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Background: Gastric cancer (GC) is one of the most prevalent cancer types that reduce human life 
expectancy. The current tumor-node-metastasis (TNM) staging system is inadequate in identifying higher or 
lower risk of GC patients because of tumor heterogeneity. Research shows that complement plays a dual role 
in the tumor development and progression of GC.
Methods: We downloaded GC data from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO). A complement-related risk signature was constructed through bioinformatics analysis. 
Subsequently, the predictive ability of this signature was validated with GSE84437 dataset, and a nomogram 
integrating risk score and common clinical factors was established. Besides, we evaluated the association of 
risk score with the immune and stromal cell infiltration in TCGA. Furthermore, immunotherapy response 
prediction and drug susceptibility analysis were conducted to access the ability of the risk signature in 
predicting the therapeutic effect.
Results: A complement-related gene (CRG) signature, based on six genes (SPLG, C9, ITIH1, ZFPM2, 
CD36, and SERPINE1), was established. In both the training and validation sets, the overall survival of GC 
patients in the high-risk group was lower than that of the low-risk group, and the nomogram to predict the 1-, 
2-, and 3-year survival rates of GC patients was developed. In addition, CIBERSORT algorithm showed the 
high-risk patients had higher levels of immune cell infiltration than low-risk patients, and the ESTIMATE 
results implied that the high-risk group had more stromal component in tumor microenvironment. Besides, 
compared to the low-risk group, there were higher expressions of most immune checkpoint genes and HLA 
genes in the high-risk group, and the high-risk patients showed higher sensitivity to the chemotherapy and 
targeted drugs (axitinib, dasatinib, pazopanib, saracatinib, sunitinib and temsirolimus).
Conclusions: The novel CRG signature may act as a reliable, efficient tool for prognostic prediction and 
treatment guidance in future clinical practice.
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Introduction

Gastric cancer (GC) is one of the most prevalent cancer 
types that reduce human life expectancy. According to 
the latest data on cancer statistics, GC ranks as the fifth 
most commonly diagnosed cancer and the fourth leading 
cause of cancer-related deaths globally (1). Early-stage 
GC is associated with few signs or symptoms, and the 
majority of GC patients are diagnosed at advanced stage 
and have less than 30% 5-year survival rate (2). Current 
treatment methods for GC include surgery, chemotherapy, 
radiation, targeted therapy and immunotherapy (3,4). The 
American Joint Committee on Cancer (AJCC) tumor-
node-metastasis (TNM) staging criterion remains the 
most commonly used system to predict prognosis and 
guide treatment decision-making in GC patients in clinical 
practice. However, patients with GC at the same clinical 
stage would show different therapeutic efficacy due to GC’s 
considerable heterogeneity (5-7). Therefore, TNM staging 
may be unable to distinguish between higher and lower risk 
patients. New strategies are urgently needed to improve 
survival prediction and further guide individualized cancer 
treatment.

The complement-related genes (CRGs) have attracted 
growing attention in recent years in the field of oncology. 
The complement system, composed of more than 50 
proteins, is an important part of the innate immune system. 
It is traditionally believed that the complement plays a 

critical role in the immune surveillance and eradication of 
tumor cells. The activation of the complement pathway can 
occur via the classical, lectin or alternative pathways. This 
process can help antigen-presenting cells (APCs) recognize 
tumor cells, and form membrane attack complex (MAC), 
leading to tumor cell lysis (8,9). The tumor microenvironment 
(TME) consists of tumour cells, stromal cells, immune cells 
and extracellular matrix, which plays a crucial role in tumor 
development and progression (10). Evidence has recognized 
the close relationship between complement factors and 
TME (11). The complement can recruit and activate 
immunosuppressive cells in TME, which contributes to the 
formation of an immunosuppressive microenvironment and 
promotes tumor progression (12,13). The low expression 
of Claudin-18 was closely related to nerve invasion in 
GC, which indicated the poor clinical prognosis of GC  
patients (14). A recent study showed that C3 overexpression 
could activate the JAK2/STAT3 pathway, and then induce 
GC progression (15). Chen et al. (16) believed that the C5a/
C5aR complement pathway inhibits p21/p-p21 expression 
by activating the PI3K/AKT signaling pathway, thereby 
promoting GC progression. These findings show that 
complement plays an important role in cancer. Whether 
these CRGs are related to the prognosis of GC needs 
further study.

