicates the module to which the 
gene belongs. The module-to-trait relationship heatmap  
(Figure 3D) revealed that the magenta and turquoise 
modules were most relevant to CAF abundance. In these 
two modules, genes with a module membership >0.8 and 
gene significance >0.5 were identified as essential hub genes 
(Figure 3E).

We picked 6 as the soft threshold for TCGA data  
(Figure S1A,S1B), and the gene dendrogram was drawn 
during the module identification process (Figure S1C). The 
black and magenta modules were identified as modules of 
interest (Figure S1D). Apart from GSE39582, we selected 
the hub genes from modules with a gene significance 
threshold of 0.3 (Figure S1E). Finally, we obtained 298 hub 
genes from the TCGA cohort and 152 hub genes from the 
GSE39582 dataset.

Module preservation validation

Five distinct datasets were utilized to verify the repeatability 
and preservation of modules discovered by WGCNA 
in GSE39582. After robust multichip average (RMA) 
normalization, we used the Combating Batch Effects When 
Combining Batches of Gene Expression Microarray Data 
(ComBat) method to minimize the batch effect between 
arrays. We later used Uniform Manifold Approximation 
and Projection (UMAP) analysis (Figure 4A), PCA  
(Figure 4B), and boxplot (Figure 4C) to visualize the results 
of this procedure. At the chosen, best soft threshold of 5, 
the histogram of connectivity and the log-log plot of the 
same histogram indicate that the scale-free topology is 
roughly fulfilled (Figure 4D). Based on their high Zsummary 
scores and low median rankings, the preservation analysis 
revealed that the magenta and turquoise modules were well 
conserved (Figure 4E).

Functional analyses of CAF-related genes

As demonstrated in Figure 5A, the overlap of GSE39582 

Figure 2 Survival analysis based on CAF abundance and stromal score. (A) The Kaplan-Meier analysis of the GSE39582 cohort from 
EPIC_CAF, Stromal Score, MCP-counter_CAF, and xCell_CAF. (B) The Kaplan-Meier analysis of the TCGA cohort from EPIC_CAF, 
Stromal Score, MCP-counter_CAF, and xCell_CAF. CAF, cancer-associated fibroblast; EPIC, the Estimate the Proportion of Immune and 
Cancer cells; MCP-counter, the microenvironment cell populations-counter; TCGA, The Cancer Genome Atlas Program.

https://cdn.amegroups.cn/static/public/TCR-23-261-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-261-Supplementary.pdf
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Figure 3 WGCNA in the GSE39582 cohort. (A) Scale independence in the GSE39582 cohort. (B) Mean connectivity in the GSE39582 
cohort. (C) Gene dendrogram in the GSE39582 cohort, before and after dynamic merge. (D) The association between modules and CAFs 
parameters measured by Pearson correlation analysis in the GSE39582 cohort. (E) Scatterplot of MM and GS from the magenta and 
turquoise modules in the GSE39582 cohort. MCP, Microenvironment Cell Populations; EPIC, Estimate the Proportion of Immune and 
Cancer cell; WGCNA, Weighted Gene Coexpression Network Analysis; CAFs, cancer-associated fibroblasts; MM, module membership; 
GS, gene significance.

and TCGA included 103 common hub genes. In the GO 
analysis, ECM organization were enriched in biological 
process (BP), collagen-containing ECM were enriched in 
cellular component (CC), and ECM structure constituent 

were enriched in molecular function (MF) (Figure 5B). 
Meanwhile, KEGG analysis revealed that these hub 
genes were also strongly related to focal adhesion, protein 
digestion and absorption, and ECM-receptor interaction 
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(Figure 5C).

