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Background: Acute myeloid leukemia (AML) is a cancer arising in the bone marrow and is the most 
common type of adult leukemia. AML has a poor prognosis, and currently, its prognosis evaluation does 
not include immune status assessment. This study established an immune-related long non-coding RNA 
(lncRNA) prognostic risk model for AML based on immune lncRNAs screening.
Methods: To construct training and validation cohorts, The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) public databases were accessed to obtain gene expression profiles and clinical 
data. The correlation between lncRNAs and immunity genes was analyzed using the “limma” package, 
and the immune-related lncRNAs were obtained. Through least absolute shrinkage and selection operator 
regression, a prognostic model was established with immune-related lncRNAs. Using the median risk score, 
patients were divided into high- and low-risk groups. The Kaplan-Meier method was used for survival 
analysis, whereas the accuracy of the risk model was evaluated using time-dependent receiver operating 
characteristic curves, risk score distribution, survival status, and risk heat maps. We utilized univariate and 
multivariate Cox regression to examine the association between risk score and clinical variables and AML 
survival and prognosis.
Results: In the immune-related lncRNA prognostic risk model, the prognosis was better for low-risk than 
for high-risk patients, indicating risk score of this model as an independent indicator of prognosis. The 
area under the curve value for 1-, 3-, and 5-year survival of TCGA patients was 0.817, 0.859, and 0.909, 
respectively, whereas that of GEO patients (of dataset GPL96-GSE37642) was 0.603, 0.652, and 0.624, 
respectively. Gene set enrichment analysis revealed the enrichment of multiple pathways, such as antigen 
processing, B-cell receptor signaling pathway, natural killer cell-mediated cytotoxicity, and chemokines, in 
high-risk patients.
Conclusions: In this study, immune-related lncRNA prognostic risk models effectively predicted AML 
survival and provided potential treatment targets.
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Introduction

Acute myeloid leukemia (AML) is a cancer arising from 
myeloid hematopoietic stem or progenitor cells (1). 
AML incidence increases with age and ranks the first 
in all adult acute leukemia types. In its pathogenesis, 
leukemia cells proliferate clonally and hematopoietic stem 
cells are prevented from differentiating, resulting in the 
disorder of normal hematopoiesis (2). Currently, the risk 
stratification of AML is mainly based on molecular biology 
and cytogenetic analyses adopted by the 2017 European 
LeukemiaNet (ELN) AML recommendations. According 
to this risk stratification, patients are treated with either 
chemotherapy alone, or chemotherapy combined with stem 
cell transplantation. Despite these treatment methods, 
the 5-year survival rates and median survival times AML 
patients are low and their prognosis is poor. Recent studies 
have found that AML cells interact with immune cells 
and cytokines in the immune microenvironment of the 
bone marrow, allowing leukemic cells to escape immune 
surveillance (3) and ultimately leading to immune drug 
resistance. With the development of single-cell RNA 
sequencing (scRNA-seq) technology, it was found that 
immune cells play a vital role in anti-tumor effects (4). 
The findings have suggested the close relation between 
the immune status and prognosis of patients with AML. 
However, the current mechanism of prognosis evaluation 
for AML is relatively simple and it does not involve the 
evaluation of the immune status. Therefore, this study 
assessed immune status within the prognosis evaluation 

of AML by screening for immune predictors to improve 
the existing evaluation mechanism and allow enhanced 
treatment methods to be developed.

A long non-coding RNA (lncRNA) does not code for 
a protein (5); thus, lncRNA was believed to be unrelated 
to gene expression. However, in the increasingly high-
throughput sequencing era, more lncRNAs have been 
annotated, and some studies have reported that the lncRNA 
promoter sequences are even more conserved than protein-
coding genes, indicating that lncRNA plays an important 
role in gene expression (6). Notably, a study (7) showed that 
lncRNAs were expressed in an aberrant manner and were 
found to be involved in gene transcription, RNA ligation, 
protein transport, and other processes in many neoplastic 
diseases (8). In AML, lncRNAs, such as HOTAIRMI, NEAT1, 
PVT1, CASC15, and UCA1, were found to regulate leukemic 
cell proliferation, differentiation, and apoptosis (9-14).  
Hence, the immune regulation of lncRNAs in cancer 
has become a research hotspot. Importantly, immune-
related lncRNAs could provide prognostic information and 
treatment guidance for cancer patients (15).