In the present study, we collected the sequences of 
ribonucleic acid (RNA-seq) data and the corresponding 
clinical data from public databases. We developed a CRG 
signature for predicting the prognosis of GC and explored 
the potential associations of the TME, immunotherapy 
response and drug resistance with CRG risk score. We 
present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-628/rc).

Methods

Data acquisition

The RNA-seq data and corresponding clinicopathological 
information of GC samples were downloaded from 
The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov). GSE84437 dataset was acquired 
from Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/gds). Additionally, a list of 200 
CRGs was obtained from the Molecular Signature Database 
(MSigDB). Samples without complete survival information 
were excluded. The TCGA dataset and GSE84437 dataset 
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were used as the training cohort and the external validation 
cohort, respectively. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of differentially expressed complement-
related genes (DECRGs)

Differentially expressed genes (DEGs) between GC 
tissues and normal gastric tissue were selected from the 
gene matrix acquired from the TCGA database using the 
R software “DESeq2” package. The screening criteria 
were set as adjusted P-value <0.05 and |logFC| ≥1. Then, 
the intersection of CRGs and DEGs was identified as 
DECRGs.

Establishment and verification of the prognostic CRG 
signature

A univariate Cox regression analysis was applied to screen 
genes related to prognosis from DECRGs. Based on a P 
value of less than 0.05, we selected the top 10 genes with 
higher absolute hazard ratio (HR) values as the significant 
prognostic differences. To further narrow the range of 
genes and create a more simplified prognostic model, least 
absolute shrinkage and selection operator (LASSO) Cox 
regression analysis was adopted using the “glmnet” package 
for R software. Finally, a prognostic CRG signature was 
developed to calculate individual risk scores. The formula 
was as follows: risk score = ∑xi × coef i, represents the gene 
coefficient, and X reflects the gene expression level. Patients 
with GC were classified into a high- and low-risk group 
with the median risk score as the cutoff point. Kaplan-Meier 
(K-M) survival analysis was performed to demonstrate 
the prognostic significance of the two risk subgroups. 
Time-dependent receiver operating characteristic (ROC) 
curves were used to evaluate the performance of the CRG 
signature. To verify the reliability of the model, we applied 
the same procedures in GSE84437 data. The R package 
“survminer” was used to visualize K-M survival curve, and 
the R package “survival ROC” was used to draw ROC 
curve.

Stratification analysis of the CRG signature

Stratified analysis was employed to test the predictive power 
of signature in various subgroups of patients. According 
to their clinicopathological characteristics, patients 
were divided into different subgroups, including age  

(≤65 and >65 years), sex (male and female), tumor stage  
(I–II and III–IV), T stage (T1–2 and T3–4), N stage (N0 
and N1–3), grade (G1–2, G3). Overall survival (OS) analysis 
was performed to compare survival differences in different 
subgroups. Similarly, we also conducted a stratified analysis 
in the GSE84437 dataset.

Development of a prognostic nomogram

To assess the potential clinical utility of the prognostic 
model, we designed a nomogram integrating the risk score 
and common clinical factors to estimate the 1-, 2- and 3-year 
survival probability. Moreover, calibration curves for 1-, 
2-, and 3-year OS were plotted to evaluate the goodness-
of-fit and consistency of the model. The nomogram and 
calibration curves were drawn using “rms” and “survival” 
packages for R.