Identification and verification of the prognostic signature

For the development of prognostic models, we selected 
GSE39582 as the training set and TCGA as the test set. 
A preliminary univariate cox regression analysis found 32 
OS-related genes out of 103 key hub genes in the training 
set (Figure S2). Next, LASSO regression was utilized to 
select the most suitable gene combination, resulting in 
the development of a three-gene prognostic signature  
(Figure 5D). The Riskscore was determined using the 
following formula:

Riskscore 0.04649 BOC 0.06165 DACT3
0.124711 COLEC12

= × + ×
+ × 	 [2]

All the patients in the training and test datasets were 
separated into low-risk and high-risk subgroups using 
the median of the Riskscores as the dividing line. In both 
datasets, Kaplan-Meier curve analysis revealed that high-
risk patients had a substantially shorter OS than low-risk 
patients (GEO: P=0.0033; TCGA: P=0.03) (Figure 5E).

Correlation between CAF-based signature genes with 
known CAF markers

We computed Spearman correlation coefficients between 
the Riskscores and CAF abundance estimated by various 
techniques (Figure 6A). A positive and strong correlation 
existed between these parameters in both GSE39582 
and TCGA datasets. In addition, we extracted the 
expression data of CAF marker genes summarized in prior  

Figure 4 Normalization process of the GPL570 meta-cohort and preservation test. (A) UMAP plots of the five datasets before and after 
normalization. (B) PCA plots of the five datasets before and after normalization. (C) Expression density plots of the five datasets before and 
after normalization. (D) Histogram of given k and its log-log plot. (E) Median rank and Zsummary preservation test plots. UMAP, Uniform 
Manifold Approximation and Projection; PCA, principal component analysis.
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Figure 5 Construction of the CAF-related gene signature. (A) Venn plot of the hub genes in GSE39582 and TCGA cohorts. (B) GO 
enrichment analysis of common hub genes. (C) KEGG enrichment analysis of common hub genes. (D) LASSO regression analysis and 
cross-validation. (E) Kaplan-Meier analysis based on risk score in different cohorts. CAF, cancer-associated fibroblast; TCGA, The Cancer 
Genome Atlas Program; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, 
molecular function; LASSO, the Least Absolute Shrinkage and Selection Operator. 

publications (49). In both datasets, the expression of the 
signature genes was substantially linked to those of CAF 
indicators (Figure 6B). CAF markers tended to have a 
higher expression in the high-risk group than in the low-
risk group, as represented by the heatmaps (Figure 6C,6D).

Correlation between Riskscores and clinicopathological 
characteristics

Further analysis of the prognostic significance of these 
signature genes in the TCGA cohort revealed that they 
were also inversely associated with the OS of CRC patients 
(Figure 7A). Regarding clinical parameters, we found that 
individuals with a lower Riskscore were more likely to have 
an advanced pathological T stage (P=0.02) and pathological 
N stage (P=9.77e-3) than those with a higher Riskscore. 
Although not statistically significant, we also noticed a 
similar trend in the American Joint Committee on Cancer 
staging of CRC patients (P=0.09) (Figure 7B). However, 
no significant difference in tumor metastasis was observed 
(P=0.21). While lacking statistical significance, a comparable 

trend was observed in GSE39582 dataset (Figure S3A). 
Subsequently, we assessed the CpG island methylator 

phenotype (CIMP) status of each patient, and found 
a statistically significant difference between the high- 
and low-CAF risk groups in CIMP in both cohorts  
(Figure 7C,7D). Additionally, we further analyzed the 
microsatellite instability (MSI) status in the TCGA cohort 
(Figure 7E) and chromosomal instability (CIN) status in 
the GSE39582 cohort (Figure S3B), respectively, due to a 
lack of pertinent data. However, no significant differences 
were found in these two comparisons. Moreover, upon 
investigating the tumor’s location, we discovered that the 
variations between proximal and distal CRC did not impact 
the Riskscore (Figure 7F, Figure S3C).

