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RNA 5-Methylcytosine regulators are associated with cell 
adhesion and predict prognosis of endometrial cancer
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Background: RNA methylation is a significant form of post-transcriptional modification that has 
been implicated in various diseases, including cancers. One prominent type of RNA methylation is 
5-Methylcytosine (m5C), which primarily regulates RNA stability, transcription, and translation. However, 
the role of m5C-related gene regulation in cell adhesion within uterine corpus endometrial carcinoma (UCEC) 
remains unexplored. Therefore, the objective of this study was to investigate the association between RNA 
m5C methylation and UCEC and develop a prognostic predictive model to forecast survival outcomes in 
UCEC patients.
Methods: The RNA datasets were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases. The dataset was used to explore the interaction relationships of m5C regulators 
in UCEC. Unsupervised clustering analysis identified clusters with distinct m5C modification patterns. 
Different clusters underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment level analysis to investigate the effects of pathways related to m5C methylation, which were 
further validated through in vitro cellular experiments. A prognostic predictive model was developed using 
the least absolute shrinkage and selection operator (LASSO) and multivariate regression analysis.
Results: Two clusters with distinct m5C modification patterns were identified using unsupervised cluster 
analysis. Furthermore, the prognosis of cluster 2 was found to be worse. Enrichment analysis showed 
alterations in cell adhesion-related pathways in both clusters, as well as differences between the clusters. 
Through this analysis, we identified 25 genes with significant prognostic value. Finally, a prognostic 
predictive model comprising NSUN2 and YBX1 was constructed.
Conclusions: In conclusion, diverse m5C modification patterns display distinct cell adhesion properties in 
UCEC, which are correlated with prognosis and offer significant potential as prognostic markers for UCEC 
assessment. We developed a prognostic predictive model to accurately predict the prognosis of UCEC.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is a 
prevalent gynecological cancer, particularly in regions with 
moderate to high levels of development (1). It is projected 
that there will be approximately 65,950 new cases of UCEC 
and 12,550 deaths in the United States by 2022 (2). The 
mortality rate of endometrial cancer has experienced a 
yearly increase, reaching a rate of 1.4% in the year 2018 (3).  
Although our understanding of endometrial cancer has 
progressively improved, significant advancements in its 
treatment have yet to be achieved. The current treatment 
for endometrial cancer involves surgery, followed by 
postoperative adjuvant radiotherapy and chemotherapy, 
with chemotherapy being the primary approach (4). 
Surgical intervention is an effective treatment approach 
for low-grade endometrial cancer, achieving a 96.8% 
local control rate without the requirement of additional 
adjuvant therapies (5). High-grade endometrial cancer is 
commonly managed through a combined approach of post-
surgical radiotherapy and chemotherapy, with carboplatin 
and paclitaxel being the first-line chemotherapy agents 
employed (6). Future advancements in endometrial cancer 
treatment are centered around targets like angiogenesis, 
DNA repair, and AKT serine/threonine kinase (7). 
Nevertheless, their practical application in clinical treatment 
remains limited.

Endometrial cancer staging currently relies on clinical 
features. However, there are instances where cancers 
diagnosed as advanced do not progress, while early-stage 
endometrial cancers progress to malignancy. As a result, 
formulating individualized treatments becomes crucial for 
patients. This relies on a more precise classification method. 

Thus, recent studies have started incorporating molecular 
analyses in conjunction with traditional prognostic 
factors. Based on an integration of numerous molecular 
phenotypes, The Cancer Genome Atlas (TCGA) has 
classified endometrial cancer into four categories (8). These 
categories include polymerase epsilon (POLE) ultramutated, 
microsatellite instability (MSI) hypermutated, copy-number 
(CN) low, and CN high. POLE ultramutated cases have 
the best prognosis, MSI hypermutated cases exhibit a good 
prognosis, CN low cases show a moderate prognosis, while 
CN high cases have the worst prognosis. However, due 
to its complexity and high cost, it is not currently feasible 
for clinical use. Currently, there is rapid development in 
epigenetic research, with epigenetic mechanisms playing 
significant roles in normal biological processes and tumor 
pathology. An increasing number of studies are now 
exploring the use of epigenetics in tumor classification and 
treatment. The extensively studied epigenetic mechanisms 
include DNA methylation, histone modification, chromatin 
reorganization, and non-coding RNAs, all of which 
significantly contribute to the risk stratification of UCEC 
(9-11). Despite RNA methylation being a recently studied 
epigenetic mechanism with prognostic relevance in many 
other tumors, 5-Methylcytosine (m5C) methylation has 
received limited attention in endometrial cancers.