Gene set enrichment analysis (GSEA)

To further investigate the molecular mechanism of risk 
signature, the R package “Limma” was used to carry out 
GSEA in high- and low-risk groups. KEGG gene sets were 
obtained from the GSEA online database (Gsea-msigdb.org).

Comprehensive analysis of immune characteristics and 
gene mutations in different risk groups

The CIBERSORT algorithm was employed to estimate 
the relative proportions of tumor-infiltrating 22 types of 
immune cells. The single-sample GSEA (ssGSEA) method 
was performed by its R package “gsva” to investigate the 
differences in immune cell function between different 
risk subgroups. The ESTIMATE algorithm was applied 
to compare the immune and stromal scores between 
high- and low-risk groups. In addition, we also explored 
the correlations between the expression of six prognostic 
CRGs and immune cells. To further investigate the genetic 
variation between different risk subgroups, we obtained 
information on genetic alterations from the cBioPortal 
database, and used R package “Maftools” to analyze the 
differences of gene mutations in two risk subgroups.

Immunotherapy response prediction and drug susceptibility 
analysis

To evaluate whether CRG signature can predict response 
to immunotherapy, we analysed the associations of 

http://Gsea-msigdb.org
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risk score with immune checkpoint gene expression 
and human leukocyte antigen (HLA) gene expression. 
To explore the application value of CRG signature in 
clinical drug selection, we assessed drug susceptibility 
in the two risk groups and calculated the half-maximal 
inhibitory concentration (IC50) values of commonly used 
chemotherapy or targeted therapeutic drugs by using R 
package “pRRophetic”.

Statistical analyses

Statistical analyses were performed using R statistical 
software (version 4.1.1). Differences between groups were 
analyzed using the Student’s t-test or the Wilcoxon test for 
continuous variables, and χ2 test or Fisher’s exact test for 
categorical variables. To measure the correlation between 
two variables, the Spearman correlation coefficient was 

calculated. All statistical P values were two-sided, and 
P<0.05 was considered statistically significant (*, P<0.05; **, 
P<0.01; ***, P<0.001 and ****, P<0.0001).

Results

Clinicopathologic features of patients with GC

Figure 1 depicts the design of the current study. This study 
included 353 GC samples from the TCGA database and 
433 GC patients from the GSE84437 dataset. The detailed 
clinicopathological information of the two cohorts is 
summarized in the Table 1.

Identification of DECRGs

A total of 4,406 DEGs were screened from TCGA 
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Figure 1 The flowchart presenting design and main procedures of our study. TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus; DECRGs, differentially expressed complement-related genes; LASSO, least absolute shrinkage and selection operator; CRG, 
complement-related gene; K-M, Kaplan-Meier; ROC, receiver operating characteristic.



Translational Cancer Research, Vol 12, No 12 December 2023 3569

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(12):3565-3580 | https://dx.doi.org/10.21037/tcr-23-628

database and 200 CRGs were obtained from the MSigDB  
(Table S1). As presented in Figure 2A, 49 DECRGs were 
identified through Venn diagram analyses.

Development of CRG signature

Sixteen genes associated with OS were screened from 
DECRGs using univariate Cox regression analysis. The top 
ten genes with the higher absolute HR values were presented 
in Figure 2B. Subsequently, a LASSO Cox regression model 
was constructed (Figure 2C,2D), and six CRGs were finally 
identified, including PLG, C9, ITIH1, ZFPM2, CD36, and 
SERPINE1. The signature formula was as follows: risk 
score = (0.1804 × expression of PLG) + (0.3302 × expression 
of C9) + (0.1029 × expression of ITIH1) + (0.0078 × 
expression of ZFPM2) + (0.0740 × expression of CD36) 
+ (0.1385 × expression of SERPINE1). According to the 
median risk score, 350 GC cases were divided into high- 

and low-risk groups. The risk curves showed the death 
sample survival time decreased with an increase in the risk 
score. Most deaths occurred in the high-risk group (Figure 
3A). Heatmap depicted the expression of six genes in the 
prognostic model, and it was higher in the high-risk group   
(Figure 3A). Moreover, we conducted further survival 
analysis on the basis of the risk score, and found that the 
overall prognosis of patients with low-risk score was better 
than that of patients with high-risk score (Figure 3B). To 
further evaluate the model performance, we plotted ROC 
curves. The area under the curve (AUC) values for 1, 3, 
and 5 years were 0.616, 0.686, and 0.771, respectively  
(Figure 3C).