Chemotherapy sensitivity between different risk groups

We retrieved the IC50 values of first-line chemotherapeutic 
drugs for CRC, including 5-fluorouracil, oxaliplatin, 
and irinotecan, as well as the IC50 values of the target 
medications, gefitinib and afatinib. In both cohorts, high-

GSE39582 TCGA

49
(14.1%)

103
(29.7%)

195
(56.2%)

Riskscore =0.04649×BOC+
                   0.06165×DACT3+
                   0.124711×COLEC12

KEGG pathway

C
oe

ffi
ci

en
ts

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

p.adjust

p.adjust

Count

Count

Gene ratio

Extracellular matrix
organization 

External encapsulating
structure organization 

Collagen fibril organization
Endodermal cell 

differentiation
Extracellular matrix assembly

Endoderm formation

Ameboidal-type cell migration

Extracellular structure
organization 

Cell-substrate adhesion 
transmembrane receptor

Protein serine/threonine kinase 
signaling pathway 

Cell-cell junction 

Endoplasmic reticulum lumen 

Focal adhesion 

Cell-substrate junction 

Collagen trimer

Basement membrane

Complex of collagen trimers 

Fibrillar collagen trimer

Banded collagen fibril

10

20

30

0.05
0.04
0.03
0.02
0.01

Focal adhesion

ECM-receptor interaction 

Proteoglycans in cancer 

Relaxin signaling pathway 

PI3K-Akt signaling pathway

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

10.6

10.4

10.2

10.0

AGE-RAGE signaling pathway 
in diabetic complications

Phagosome 

Tight junction 

Pertussis

Human papillomavirus 
infection

Apelin signaling pathway 

Diabetic cardiomyopathy

Vascular smooth muscle 
contraction

Protein digestion and 
absorption

0.01
0.02
0.03
0.04

Leukocyte transendothelial 
migration

Extracellular matrix 
structural constituent

Glycosaminoglycan binding 
Actin binding

Collagen binding
Integrin binding  

extracellular matrix 

Conferring tensile strength 
growth factor binding

Sulfur compound binding 
Heparin binding

Platelet-derived growth 
factor binding

Structural constituent

Collagen-containing 
extracellular matrix

0 3 6 9

31 29 26 17 31 20 29 29 27 24 20 134 3 8 4 3 3 3 1

0.05 0.10 0.15 0.20 0.25

–8 –7 –6 –5 –4 –3

0 50 0

00 50

100 150 200 1000 2000 3000 4000

1000 2000 3000 4000100 150 200

–8 –7 –6 –5 –4 –3
Log lambda

Time, months Time, days

Time, daysTime, months

Number at risk Number at risk

Log (λ)

1.00

0.75

0.50

0.25

0.00

276

276

277

277

74

103

13

21

3

10

0

4

129

162

35

34

9

4

1

0

1.00

0.75

0.50

0.25

0.00

P=0.0033 P=0.03

GSE39582 Kaplan-Meier curve for riskscore
RiskScore

R
is

kS
co

re

R
is

kS
co

re

RiskScoreHigh

High High

HighLow

Low Low

Low

TCGA Kaplan-Meier curve for riskscore

A B

C

D

E

https://cdn.amegroups.cn/static/public/TCR-23-261-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-261-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-261-Supplementary.pdf


Translational Cancer Research, Vol 12, No 9 September 2023 2265

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(9):2256-2275 | https://dx.doi.org/10.21037/tcr-23-261

risk patients were more resistant to oxaliplatin (GSE39582: 
P=8e-11; TCGA: p2.2e-16), gefitinib (GSE39582: 
P=2.3e-16; TCGA: P=7.3e-7), and afatinib (GSE39582: 
P=3.9e-16; TCGA: P=3.7e-7) than low-risk patients. In 
the TCGA cohort, greater sensitivity to 5-fluorouracil 
was observed in the low-risk group (P=5.6e-8), while there 
was no difference in the GSE39582 cohort (P=0.13). In 
the GSE39582 cohort, high-risk patients tended to have 
significantly decreased irinotecan resistance (P=0.0095), 

while this decreased irinotecan resistance was not significant 
in the TCGA cohort (P=0.059) (Figure 8A,8B).