Methylation modification is a major form of post-
transcriptional RNA modification, which is still in its 
early stages. It encompasses various modifications such as, 
N1-methyladenosine (m1A), m5C, N6-Methyladenosine 
(m6A),7-Methylguanosine (m7G), and Um. Presently, 
research efforts on post-transcriptional RNA modifications 
have predominantly focused on m6A, with relatively limited 
investigations on m5C. Methylation of m5C involves the 
addition of a methyl group to the fifth carbon of the 
cytosine in the RNA sequence. This reversible process 
utilizes S-adenosylmethionine (SAM) as a carrier for 
methyltransferase, which facilitates the formation of m5C. 
The modified RNA then binds to a binding protein, 
enabling its functional role (12). This process includes 
writers (methyltransferases), erasers (demethyltransferases), 
and readers (associated binding proteins). Notably, this form 
of modification is widely observed in various types of RNA, 
particularly in tRNA and rRNA (13). RNA methylation has 
been shown to significantly impact RNA export capacity and 
stability. Dysregulation of RNA methylation modifications 
has been associated with a range of diseases, particularly 
tumors (14). For example, overexpression of NSUN2 in 
bladder cancer leads to aberrant methylation at the 3’UTR 
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end, enhancing its interaction with Y-box binding protein 
1 (YBX1). This interaction increases mRNA stability and 
promotes bladder cancer progression (15). Thus, m5C 
methylation plays a crucial role in tumorigenesis.

Cell adhesion primarily refers to intercellular adhesion 
and the adhesion of cells to the extracellular matrix (ECM), 
which is primarily mediated by cell adhesion molecules. Cell 
adhesion molecules can be classified into four major groups: 
calmodulin, integrins, selectins, and immunoglobulins (Igs). 
Cell adhesion molecules not only maintain cell adhesion-
related functions but also mediate intracellular signaling 
pathways (16). Current cancer research is focused on 
calmodulin and integrins. Calmodulin is a class of calcium-
dependent transmembrane proteins that hold cells together 
and maintain tissue stability (17). Integrin adhesion is a 
family of transmembrane multiprotein complexes that link 
the ECM (18). The aggregation of ligands and integrins 
and their related proteins activates downstream signaling 
pathways. After ligand binding, integrin complexes can be 
divided into canonical adhesions (CAs), hemidesmosomes, 
and reticular adhesions (RA). CAs can be further divided 
into focal adhesions (FAs), fibrillar adhesions and nascent 
focal complexes (19). Cell adhesion directly affects cell 
migration, proliferation, differentiation, growth, and the 
capacity for repair, and it has been shown to be associated 
with developmental and pathological processes (20). 
The association of synaptic extension and retraction of 
the cytosol, along with adhesion to specific enzymatic 
proteins through FA-related pathways, is recognized to 
be an essential part of cell migration. As a result, cell 
adhesions are crucial to tumor development (20). Hippo 
component YAP has been found to enhance breast cancer 
invasion by promoting FA pathways (21). The interaction 
between autophagy-associated protein 9B (ATG9B) and 
MYH9 promotes FAs and enhances metastasis in colorectal  
cancer (22). Recent tumor-related studies have found a close 
association between cell adhesion and m5C methylation. 
The pathways of FA, cell-substrate adhere junction, and cell 
adhesion molecule binding associated with m5C methylation 
suggest a prognostic diagnosis for Osteosarcoma (23). 
Furthermore, a significant association was observed between 
the Wnt signaling pathway, FA, and m5C methylation in 
high-grade plasmocytic ovarian cancer (24).

However, the impact of m5C methylation modification 
on UCEC remains unclear. In our study, we primarily 
analyzed the gene expression and genetic variation of m5C 
methylation regulators in UCEC, and we investigated the 
relationship between cell adhesion and m5C methylation 

in UCEC. This relationship may be associated with 
differences in patient survival. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
742/rc).