In this study, three types of data, namely, transcriptome, 
high-throughput sequencing chip, and clinical data, were 
obtained from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases and used 
to conduct a comprehensive analysis of AML immune-
related lncRNAs. Based on the analysis results, a prognostic 
risk model was constructed to provide guidance for the 
prognostic assessment of patients as well as a theoretical 
basis for researching new therapeutic targets for AML. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-429/rc).

Methods

Data collection and organization

The RNA-seq and clinical data of AML patients from the 
TCGA database were obtained using the UCSC Xena 
database (https://xena.ucsc.edu/). The microarray and 
clinical data were downloaded from the GEO repository; 
the GPL96 annotation platform had the largest sample 
size in the GPL96-GSE37642 dataset; thus, the GPL96-
GSE37642 dataset was selected for analysis. Samples with 
a survival time of <30 days were excluded when screening 
for clinical data and the TCGA and GPL96-GSE37642 
datasets were annotated using the “AnnoProbe” and 

Highlight box

Key findings 
• This study provided innovative ideas for studying acute myeloid 

leukemia (AML) pathogenesis and improved the risk stratification 
of AML.  

What is known and what is new? 
• The current mechanism of prognosis evaluation for AML is 

relatively simple and it does not include the evaluation of immune 
status.

• Immune-related long non-coding RNAs could provide prognostic 
information and treatment guidance for AML patients.

What is the implication, and what should change now?
• This study conducted an assessment of immune status within the 

prognosis evaluation of AML by screening for immune predictors 
to improve the existing evaluation mechanism and allow enhanced 
treatment methods to be developed.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-429/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-429/rc
https://xena.ucsc.edu/


Translational Cancer Research, Vol 12, No 12 December 2023 3695

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(12):3693-3702 | https://dx.doi.org/10.21037/tcr-23-429

“tinyarray” packages to distinguish messenger RNAs 
(mRNAs) and lncRNAs. A set of immune genes was 
obtained from ImmPort for analysis, the “limma” package 
was used to calculate the correlation between lncRNA 
and immune-related genes by co-expression analysis. 
Immune-related lncRNAs were obtained using the filtering 
coefficients corFilter =0.4 and pvalueFilter =0.001. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Immune-related lncRNA risk model construction

The TCGA and GPL96-GSE37642 datasets were used 
in the training cohort and validation cohort, respectively. 
The batch effect between platforms was eliminated using 
the Combat method so that all data were at the same 
quantitative level. In the training cohort, using the “survival” 
package in R, univariate Cox regression analysis was used 
to detect immune-related lncRNAs involved in prognosis, 
using variables of P<0.05 as threshold. Further screening 
was performed using Cox regression analysis and the least 
absolute shrinkage and selection operator (LASSO) was 
used to reduce overfitting of the data, and the prognostic 

regression model was obtained to generate a risk score for 
each patient. In this study, the TCGA training cohort and 
GPL96-GSE37642 validation cohort were further classified 
into high- and low-risk groups as per the median risk score.

Statistical analysis

In the training cohort, Kaplan-Meier survival curves and the 
log-rank test were used for comparing survival differences 
between the high- and low-risk groups. The accuracy of 
the model was evaluated using the time-dependent receiver 
operating characteristic (timeROC) curves, risk heatmap, 
risk score distribution, and survival status, and validated 
using the validation cohort. Data from the training cohort 
were analyzed using principal component analysis (PCA) 
and linearly downscaled to demonstrate the model’s 
accuracy. Univariate and multivariate Cox regression 
analyses were used to assess the connection between risk 
score and clinical factors with the survival and prognosis 
of AML, and a forest plot was drawn to verify the model. 
Analysis of the correlation between lncRNAs of the training 
TCGA cohort and cytogenetic and clinico-pathological 
criteria was also performed. Gene set enrichment analysis 
(GSEA) was used to enrich the signaling pathways of the 
high- and low-risk groups of the training cohort. Statistical 
analyses were performed using R software (version 4.2; 
https://cran.r-project.org/), with P<0.05 considered a 
statistically significance.