The role of the CAF-based signature in immunotherapy

We utilized TIDE to predict the immunotherapy outcomes 
in TCGA and GSE39582 datasets, and collected the 
response information of IMvigor210 trial cohort. With 
this information, we validated the Riskscore’s capacity to 

Figure 6 Genes involved in the signature were correlated with CAF markers. (A) Correlation analysis of CAF abundance, stromal score, and 
risk score in the GSE39582 and TCGA cohorts. ***, statistical significance at P<0.001. (B) Correlation analysis of signature genes and CAF 
markers in the GSE39582 and TCGA cohorts. (C) Heatmap of expression of signature genes and CAF markers in different risk groups in 
GSE39582 cohort. (D) Heatmap of expression of signature genes and CAF markers in different risk groups in TCGA cohort. CAF, cancer-
associated fibroblast; MCP-counter, the microenvironment cell populations-counter; EPIC, the Estimate the Proportion of Immune and 
Cancer cells; TIDE, Tumor Immune Dysfunction and Exclusion; TCGA, The Cancer Genome Atlas Program.
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Figure 7 Correlation between Riskscore and clinicopathological characteristics. (A) The Kaplan-Meier analysis of signature genes in TCGA 
cohort. (B) Distributions of high- and low-CAF-risk groups in the AJCC stage, pathological T stage, pathological N stage, and pathological 
M stage in the TCGA cohort. (C) Distributions of CIMP status in different high- and low-CAF-risk groups and their corresponding 
Riskscore in TCGA cohort. (D) Distributions of CIMP status in different high- and low-CAF-risk groups and their corresponding Riskscore 
in GSE39582 cohort. (E) Distributions of MSI status in different high- and low-CAF-risk groups and their corresponding Riskscore in 
TCGA cohort. (F) Distributions of tumor location in different high- and low-CAF-risk groups and their corresponding Riskscore in TCGA 
cohort. CAF, cancer-associated fibroblast; TCGA, The Cancer Genome Atlas Program; AJCC, American Joint Committee on Cancer; 
CIMP, CpG island methylator phenotype; MSI, microsatellite instability; MSS, microsatellite-stable; MSI, microsatellite instability..
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predict immunotherapy response. Figure 8C shows that the 
immunotherapy-resistant patients had a higher Riskscore 
(TCGA: P<2.2e-16; GSE39582: P<2.2e-16; IMvigor210: 
P=0.034). From another perspective, the patients in the low-
risk group had a reasonably high sensitivity to immunotherapy 
as indicated by the chi-squared test (TCGA: P=5.38e-22, 
GSE39582; P=5.87e-23; IMvigor210: P=0.02) (Figure 8D).

Somatic variation and GSEA of the CAF-based gene 
signature

We utilized the R package maftools (version 2.12.0) to 
read and analyze the TCGA somatic mutation data. The 
waterfall plots incorporating the top 20, highly variable, 
mutant genes were separately generated for high- and low-
risk groups. Figure 9A illustrates a significant overlap in the 
top 20 mutational gene profiles between high and low-CAF-
risk groups. However, specific genes like RYR3, DNAH11, 
NEB, and ABCA13 were unique to the high-risk group, while 
FBXW7, ADGRV1, ATM, and PCLO were exclusive to the low-
CAF-risk group. In addition, the chi-square test revealed that 
the mutation rate of KRAS, a key oncogene and therapeutic 
target in CRC, was higher in the low-risk group (P<0.05).

We performed GSEA on two datasets (TCGA and 
GSE39582) to further validate the activation of the 
associated signaling pathways implicated in the diverse 
CAF-related risk categories. Cell adhesion molecules, 
ECM-receptor interaction, and focal adhesion pathways 
were considerably enriched in both datasets (Figure 9B,9C). 
The ssGSEA also revealed a strong correlation between 
the CAF Riskscore and apical junctions, epithelial to 
mesenchymal transition, angiogenesis, and the KRAS 
signaling pathway (Figure 9D,9E).