Methods

Data resources

From TCGA database, fragments per kilobases per million 
mapped fragments (FPKM) files were downloaded, along 
with clinical information for 554 cases of UCEC and 
35 normal cases. Matrix files in SOFT format for three 
Gene Expression Omnibus (GEO) datasets (GSE17025, 
GSE106191, and GSE115810) (25-27) were downloaded 
from GEO (https://www.ncbi.nlm.nih.gov/geo/). A 
copy number variation (CNV) database for UCEC was 
downloaded from Genomic Data Commons (http://portal.
gdc.cancer.gov). This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

RNA m5C regulators

In total, ten writers (DMNT3A, DMNT3B, NOP2, 
NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, 
TRDMT1), four erasers (TET1, TET2, TET3, ALKBH1), 
and two readers (YBX1, ALYREF) have been identified for 
m5C regulators. It is important to note that DMNT3A and 
DMNT3B have only been reported in Arabidopsis thus far, 
therefore they will not be utilized in this paper (28).

Analysis of differentially expressed genes (DEGs)

The limma (29) package in R was utilized for the differential 
analysis of genes, while the ggplot2 package in R was 
mainly employed for principal component analysis (PCA). 
Additionally, the limma package was used to calculate the 
up-regulated DEGs within different clusters. DEGs were 
determined based on genes with a P value <0.05 and a fold 
change >2.

Interaction of m5C regulators

Based on STRING 11.0 b (https://string-db.org/) (30), 
the protein-protein interaction (PPI) network plots were 
generated. The relationship between mRNA expression 
and CNV levels of m5C regulators was assessed using the 
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ggcorrplot (31) package in R.

Clustering analysis of 14 m5C regulators

Using the ConsensusClusterPlus (32) package in R, the 
clustering analysis of m5C regulators was performed. For 
accurate classification, the analysis was repeated 500 times 
based on the expression of 14 m5C regulators.

m5C regulators mutation and CNV analysis

The m5C regulator-associated somatic mutation and CNV 
analyses were conducted using the cBioPortal website 
(www.cbioportal.org) (33) for pan-cancer and UCEC. The 
somatic mutation and CNV analyses for pan-cancer were 
obtained from the TCGA database, while the mRNA and 
CNV correlation analyses for UCEC were obtained from 
the TCGA-UCEC database via the cBioPortal website. 
The correlation analysis was expressed as the Spearman 
correlation coefficient, with |Spearman| ≥0.8 indicating 
high correlation, 0.5≤ |Spearman| <0.8 indicating 
moderate correlation, 0.3≤ |Spearman| <0.5 indicating low 
correlation, and |Spearman| <0.3 indicating little to no 
correlation.

Cluster functional annotation and exploration of cluster 
cell adhesion pathway

After performing differential expression analysis using the 
limma package in R, we selected the top 1,000 differentially 
expressed genes per cluster for further Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis using the Gene Set Variation Analysis 
(GSVA) package in R. We obtained marker gene sets for 
GO and KEGG from the MsigDB database (http://www.
gsea-msigdb.org/gsea/msigdb). The functional annotation 
for the KEGG and GO analysis results was carried out 
using the ClusterProfiler (34) package in R, and gene set 
enrichment analysis (GSEA) was performed using the 
GSEABase package in R. Finally, we visualized the KEGG 
and GO analyses using the ggplot2 package in R.

Cell growth and cell culture

ISK and ECC1 cells were cultured using high sugar DMEM 
medium (MUTICELL, Nanjing, China) containing 10% 
fetal bovine serum (FBS; MUTICELL). The growth 
environment was 37 ℃ and 5% CO2 in a cell incubator.

Plasmid construction and transfection

The cDNA fragment of NSUN2 was inserted into the 
hU6-MCS-Ubiquitin-EGFP-IRES-puromycin vector 
and the plasmid was synthesized by JIKAI GENE 
(Shanghai, China) and the plasmid has been validated by 
DNA sequencing. Cell transfection was performed using 
Lipofectamine 2000 reagent (Invitrogen Life Technologies, 
Carlsbad, CA, USA). The sequence of short hairpin 
ribonucleic acid (shRNA) is as follows: shNSUN2: 5’- 
GAGCGATGCCTTAGGATATTA -3’.