Results

General information

Patients with clinical and prognostic information in the 
TCGA (n=130) were included as the training cohort, and 
those in the GPL96-GSE37642 (n=374) were included as 
the validation cohort. Data on the TCGA training cohort 
are shown in Table 1.

Screening of prognostic genes in TCGA

We performed co-expression analysis between the 4,241 
lncRNAs obtained from TCGA and known immune gene 
sets downloaded from the ImmPort database (https://www.
immport.org/shared/home) and obtained 1,991 immune-
related lncRNAs. After intersecting these lncRNAs with 
the GPL96-GSE37642 dataset, we obtained 88 immune-
related lncRNAs, with TCGA as the training cohort and 

Table 1 Detailed clinical features of different immune risk subtypes 
in training cohort

Clinical features Overall (n=130)

Age (years), median [range] 55 [21–88]

Male, n (%) 69 (53.1)

Cytogenetics, n (%)

Poor 27 (20.8)

Intermediate/normal 73 (56.2)

Favorable 30 (23.1)

FAB subtype, n (%)

M0 12 (9.2)

M1 31 (23.8)

M2 32 (24.6)

M3 13 (10.0)

M4 27 (20.8)

M5 12 (9.2)

M6 2 (1.5)

M7 1 (0.8)

FAB, French-American-British classification systems.

https://cran.r-project.org/
https://www.immport.org/shared/home
https://www.immport.org/shared/home
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GPL96-GSE37642 as the validation cohort. Subsequently, 
the “survival” package screened out 21 prognosis-related 
genes from the TCGA training cohort using Cox regression 
analysis (Figure 1A).

Establishment of the immune-related lncRNA risk model

We then performed LASSO regression on the 21 prognostic 
genes of the TCGA training cohort (Figure 1B,1C) and used 
the cross-validation method to output the optimal λ value. 
Based on this, we finally screened out 14 lncRNAs to build 
the risk model, generated the LASSO regression coefficient 
map, and output the risk score.

Risk score = SNHG3 × 0.570 − LINC01963 × 0.214 − 
SMAD5-AS1 × 0.099 + HCP5 × 0.399 + KIAA0087 × 0.065 
+ PHPN1-AS1 × 0.252 − WT1-AS × 0.055 − LINC00563 × 

0.156 − MEG3 × 0.096 + FAM30A × 0.020 + HEXA-AS1 × 
0.333 − NBR2 × 0.715 + FAM215A × 0.025 − DIAPH2-AS1 
× 0.281.

All clinical cases were divided into the high- and low-risk 
groups as per the median risk score, and the predicted value 
was further verified using Kaplan-Meier and timeROC 
curves.

Assessment and validation of immune-related lncRNA risk 
models

The Kaplan-Meier curves demonstrated that the overall 
survival (OS) rate of the high-risk group was significantly 
lower than that of low-risk group, in both the TCGA 
training (P<0.05) and GPL96-GSE37642 validation cohorts 
(P<0.05) (Figure 2A,2B). According to the results of the 
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survival status, distribution of the risk score, and risk heat 
map, we found that the patient mortality rate gradually 
increased with increase in the risk score. Importantly, we 
observed that both the difference in mortality rate and 
expression of genes between the high- and low-risk groups 
were statistically significant (P<0.05) (Figure 2C,2D). The 
area under the curve (AUC) values for the timeROC curves 
of the 1-, 3-, and 5-year survival of patients in the TCGA 
training cohort were 0.817, 0.859, and 0.909, respectively, 
indicating the effectiveness of the model in predicting 
patient survival time (Figure 2E). The AUC values of the 
GPL96-GSE37642 validation cohort were 0.603, 0.652, 
and 0.624 for 1-, 3-, and 5-year survival time, respectively, 
further supporting the good predictability of the model 
(Figure 2F).