Validation of cell lines and immunohistochemistry

We evaluated RNA-seq data from 35 fibroblast and 57 
CRC cell lines. The heatmap (Figure 10A) and boxplot  
(Figure 10B) indicate that the signature genes (BOC, 
DACT3, and COLEC12) are predominantly expressed in 
the fibroblast cell lines. Immunohistochemistry of Human 
Protein Atlas database signature genes also validated protein 
expression in stromal tissue (Figure 10C).

Discussion

Key findings

In recent years, researchers have reached a consensus 

t h a t  t h e  T M E  i s  h i g h l y  l i n k e d  t o  b o t h  c a n c e r  
progression (50) and therapeutic resistance (51). The tumor 
stroma is no longer viewed solely as physical support for 
mutated epithelial cells but as a crucial modulator. As a 
major component of the TME, CAFs collaborate with 
tumor cells and other TME components in an established 
solid tumor (52) and exert the greatest influence on nearly 
all TME activities in real time (53-55). Based on the CRC 
Consensus Molecular Subtype classification (CMS), the 
CMS4 (mesenchymal) group is prominent in transforming 
growth factor-beta (TGF-β) signaling activation, stromal 
invasion, ECM remodeling, and angiogenesis (56). This 
study discovered that genes upregulated in the mesenchymal 
subtype were prominently expressed by CAFs and other 
stromal cells (57). Lawrenson et al. demonstrated that 
the presence of senescent CAFs during the aging process 
significantly increased in-vitro and in-vivo proliferation and 
tumorigenicity (58). A recent study conducted by Nee and 
colleagues has revealed that preneoplastic stromal cells play 
a significant role in promoting breast tumorigenesis that is 
mediated by BRCA1 (59). They identified that pre-CAFs 
are responsible for the production of pro-tumorigenic 
factors, including MMP3, which promotes BRCA1-driven 
tumorigenesis.

In this study, we identified a novel gene signature 
associated with CAF infiltration that may serve as a potential 
prognostic marker and predictor of therapeutic response. 
Unlike the conventional differential gene expression 
(DEG) strategy for screening hub CAF markers (60), 
WGCNA assesses the connection between co-expressed 
genes and sample phenotypes. We utilized numerous 
deconvolution algorithms to assess the CAF abundance of 
each sample as its characteristic. Consistent with previous 
studies, we observed that CAF infiltration measured by 
three bioinformatics approaches (EPIC, xCell, and MCP-
counter) and estimated stromal scores were inversely linked 
to the OS in CRC patients (61,62). Although some research 
employing the single-cell RNA-sequencing technique has 
been carried out on gene expression differences with respect 
to CAF infiltration (63), the heterogeneity of CAFs prevents 
a full comprehension of alterations in the transcriptomics 
(53,63,64). Through WGCNA analysis, we identified 
several co-expression modules that exhibited strong 
correlations with CAFs. These modules were enriched for 
genes involved in key biological processes associated with 
CAFs, which was confirmed by following GO and KEGG 
enrichment analyses. Thus, WGCNA is an innovative 
method to explore markers associated with CAFs and has 
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Figure 9 Mutations and pathway analysis of high- and low-CAF-risk groups. (A) Mutation landscape of high- and low-CAF-risk groups 
in the TCGA cohorts. (B) GSEA plot of the GSE39582 cohorts. (C) GSEA plot of the TCGA cohorts. (D) Correlation analysis between 
risk score and ssGSEA scores of the apical junction, EMT, angiogenesis and KRAS signaling in GSE39582 cohort. (E) Correlation analysis 
between risk score and ssGSEA scores of the apical junction, EMT, angiogenesis and KRAS signaling in the TCGA cohort. CAF, cancer-
associated fibroblast; TCGA, The Cancer Genome Atlas Program; TMB, tumor mutational burden; GSEA, Gene Set Enrichment Analysis; 
ssGSEA, single-sample GSEA; EMT, epithelial to mesenchymal transition.
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Figure 10 Multidimensional expression validation. (A) Heatmap of gene expression in different cell lines from CCLE database. (B) 
Wilcoxon test of gene expression in different cell lines. (C) IHC images of CRC tissues from the HPA database, both 40× and 100× 
images were presented. (Source of the images: COLEC12: https://www.proteinatlas.org/ENSG00000158270-COLEC12/pathology/
colorectal+cancer, Patient: 1811; BOC: https://www.proteinatlas.org/ENSG00000144857-BOC/pathology/colorectal+cancer, Patient: 1958; 
DACT3: https://www.proteinatlas.org/ENSG00000197380-DACT3/pathology/colorectal+cancer, Patient: 2151). CCLE, cancer cell line 
encyclopedia; GSEA, Gene Set Enrichment Analysis; CRC, colorectal cancer; IHC, immunohistochemistry; HPA, Human Protein Atlas.