Western blot and antibody

A 10% gel was prepared using the PAGE Gel Fast 
Preparation Kit (Epizyme, Shanghai, China). Total protein 
was extracted using RIPA lysis buffer (Beyotime, Shanghai, 
China) containing 1% phenylmethanesulfonyl fluoride 
(PMSF) and 0.1% protease inhibitor cocktail (Beyotime). 
Protein concentrations were determined using a BCA kit 
(Beyotime). A total of 25 μg of protein per well was sampled. 
After electrophoresis, proteins were transferred onto PVDF 
membranes activated with methanol (Millipore, Waltham, 
MA, USA). The transferred membrane was incubated in 5% 
skim milk at room temperature for 1 h, and subsequently 
rinsed with 0.1% Tris-HCl plus Tween-20 (TBST) three 
times for 5 min each. After blocking, the membranes 
were incubated with the primary antibody, washed three 
times with TBST, and further incubated with the specific 
secondary antibody. The membranes were tested using the 
ECL Luminol kit (BioVision, Palo Alto, CA, USA). Anti-
NSUN2 (20854-1-AP) antibody and anti-GAPDH (60004-
1-lg) antibody were supplied by Proteintech (Wuhan, China); 
Anti-rabbit (AS014) and anti-mouse (AS003) secondary 
antibodies were purchased from ABclonal (Wuhan, China).

Cell proliferation Cell Counting Kit-8 (CCK-8) assay

Cell proliferation was assessed using the CCK-8 (Beyotime). 
Transfected ISK and ECC1 cells were seeded into 96-well 
plates at a density of 2,000 cells/well with 4 replicates. 
Then, they were treated with CCK-8 reagent at various 
time points: 0, 24, 48, and 72 h. Microplate readers were 
used to measure optical density (OD) at 450 nm. DMEM 
containing 10% FBS was used as a blank control group.

Transwell cell migration assay

The upper cell chamber of the Transwell invasion assay was 
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coated with a 60 μL solution of Matrigel (BD Pharmingen, 
San Jose, CA, USA) diluted in serum-free medium. The 
upper chamber was filled with 200 μL of serum-free 
medium containing 1×105 cells, while the lower chamber 
contained 700 μL of DMEM medium supplemented with 
10% FBS. Following a 48-h incubation for the migration 
assay and a 72-h incubation for the invasion assay, the 
cells were fixed with 4% paraformaldehyde (Beyotime) for  
30 minutes and then stained with 0.1% crystal violet 
(Beyotime) for 20 minutes. Finally, a random field of view 
was captured using a microscope (Leica, London, UK).

Statistical analysis

All experiments in this study were performed in triplicate, 
unless otherwise stated. Statistical analyses were performed 
using SPSS 19.0 software (SPSS, Chicago, IL, USA) and 
R 4.0.3. Graphs were generated using GraphPad Prism 
8.0 software (San Diego, CA). Univariate and multivariate 
Cox regression analyses were conducted using the survival 
package (35) in R. Kaplan-Meier analysis of overall survival 
(OS) was performed using the survminer package (35) in 
R and Kaplan-Meier Plotter (36). Variables with P<0.1 in 
the results of the univariate Cox regression analysis were 
selected for least absolute shrinkage and selection operator 
(LASSO) regression using the glmnet package (37) in R. 
The ggplot2 package in R was used to visualize the risk 
factors. By using ggplot2 and the pROC (38) package in R,  
the receiver operating characteristic (ROC) curve’s area 

under the curve (AUC) was calculated. Forest plots are 
visualized using the ggplot2 package in R. A P value less 
than 0.05 was considered statistically significant.

Results

Gene expression and mutations of m5C regulators in 
endometrial cancer

Initially, we conducted a comprehensive analysis of the 
mutation, structural variant, and CNV data across multiple 
cancers. UCEC exhibited a high frequency of mutations 
and amplifications, positioning it as one of the most 
prevalent cancers among the pan-cancer cohort (Figure 1A). 
TET1, TET3, TET2, and NSUN2 were the prevailing 
eraser genes responsible for mutations and amplifications 
in UCEC, comprising 12%, 11%, 9%, and 9% of the cases, 
respectively (Figure 1B). Furthermore, we conducted an 
analysis of the gene expression patterns of m5C regulators 
in UCEC. The expression levels of writers were generally 
elevated, with the exception of NSUN3. TET3 displayed 
increased expression among the eraser genes. Additionally, 
the expressions of both YBX1 and ALYREF were 
significantly elevated in the reader genes (Figure 1C-1Q).