PCA

In performing PCA on the TCGA training cohort, we 
identified that 14 related lncRNAs effectively distinguished 
the low- from the high-risk group (Figure 3A). We also 
observed high overlaps of immune-related lncRNAs (Figure 
3B) and immune genes (Figure 3C). In addition, we revealed 
that all genes in the low- and high-risk groups exhibited 
high overlap (Figure 3D).

Multivariate and univariate analysis

In the TCGA training cohort, we subjected the risk 
score and cytogenetic stratification of patients, and 
clinico-pathological criteria, such as age, bone marrow 
blast cell number, leukocyte number, platelet number, 
and hemoglobin level, to univariate and multivariate 
independent prognostic analyses. Specifically, univariate 
Cox regression analyses revealed that age, risk score, and 
cytogenetic stratification were independent indicators 
for prognosis [hazard ratio (HR) =4.363; 95% confidence 
interval (CI): 3.024–6.296; P<0.001), whereas multivariate 
Cox regression revealed that the risk score was directly 
related to the prognosis of AML (HR =3.705; 95% CI: 
2.488–5.518; P<0.001) regardless of other factors (Figure 
4A,4B).

Clinical correlation analysis

In the TCGA training cohort, according to the 2017 ELN 
AML recommendations using cytogenetic indicators, 
patients were divided into three groups of prognosis: 

favorable, intermediate/normal, and poor. We analyzed the 
correlation between cytogenetic prognosis stratification 
and immune-related lncRNAs in this study. We detected 
that the genes KIAA0087, MEG3, FAM30A, NBR2, and 
RHPN1-AS1 were significantly correlated with cytogenetic 
indicators (P<0.001). Notably, the genes LINC01963, WT1-
AS, and FAM215A were associated with prognosis (P<0.05), 
whereas the remaining lncRNAs were not associated with 
cytogenetic indicators (Figure 4C).

Enrichment analysis

In the TCGA training cohort, we identified that pathways 
related to immunity, including autoimmune diseases, 
processing and presentation of antigens, chemokines, B-cell 
receptor signaling pathways, and cytotoxicity mediated 
by natural killer (NK) cells, were primarily enriched in 
high-risk patients. Conversely, in low-risk patients, we 
mainly detected the enrichment of pathways such as drug 
metabolism (Figure 4D).

Discussion

In AML, myeloid precursors multiply clonally, making it 
an aggressive hematological malignancy (16). Interestingly, 
the heterogeneity of AML is also manifested in the immune 
microenvironment. It is particularly important to note 
that the effect of AML cells on the bone marrow immune 
microenvironment leads to drug resistance, relapses, and 
progression of disease (17). Currently, there is a lack of 
assessment of the AML immune status for predicting 
disease prognosis. Therefore, using the TCGA training 
cohort, we constructed the 14-immune-related-lncRNA 
model to predict AML prognosis. Patients with AML were 
divided into high- and low-risk groups as per the median 
risk score, and the Kaplan-Meier survival analysis, risk score 
maps, survival status maps, risk heat maps, and timeROC 
showed that the low-risk group had a significantly greater 
survival rate than the high-risk group, demonstrating the 
prognostic value of the risk score. A similar trend was 
observed among the GPL96-GSE37642 validation cohort 
risk group, indicating the performance of the model as 
stable and reliable. The risk heat map indicated that the 
model included the genes HCP5, FAM30A, PHPN1-AS1, 
KIAA0087, SNHG3, HEXA-AS1, and FAM215A as high-
risk immune-related lncRNAs, whereas the genes SMAD5-
AS1, LINC00566, MEG3, WT1-AS, LINC01963, NBR2, 
and DIAPH2-AS1 were identified as low-risk immune-
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related lncRNAs.
In the current study, we found that some lncRNAs used 