Validation of CRG signature

We used the GSE84437 dataset for external validation. 
The same risk model was applied to calculate individual 
risk scores. As shown in Figure 3D, the high-risk group 
had less survival time and more deaths. Heatmap also 
showed that the six genes were highly expressed in the 
high-risk group (Figure 3D). The K-M survival curves 
showed that the survival probability in the high-risk group 
was significantly shorter than that in the low-risk group  
(Figure 3E). The AUC values for 1, 3 and 5 years were 
0.603, 0.608 and 0.601, respectively (Figure 3F). These 
results indicate that this model has a moderate accuracy in 
predicting the prognosis of GC patients.

Stratification analysis of the CRG signature

In different clinicopathological subgroups, such as age, 
sex, tumor stage, T stage, N stage and grade, the OS had a 
significant difference between high- and low-risk patients. 
High-risk GC patients had worse OS than low-risk patients 
(Figure 4A-4L). The same conclusion can be reached in 
GSE84437 (Figure 5A-5H).

Construction and validation of nomogram based on CRG 
risk score

The CRG risk score and common clinicopathological 
factors, including age, gender, clinical stage and pathological 
grade were analyzed using univariate and multivariate Cox 
regression analyses. It revealed that CRG risk score was 
an independent prognostic factor for GC patients in the 
TCGA cohort (Table 2). To further explore the prognostic 
value of the risk signature, we constructed the nomogram 

Table 1 Clinicopathologic characteristics of gastric cancer patients 
in TCGA and GEO cohorts

Variables TCGA cohort (n=353) GEO cohort (n=433)

Age (years) 65.51±10.62 60.06±11.58

≤65 158 (44.8) 283 (65.4)

>65 192 (54.4) 150 (34.6)

Missing data 3 (0.8) –

Gender

Female 125 (35.4) 137 (31.6)

Male 228 (64.6) 296 (68.4)

Grade

G1–2 137 (38.8) –

G3 207 (58.6) –

Missing data 9 (2.6) –

Stage

I 48 (13.6) –

II 109 (30.9) –

III 146 (41.4) –

IV 35 (9.9) –

Missing data 15 (4.2) –

Data are presented as mean ± SD or n (%). TCGA, The Cancer 
Genome Atlas; GEO, Gene Expression Omnibus; SD, standard 
deviation.

https://cdn.amegroups.cn/static/public/TCR-23-628-Supplementary.pdf
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with combined risk score and factors showed significance 
in the multivariate analysis (Figure 6A). The 1-, 2-, and 
3-year calibration curves demonstrated the accuracy of the 
nomogram (Figure 6B-6D).

GSEA between different risk subgroups

GSEA was conducted to identify KEGG enrichment 
differences in different risk subgroups. We observed that 
the pathways such as cytosolic DNA sensing, olfactory 
transduction, regulation of autophagy, and receptor 
signaling were enriched in the high-risk group, while the 
gene sets in the low-risk group were enriched in RIG-I 
like receptors, base excision repair, DNA replication, and 
nucleotide excision repair pathways (Figure 7A,7B).