Analysis of m5C regulators interaction and correlation in 
endometrial cancer

In order to explore the interrelationships among m5C 
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Figure 1 Gene expression and mutation of m5C regulators in endometrial cancer. (A) Mutation, structural variant and CNV alterations of 
m5C regulators in pan-cancer. The figure was downloaded from cBioPortal website (www.cbioportal.org) and permissions are not needed. 
(B) Mutation, structural variant and CNV in m5C regulators in endometrial cancer. The figure was downloaded from cBioPortal website 
(www.cbioportal.org) and permissions are not needed. (C) Differential expression analysis of m5C regulators in UCEC and normal samples 
in three independent GEO databases (GSE17025, GSE106191, and GSE115810). Up-regulated in UCEC samples: red; down-regulated 
in UCEC samples: green. (D-Q) Box plots of m5C regulators expression in TCGA database. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not 
statistically significant. m5C, 5-Methylcytosine; CNV, copy number variation; UCEC, uterine corpus endometrial carcinoma; GEO, Gene 
Expression Omnibus; TCGA, The Cancer Genome Atlas; TPM, transcripts per million.

regulators in endometrial cancer, we conducted various 
analyses. Spearman correlation analysis was performed 
on the mRNA and CNV levels of m5C regulators. Based 
on the STRING 11.0 b website, we constructed a PPI 
network diagram to analyze the interrelationships among 
m5C regulators. The PPI network diagram reveals intricate 
connections between the reader and eraser genes, with 

a predominant association between readers and NOP2  
(Figure 2A). Notably, there was a significant positive 
correlation in CNV between the writer and eraser genes, 
particularly TET1 and the writers (Figure 2B). Conversely, 
no significant correlation was observed between mRNA 
and CNV levels (Figure 2C). A significant correlation was 
found between the writer and reader genes, as well as the 
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Figure 2 Analysis of the interactions between m5C regulators in endometrial cancer. (A) PPI network diagram among m5C regulators. The 
figure was downloaded from STRING 11.0 b website (https://string-db.org/) and permissions are not needed. (B) Relationship between 
CNV levels in m5C regulators of endometrial cancer. (C) Relationship between CNV and mRNA levels of m5C regulators in endometrial 
cancer. (D) Relationship between mRNA levels of m5C regulators in endometrial cancer. Data with Spearman correlation coefficient ≥0.3 
are labelled with red boxes in the figure. m5C, 5-Methylcytosine; PPI, protein-protein interaction; CNV, copy number variation.

eraser and reader genes, at the mRNA level. Specifically, 
a significant positive correlation was observed between 
NSUN2 and readers, while a significant negative correlation 
existed between TET1 and readers. Additionally, there 
was a significant negative correlation between TET2 and 
NSUN5, while NSUN3 displayed a positive correlation 
(Figure 2D). These findings indicate the existence of a 
complex, yet closely interconnected relationship among 
m5C regulators.

Consensus clustering analysis of m5C regulators in 
endometrial cancer defined two clusters with different OS

An unsupervised consensus clustering analysis was 
conducted on the expression matrix of m5C regulators 
in endometrial cancer sourced from the TCGA database 
(Figure 3A-3D). Among the range of k values tested (k=3–6), 
the clustering method with k=2 exhibited the highest 
stability (Figure S1A). Cluster 2 exhibited a generally 

https://cdn.amegroups.cn/static/public/TCR-23-742-Supplementary.pdf
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higher expression of m5C regulators compared to cluster 1  
(Figure 3E). Compared to cluster 1, cluster 2 had a 
significantly worse OS (P<0.0001) (Figure 3F).