for constructing the model have rarely been reported in 
previous studies. Here, we identified HCP5, which has been 
linked to a number of cancers, and has been reported to 
exhibit elevated expression in AML, cholangiocarcinoma, 
esophageal cancer, and pancreatic cancer, potentially 
promoting cancer cell growth and metastasis (18). Similarly, 
SNHG3 has been mostly identified in solid tumors, which 
indicated poor prognosis (19). SMAD5-AS1, is a lncRNA 
involved in the regulation of B-lymphocytes (20), and its 
expression was downregulated in large B-cell lymphoma, 
promoting proliferation (21). WT1-AS binds to WT1 mRNA, 
regulating the expression of the WT1 protein through RNA-
RNA interactions (22). Of note, the expression of WT1 
was high in newly diagnosed patients with AML, whereas it 
decreased in patients after remission (23). MEG3 plays both 
oncogenic and tumor suppressor roles in AML, as it has 
been reported to be upregulated in acute promyelocytic 
leukemia, and often functions as a tumor suppressor in 
other myeloid leukemia cells (24). High LINC01963 
expression levels negatively regulate miR-641 to prevent the 
progression of pancreatic cancer (25). Moreover, NBR2 was 
reported to inhibit tumorigenesis by controlling autophagy. 
Low expression of NBR2 in hepatocellular carcinomas has 
been found to significantly decrease OS (26,27); but this 
is unclear in AML. In conclusion, current studies of AML 
lack information on immune-related lncRNAs, which could 
provide new clues for exploring the pathogenesis of AML 
and could serve as potential targets for AML research.

In this study, the univariate and multifactorial Cox 
analyses were performed to study the relationship 
between risk scores, cytogenetic stratification, and clinico-
pathological criteria, such as age, bone marrow blasts, 
leukocyte number, platelet number, and hemoglobin levels, 
for patients with AML. Interestingly, we determined that 
risk score could predict the prognosis of AML, further 
demonstrating that our model was capable of predicting 
AML prognosis. Moreover, the superiority of the model 
was demonstrated in three-dimensional space by PCA 
plots. Currently, AML is prognostically stratified using 
cytogenetics. Thus, we correlated the lncRNAs identified in 
this model with cytogenetics and found that the expression 
of WT1-AS, MEG3, and NBR2 was increased in patients 
with good prognosis, whereas that of KIAA0087, RHPN1-
AS1, FAM30A, and FAM215A was increased in patients with 
poor prognosis, further supporting the good prognostic 
assessment performance of the model and demonstrating 

that it can serve as a good predictor for different subgroups, 
making the current prognostic evaluation system more 
comprehensive.

Finally, using GSEA, we were able to identify multiple 
pathways, mainly immune-related, in high-risk patients, 
including antigen processing, autoimmune disease, NK cell-
mediated cytotoxicity, and chemokines. It is known that NK 
cells are mainly related to immune monitoring of tumor 
pathogenesis, and there were studies revealing that they 
mediated antibody-dependent cellular cytotoxicity (ADCC) 
and could resist leukemia (28,29). In addition, chemokines 
regulate immune cell migration and adhesion in the tumor 
immune microenvironment and promote the progression of 
AML (30).

Conclusions

We performed an immune-related lncRNA expression 
profile analysis using the TCGA and GPL96-GSE37642 
datasets, with TCGA as the training cohort and GPL96-
GSE37642 as the validation cohort and found that the 
immune-related lncRNA prognostic risk model of the 
training cohort effectively predicted the prognosis and 
performed the risk stratification of patients with AML, and 
the immune-related lncRNA prognostic risk model can 
thus be a biomarker of AML prognosis. The pathogenesis 
of AML is complex, and multi-target combination therapy 
may be required in the future. Overall, this study provides 
an innovative approach for determining AML pathogenesis 
with an improved risk stratification. However, the study has 
some limitations, including the small number of patients 
in the test cohort and the lack of a multi-center database 
validation. This study also lacks clinical samples experiments 
to verify the reliability of the risk model, and we will add 
clinical samples experiments in the further study. Therefore, 
elucidation of the mechanisms and pathways of immune-
related lncRNAs in the current model require further 
investigation.
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