Immune characteristics and mutation analysis in the high- 
and low-risk groups

CIBERSORT algorithm results indicated positive associations 
between the prognostic CRG risk score and eosinophils, 
activated mast cells and neutrophils, and negative correlations 
with activated natural killer (NK) cells (Figure 8A-8D). We 
further examined the relationship between 6 prognostic 
CRGs and 22 human immune-related cells. It could be 
found that the majority of immune cells were significantly 
positively regulated with CD36, ITIH1, SERPINE1, 
ZFPM2, while negatively regulated with C9 and PLG 
(Figure 8E). The relative proportion of immune infiltration 
was also visualized (Figure 8F). In addition, ssGSEA analysis 
showed that the high-risk score was positively associated 
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with most immune cells and immune-related pathways 
(Figure 8G). Next, the ESTIMATE algorithm was applied to 
explore the relationship between risk score and TME. The 
results showed that the immune score, stromal score, and 
estimate score of patients in the high-risk group were higher 
than those in the low-risk group. It suggested that high-risk 
group had more stromal component in the TME (Figure 
8H). Furthermore, mutation analysis in TCGA samples 
revealed that 5%, 9%, 5%, 10%, 4%, and 5% of patients 
had mutations in PLG, C9, ITIH1, ZFPM2, CD36 and 
SERPINE1, respectively (Figure 9A). The distribution of 
somatic mutations was roughly the same between two risk 
subgroups. Missense variations, nonsense variations, and 
frameshift deletions were the common mutation types. The 
mutation rates of TTN, TP53 and MUC16 were more than 
30% in the two subgroups (Figure 9B,9C).

Immunotherapy response prediction and drug susceptibility 
analysis

To evaluate the predictive ability of the model for 
immunotherapy response, we analyzed the relationship 
between CRG risk score with immune checkpoint genes 
and HLA gene expression. Notably, the results indicated 
that most immune checkpoint genes and HLA genes were 
highly expressed in the high-risk groups (Figure 10A,10B). 
In addition, the differences in drug susceptibility between 
the high- and low-risk groups were analyzed to detect 
suitable chemotherapy or targeted drugs for GC patients. 
Interestingly, patients in the high-risk group had lower 
IC50 values for axitinib, dasatinib, pazopanib, saracatinib, 
sunitinib and temsirolimus (Figure 11A-11F), while patients 
in the low-risk group had significantly lower IC50 values for 
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Figure 4 Stratification analyses in TCGA (A-L). TCGA, The Cancer Genome Atlas; T, tumor invasion depth; N, lymph node metastasis; G, 
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Table 2 Univariate and multivariate Cox regression analyses regarding overall survival in gastric cancer patients

Characteristics
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.022 (1.005–1.038) 0.010* 1.030 (1.012–1.049) 0.001*

Sex

Male Reference

Female 0.771 (0.541–1.101) 0.152

Grade

G2 Reference

G3 1.305 (0.918–1.856) 0.138

G1 0.607 (0.147–2.500) 0.490

Stage

I Reference

II 2.385 (1.258–4.522) 0.008* 2.437 (1.283–4.630) 0.007*

III 1.553 (0.783–3.082) 0.208 1.678 (0.845–3.334) 0.140

IV 3.827 (1.855–7.898) <0.001* 5.518 (2.628–11.586) <0.001*

Risk score 4.220 (2.507–7.102) <0.001* 4.672 (2.631–8.294) <0.001*

*, P<0.05; HR, hazard ratio; 95% CI: 95% confidence interval.
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Figure 6 Construction and validation of nomogram based on CRG risk score. (A) The nomogram of the CRG-Score model. (B-D) The 1-, 
2-, and 3-year calibration curve of the CRG-Score model. CRG, complement-related gene.

5-fluorouracil, epothilone, mitomycin, and pyrimethamine 
(Figure 11G-11J). Taken together, these data support the 
feasibility and potential utility of CRG signature in the 
prediction of drug sensitivity and selection of appropriate 
treatment drugs for GC patients.