Functional annotation reveals two distinct clusters 
associated with cell adhesion

To study the impact of m5C methylation modification 
on the biological processes of UCEC, we conducted 
GO enrichment and KEGG analyses on the top 1,000 
differentially expressed genes across the different 
clusters. The results indicated significant alterations in 
cell adhesion-related pathways within both cluster 1 and 
cluster 2 (Figure 4A-4D). Subsequently, we performed a 
differential analysis of the cell adhesion-related pathways 
in the two clusters with differential expression of m5C 
regulators (Table S1). Cytokine-cytokine receptor 
interaction (P=1.99E-19), the Wnt signaling pathway 
(P=1.65E-10), the MAPK signaling pathway (P=2.63E-05), 
actin binding (P=0.000765), FA (P=0.007493), and integrin 
binding (P=0.010301) exhibited significant differences. To 
investigate the relationship between cell adhesion-related 
pathways and m5C methylation, we calculated GSVA scores 
for marker gene sets associated with cell adhesion-related 
pathways. We conducted a correlation analysis to examine 
their relationship with mRNA expression levels of m5C 
regulators (Figure 4E). The findings revealed significant 
positive correlations between all m5C regulators and most 
cell adhesion-related pathways, except for NOP2 and 
NSUN7, which showed negative correlations with these 
pathways. To further explore the role of m5C methylation 
modification in endometrial cancer, we introduced 
shRNA into ISK and ECC1 cells to knock down NSUN2 
expression. Western blotting confirmed a significant 
decrease in NSUN2 protein expression in ISK and ECC1 
cells (Figure 4F). We subsequently conducted cell migration 
and invasion experiments. Compared to the control group, 
NSUN2 knockdown ISK and ECC1 cells exhibited a 
significant reduction in both migratory and invasive abilities 
(Figure 4G,4H). In conclusion, these results suggest that 
m5C methylation modification likely regulates cell adhesion 
ability.

Cell adhesion-related genes with prognostic value under 
differential modification of m5C

Through overlap analysis, we identified cell adhesion-
related genes that exhibited survival differences in the two 

clusters (Figure 5A). This analysis clarified the involvement 
of 25 cell adhesion-associated genes with prognostic value 
in differential m5C modifications. To visualize the impact 
of m5C modifications on cell adhesion genes and survival 
differences, we plotted a figure (Figure 5B). Additionally, we 
used a volcano map to visually represent nine representative 
genes (Figure 5C). Furthermore, we present the Kaplan-
Meier analysis curves for these nine representative genes 
(Figure 5D-5L), while the remaining genes are shown in 
Figure S1B-S1Q.

Establishing a risk score model associated with the m5C 
regulators

Given the alteration in cell adhesion-related pathways 
between clusters exhibiting different m5C modification 
patterns and their subsequent impact on prognosis, we 
conducted further investigation into the predictive value of 
m5C regulators for OS in endometrial cancer. Univariate 
Cox analysis of m5C regulators identified seven genes with 
P<0.1 (Table S2). These seven genes were then subjected 
to LASSO Cox regression analysis to construct a predictive 
model for OS-related risk scores, employing 10-fold cross-
validation. Ultimately, NSUN2 and YBX1 were included 
in the final prediction model (Figure 6A-6C), which can 
be represented as (0.276) × NSUN2 + (0.1509) × YBX1. 
To evaluate the model’s efficacy, we determined cut-off 
values to categorize patients into high-risk and low-risk 
groups. Kaplan-Meier analysis demonstrated that patients 
in the high-risk group experienced significantly poorer OS  
(Figure 6D). Moreover, the predicted ROC curves for 3 and 
5 years yielded an AUC of 0.626 and 0.638, respectively 
(Figure 6E). To further validate the significance of the key 
genes in the model, we conducted cell proliferation assays 
using ISK and ECC1 cells with NSUN2 knockdown. 
The results indicated a noticeable reduction in the 
proliferation ability of NSUN2 knockdown ISK and ECC1 
cells (Figure 6F). In order to explore the additional value 
of m5C modification for risk prediction, we performed 
multivariate Cox analysis, establishing that m5C can serve 
as an independent risk factor (P=0.039, hazard ratio =1.673) 
(Figure 6G).