been successfully applied to other cancer types (65,66).

Explanations of findings

Among the co-expression modules, we selected a specific 
module that exhibited the highest correlation with CAFs 
for further analysis. LASSO permits subset contraction 
for multicollinear data and biased estimates to minimize 
variance. By applying LASSO regression, we constructed 
a gene risk signature that effectively captured the most 
informative genes associated with CAFs, while penalizing 

irrelevant or redundant genes. Finally, we successfully 
demonstrated a three-gene prognostic (BOC, COLEC12, 
DACT3) signature. By examining the expression levels of 
the signature genes in tumor samples, it may be possible to 
stratify patients based on their CAF-related risk profiles. 
After that, we performed several analyses to explore the 
difference between CAFs risk groups. Besides the advanced 
TNM stage and dismal prognosis, we observed a statistically 
significant difference in CIMP between high- and low-CAF 
risk groups. However, there was no similar tendency with 
respect to MSI and CIN. A study conducted by researchers 
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at Umeå University has reported that CIMP-negative 
tumors exhibit heightened levels of fibronectin expression, 
whereas CIMP-high tumors show a decreased expression of 
E-cadherin (67). These findings indicated that the different 
tumor subgroups in fact induce different phenotypes in 
CAFs, resulting in CIMP-specific markers. Combining 
with existing researches, our findings may provide insights 
into the role of epigenetic regulation in the TME and its 
association with CAFs.

Comparison with similar researches

CAFs have been implicated in modulating the immune 
microenvironment and influencing the response to 
chemotherapy and immunotherapy. Previous studies found 
that CAFs affected oxaliplatin and 5FU sensitivity in CRC 
cells. CRC development and treatment resistance are 
promoted by platinum-based medication accumulation in 
CAFs (68,69). In our study, the Riskscore chemotherapy 
sensitivity analysis may influence the selection of 
5-fluorouracil/leucovorin combined with oxaliplatin 
(FOLFOX) or 5-fluorouracil/leucovorin combined with 
irinotecan (FOLFIRI) chemotherapy. Based on the forecast 
from the TIDE algorithm, the gene signature may also 
provide valuable insights into the interplay between CAFs 
and the immune response, potentially serving as a predictive 
tool for immunotherapy response. Moreover, the mutation 
rate of KRAS differed between high- and low-risk groups, 
and ssGSEA revealed a significant correlation between the 
CAF risk score and the KRAS signaling hallmark. Further 
research is required to determine the relevance of the KRAS 
pathway in CAF-related risk groups.