Discussion

GC is one of the most common malignant tumors 
worldwide, with a high incidence rate, poor prognosis 
and high mortality (17). Due to the limitations of the 

traditional TNM staging system, it is still a great challenge 
to accurately predict the prognosis and risk stratification of 
patients with GC. The complement system is an ancient 
part of the immune system that bridges innate and adaptive 
immunity (18). This system is responsible for clearing 
immune complexes, invading bacteria, and eliminating 
abnormal somatic cells, including tumor cells (19). Research 
evidence has showed that complement plays a dual role 
in cancer and can regulate the fate of tumors in both 
directions. Meanwhile, the expression of complement genes 
is associated with the survival of various tumors, including 
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Figure 7 GSEA correlated with the risk score. The top four pathways significantly enriched in (A) the low-risk group and (B) the high-risk 
group. GSEA, gene set enrichment analysis.

GC (19,20). At present, there are few studies on CRG-
associated biomarkers for predicting prognosis of GC 
patients. In view of the potential impact of complement 
system on the occurrence and development of GC, the 
identification of novel CRG-associated biomarkers may 
facilitate prognosis assessment and therapeutic guidance for 
patients with GC.

In our study, we first intersected DEGs acquired from 
TCGA cohorts with CRGs obtained from MSigDB. A total 
of 49 DECRGs between GC tissues and normal gastric 
tissue were identified. After discovering the survival-related 
CRGs using univariate regression analysis, the LASSO Cox 
regression analysis was applied, and a 6-gene signature was 
generated to predict individual survival among patients 
with GC. Risk curve analysis, survival analysis and ROC 
curve analysis were conducted in both the training set 
and validation set. The results demonstrated that our 
signature was robust enough to predict the prognosis of GC 
patients. In addition, we created the nomogram integrated 
independent prognostic factors including risk score, age and 
stage for predicting 1-, 2-, and 3-year OS. This nomogram 
might offer convenient and reliable prognosis prediction 
information of patients with GC for clinicians.

To further understand the mechanism underlying our 
risk signature, GSEA was conducted to determine the 
differences in enrichment pathways between high- and low-
risk group. We found that the enrichment pathways in the 
low-risk group were mostly related to genetic repair. The 
activation of DNA damage repair in tumor such as breast 
cancer serves to restore genetic integrity and impede tumor 

progression (21). Functional genetic variants of DNA repair 
genes may change the host DNA repair ability and thus 
affect tumor prognosis (22).

In recent years, the rapid development of immunotherapy 
has revolutionized tumor therapy. However, GC is a highly 
heterogeneous malignant tumor, and the proportion of 
patients who benefit from these treatments clinically 
remains small (23,24). Considering the close connection 
between the complement system and the immune system, 
we examined whether our signature could also play a role 
in predicting immunotherapy response. The infiltration of 
TME immune cells is considered one of the most important 
factors to predict the immunotherapeutic response of many 
tumors in clinic (25,26). Therefore, we further compared 
the difference of TME between two groups. By using the 
CIBERSORT algorithm, we observed that the risk score 
was positively correlated with eosinophils, activated mast 
cells and neutrophils. This suggests that infiltration of these 
cells may contribute to formation of TME and higher the 
risk of fatality. And the risk score was negatively correlated 
with activated NK cells. High neutrophil infiltration of 
immune cells in pancreatic ductal adenocarcinoma and 
hepatocellular carcinoma indicated a higher malignancy 
and a worse prognosis (27,28). Infiltration of neutrophils 
could also promote GC cell migration and invasion 
via EMT pathway (29). It has been reported that NK 
cells are positively correlated with T-cell infiltration, 
and associated with favorable prognosis in patients with  
neuroblastoma (30). The ssGSEA analysis based on 29 
immune signatures demonstrated a higher enrichment score 
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in the high-risk group. These results showed that patients 
in the high-risk group may benefit from immunotherapy. 
Attractively, our research showed that the high-risk score 
was characterized by high stromal score, which indicated 
that patients in the high-risk group had a larger ratio of 
stroma component but poorer prognosis. We speculated 
that it is due that the TME of the high-risk group belonged 
to the immune-excluded subtype. Although there are a 
large number of infiltrating immune cells in TME, they 
cannot recognize and eliminate cancer cells because of the 
obstruction of abundant stromal elements (31). In breast 
cancer, the presence of stromal cells in the TME has 
been confirmed to be related to epithelial-mesenchymal 
transition (32).