Discussion

The study of epigenetic mechanisms aims to explore 
individualized treatment options for different molecular 
subtypes of UCEC. Moreover, it has important clinical 

https://cdn.amegroups.cn/static/public/TCR-23-742-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-742-Supplementary.pdf
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Figure 5 Selection of representative genes related to cell adhesion pathways with prognostic value differentially modified in m5C. (A) Venn 
diagram showing the overlap analysis of differential genes with prognostic value in two different m5C-modified clusters, belonged to cell 
adhesion-related pathways. (B) Circus diagram showing the relationship between cell adhesion-related pathway genes with survival differences 
under different m5C modifications and their associated pathways. (C) Volcano plot showing the expression of 9 representative genes with 
prognostic value. (D-L) Kaplan-Meier overall survival curves for nine representative genes. m5C, 5-Methylcytosine; HR, hazard ratio.
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Figure 6 Prognostic risk prediction model associated with m5C regulators using TCGA data. (A-C) LASSO Cox regression analysis showed 
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implications in various other areas. There is currently a 
trend of delayed childbearing in women, with 6.5% of 
UCEC patients being under the age of 45, and a significant 
proportion of these patients have not yet experienced 
childbirth (39). This group of patients strongly desires to 
preserve their fertility, resulting in an increasing demand 
for Fertility Sparing Treatments (FST). However, FST may 
lead to significant post-operative complications. Therefore, 
it is crucial to identify the appropriate candidates for FST. 
Molecular biology and epigenetics have now emerged as 
prognostic markers for UCEC, thereby providing physicians 
with additional standard options (40). Additionally, it is 
crucial to closely monitor UCEC patients during their 
follow-up. The concept of liquid biopsy has now been 
introduced in many tumor studies, involving the extraction 
of tumor derivatives from various liquid components. 
The current follow-up of UCEC patients relies on two 
serum tumor markers, CA125 and HE4. However, these 
markers face the challenge of achieving more accurate risk 
stratification for UCEC patients. Levels of cell free DNA 
(cfDNA) in uterine fluid have demonstrated superiority over 
CA125 and HE4 in predicting the prognostic repertoire 
of UCEC. Furthermore, they have significant potential in 
informing the indications for FST. However, its potential is 
currently limited due to the absence of prognostic markers 
that can be measured during disease progression (41). 
Therefore, there is a need to enhance our comprehension of 
epigenetic mechanisms and the epigenome for their clinical 
application. However, since epigenetic modifications do not 
modify the RNA sequence, the conventional detection of 
RNA mutations cannot elucidate epigenetic changes. There 
are ongoing clinical trials to develop inhibitors targeting the 
epigenome, signifying the need to intensify our exploration 
of epigenetic mechanisms (9,42,43).

Our study demonstrates a strong association between 
m5C regulator mRNA levels and cell adhesion-related 
pathways in endometrial cancer. We screened twenty-five 
cell adhesion genes associated with OS-related pathways in 
various clusters of m5C modification patterns. Furthermore, 
we investigated the prognostic value of m5C modification in 
UCEC and developed a risk prediction model comprising 
NSUN2 and YBX1, both of which demonstrate prognostic 
significance. Our findings indicate that mRNA levels of 
NSUN2 and YBX1 serve as valuable indicators for patients 
with poor prognosis. Previous studies have reported the 
diagnostic and prognostic significance of m5C modification 
in various cancers, including hepatocellular carcinoma (44), 
lung adenocarcinoma (45), colorectal cancer (46), cutaneous 

melanoma (47), clear cell renal cell carcinoma (48) and 
ovarian cancer (49). Our study aimed to investigate the 
diagnostic and prognostic significance of m5C modification 
in UCEC.

Loss of intercellular adhesion and anchoring-independent 
growth are characteristic features of tumors. Cell adhesion 
plays an increasingly important role in tumor pathogenesis. 
In our study, clusters with different m5C modification 
patterns were found to have alterations in cell adhesion-
related pathways, and significant differences were observed 
between these clusters. One of these pathways is the 
MAPK signaling pathway, which includes various cascades 
involved in regulating intracellular signaling, such as cell 
adhesion, proliferation, migration, and differentiation (50). 
The Wnt signaling pathway, on the other hand, regulates 
the formation of calcium-dependent complexes between 
intercellular and intercellular E-calmodulin, thereby 
mediating homotypic intercellular adhesion (51). Among 
the proteins associated with cell adhesion-related pathways 
that we analyzed, most showed decreased expression in 
UCEC. For instance, CACNA1H regulates the activity of 
T-type calcium channels (52), and changes in Ca2+ levels 
can affect the activation of cell adhesion molecules (53). 
PDGFRB acts as a receptor for paracrine growth factors 
and interacts with integrins, which localizes PDGFRs to 
the beginning of FAs. This interaction can impact multiple 
signaling pathways and has important implications for cell 
migration and proliferation (54). ECM2, a member of 
the secreted protein acidic and rich in cysteine (SPARC)-
related family, regulates the interaction between cells and 
the ECM and functions as a de-adhesive protein. Moreover, 
ECM2 can be used as a prognostic biomarker for low-
grade gliomas, and high ECM2 expression promotes glioma 
proliferation, migration, and invasion (55,56). PPP1R12B is 
involved in the regulation of cell-matrix adhesion dynamics 
and traction force turnover (57,58). EMILIN1, an adhesive 
ECM glycoprotein, forms stable intra-chain salt bridges 
with α4β1 integrins, which enhance cell adhesion (59).  
RASGRP2 has been shown to participate in the cell 
adhesion process and can improve cell-matrix adhesion 
by increasing the levels of Ras and Rap1 in endothelial 
cells (60). Therefore, the different clusters identified in 
our study with distinct m5C modification patterns had 
varying prognoses due to differences in mRNA levels of cell 
adhesion-related factors. This suggests that alterations in 
cell adhesion have prognostic significance for UCEC.