Several reports have documented the roles of the three 
identified markers in this well-established signature in 
tumor progression and the TME. BOC is a member of the 
Robo-related Ig/fibronectin superfamily and interacts with 
the Sonic Hedgehog (SHH) pathway (70). Prior research 
has highlighted the significance of the Hedgehog signaling 
pathway in modulating cancer properties and the TME. As 
a receptor and pathway activator, BOC binds SHH with 
high-affinity via a specific fibronectin repeat that is essential 
for activity (71,72). Previous research has established that 
BOC mediates SHH responsiveness in pancreatic fibroblasts 
and promotes pancreatic tumor growth (73). Furthermore, 
it has been proposed that BOC inactivation inhibits the 
proliferation and development of early medulloblastoma to 
advanced stages (74). DACT3 is a vital regulator of Wnt/
β-catenin signaling and a therapeutic target for controlling 

Wnt/β-catenin signaling in CRC. Recent evidence suggests 
that CAF-derived β-catenin accumulation may be a 
relatively early-stage event in carcinogenesis. For instance, 
many CAFs infiltrate into invasive tissue in the context 
of elevated β-catenin levels (75). DACT3 expression has 
been connected to prognosis and proven to be associated 
with the pathological stage of colon cancer, according 
to prior bioinformatics analyses (76). Proteomic analysis 
has revealed that the stromal factor COLEC12 is a high-
affinity, inhibitory collagen receptor LAIR1 ligand (77). 
LAIR1 is broadly expressed in immune cell subsets (78) and 
leads to poor prognosis in a variety of malignancies (79,80). 
A recent study suggests that inhibition of LAIR-1 and 
TGF-β signaling can help remodel the TME and enable 
PD-L1-mediated tumor eradication (81). In spite of this, 
as the functional validation of the three genes implicated 
in the signature of CRC is limited, more research on these 
three CAF-related biomarkers is necessary.

Limitations and actions needed

Our study demonstrates promising potential in predicting 
patient outcomes, such as disease progression, treatment 
response, and OS. However, it is essential to acknowledge 
the limitations of our gene signature and its implications. 
Firstly, although we employed rigorous statistical and 
bioinformatics methods for developing gene signature, the 
functional validation of the three genes implicated in the 
signature is limited. Subsequent research endeavors ought 
to focus on remedying these constraints and augmenting 
its clinical value in patients with CRC. Prospective 
validation of the gene signature using other independent 
patient cohorts is crucial to ascertain its robustness and 
generalizability. Individual functional validation of the genes 
comprising the signature could serve as a valuable asset in 
the development of targeted therapeutic approaches against 
CAF-mediated processes.

Conclusions

Through comprehensive bioinformatics analysis, we 
discovered BOC, COLEC12, and DACT3 as new prognostic 
CAF biomarkers in CRC. A CAF-related signature was 
constructed and validated using these three indicators, 
which could precisely predict prognosis, chemotherapeutic 
resistance, and immunotherapy responses in patients with 
CRC. This model might give insights into targeting CAFs 
in CRC therapy.
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Supplementary

Figure S1 WGCNA in the TCGA cohort. (A) Scale independence in the TCGA cohort. (B) Mean connectivity in the TCGA cohort. (C) 
Gene dendrogram in the TCGA cohort, before and after dynamic merge. (D) The association between modules and CAFs parameters 
measured by Pearson correlation analysis in the TCGA cohort. (E) Scatterplot of MM and GS from the black and magenta modules in the 
TCGA cohort.
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Figure S2 Forestplot for univariate cox regression analysis. Each horizontal line on a forest plot represents an individual gene and the 95% 
confidence interval of the hazard ratio.



© Translational Cancer Research. All rights reserved. https://dx.doi.org/10.21037/tcr-23-261

Figure S3 Correlation between Riskscore and clinicopathological characteristics. (A) Distributions of high- and low-CAF-risk groups in the 
AJCC stage, pathological T stage, pathological N stage, and pathological M stage in the GSE39582 cohort. (B) Distributions of CIN status 
in different high- and low-CAF-risk groups and their corresponding Riskscore in GSE39582 cohort. (C) Distributions of tumor location in 
different high- and low-CAF-risk groups and their corresponding Riskscore in GSE39582 cohort.