The ability of immune system to kill tumor cells depends 
on the efficient antigen presentation of HLA molecules. 
There is increasing evidence that HLA is a useful predictor 
of immunotherapy efficacy (33). Patients with higher 
expression of HLA-related genes might have a better 
response to immune checkpoint blockade (34,35). In our 
present study, the expression of most HLA-related genes 
and immune checkpoint genes was higher in the high-
risk group. The results indicated that patients in the high-
risk group may have a better response to immunotherapy, 
and this conclusion is consistent with a recent study (36). 
In addition, analysis of resistance and susceptibility to 
chemotherapy or targeted therapeutic agents verified the 
potential of CRG signature to predict the therapeutic 
effect. In a drug sensitivity analysis, high-risk group were 

more sensitive to targeted agents such as axitinib, dasatinib, 
pazopanib, saracatinib, sunitinib and temsirolimus, low-risk 
group were more sensitive to chemotherapy agents such as 
5-fluorouracil, epothilone, mitomycin, and pyrimethamine. 
Therefore, our signature provides guidance for the selection 
drugs for advanced GC.

Among the six genes in the risk signature, SERPINE1, 
a fibrinolytic inhibitor, is exactly a tissue plasminogen 
activator and urokinase inhibitor. Yang et al. (37) discovered 
that SERPINE1 was elevated in the GC tissues, and it could 
promote migration and invasion by regulating EMT. CD36, 
a cell surface receptor, has been found to promote the 
occurrence and development of multiple types of cancers 
(38,39). Chen et al. (40) reported that elevated expression 
of CD36 in GC tissues correlated with poor prognosis. A 
study (41) has shown that CD36 mediates palmitate acid-
induced metastasis of GC via AKT/GSK-3β/β-catenin 
pathway. It has been reported that C9 is a potentially useful 
biomarker for the detection of GC (42). Elevated levels of 
C9 have been found in serum samples from patients with 
acute leukemia and sarcoma (43). ZFPM2 is one important 
member of the FOG family. In the study of hepatocellular 
carcinoma (44), the higher expression level of ZFPM2 gene 
was associated with a more favorable prognosis. As reported, 
plasminogen (Plg) is involved in extracellular matrix 
degradation, cell migration, angiogenesis, tumorigenesis 
and metastasis (45,46). Fang et al. demonstrated that 
plasminogen kringle 5 suppressed the growth of GC by 
inhibiting angiogenesis and apoptosis (47). ITIH1 is one of 
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five members of the inter-α-trypsin inhibitor (ITI) family. 
Studies have shown that all members of the ITI family play 
an important role in cell malignant processes and tumor 
growth (48,49). The previous pan-cancer study has reported 
that ITIHs were mostly down-regulated in cancers (48). 
Therefore, the role of ZFPM2, PLG, and ITIH1in the 
progression of GC needs further exploration.

The innovative aspect of this study is that analyze the 
prognosis of GC by CRGs, and to establish a prognosis 
model associated with OS by fewer genes. However, it 
should be noted that there are some limitations to the 
current study. First, the survival prediction model in this 
study was constructed and validated with retrospective 
data from public databases. In addition, this study was 
mainly analyzed by bioinformatics methods. Hence, future 
multicenter prospective clinical studies are necessary, and 
further experimental research is required to explore the 
underlying mechanisms for the association between the 
identified CRGs and the prognosis of GC patients.

Conclusions

We successfully developed and validated a novel GC 
prognostic model, which may act as a reliable, efficient tool 
for prognostic prediction and treatment guidance in future 
clinical practice.
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Table S1 Complement-related genes
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