Cell adhesion is observed in a diverse array of cancers. 
The prognostic value of the m5C-related cell adhesion 
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pathways in tumors has also been documented. However, 
there is a notable absence of specific and relevant basic 
research on this topic. In our study, we discovered a 
correlation between the cell adhesion-related pathways in 
UCEC and m5C modification levels, thereby providing a 
valuable reference for future investigations.

Conclusions

In conclusion, our study examined the expression and 
interrelationship of m5C regulators in UCEC, and 
successfully constructed a prognostic prediction model 
for OS utilizing NSUN2 and YBX1. We discovered that 
m5C modification plays a significant role in cell adhesion-
related pathways of UCEC. Our findings suggest that m5C 
methylation regulators hold potential as prognostic markers 
for assessing UCEC.
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Table S1 Differential analysis of cell adhesion-related pathways in two clusters of differential expression of m5C regulators

Pathway LogFC t AveExpr P value

Cytokine-cytokine receptor interaction −0.16196 −0.00389 −9.37677 199E-19

Wnt signaling pathway −0.23423 0.01348 −6.51917 165E-10

MAPK signaling pathway 0.062457 0.004033 4.24067 2.63E-05

Actin binding 0.050517 0.003888 3.384926 0.000765

Focal adhesion −0.05199 0.001442 −2.68443 0.007493

Integrin binding 0.062623 0.003874 2.574798 0.010301

Tight junction 0.020722 0.009876 1.35289 0.176669

Regulation of actin cytoskeleton −0.01534 −0.0058 −0.77599 0.438102

Cell-substrate adhesion 0.004211 0.003562 0.222486 0.824022

Supplementary
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Figure S1 (A) consensus matrix at k=3–6. (B-Q) Kaplan-Meier overall survival curves for the remaining sixteen representative genes.
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Table S2 Univariate Cox analysis of 14 m5C regulators in UCEC

Characteristics Total (N)
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

NOP2 551 1.233 (0.839–1.814) 0.287

NSUN2 551 1.997 (1.340–2.974) <0.001 1.594 (0.935–2.718) 0.087

NSUN3 551 1.584 (0.928–2.703) 0.092 1.183 (0.568–2.464) 0.654

NSUN4 551 1.711 (1.037–2.823) 0.035 1.015 (0.546–1.886) 0.962

NSUN5 551 1.390 (0.901–2.145) 0.137

NSUN6 551 1.230 (0.788–1.921) 0.363

NSUN7 551 0.968 (0.711–1.318) 0.837

ALKBH1 551 0.869 (0.544–1.388) 0.557

TRDMT1 551 1.395 (0.855–2.276) 0.183

TET1 551 1.386 (0.963–1.995) 0.079 1.065 (0.631–1.798) 0.813

TET2 551 0.931 (0.621–1.396) 0.728

TET3 551 1.492 (1.056–2.107) 0.023 1.066 (0.630–1.803) 0.812

ALYREF 551 1.572 (1.090–2.268) 0.015 1.217 (0.762–1.944) 0.411

YBX1 551 1.305 (1.017–1.674) 0.037 1.095 (0.791–1.515) 0.585

UCEC, uterine corpus endometrial carcinoma.


