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Background: The establishment of an accurate, stable, and non-invasive prediction model of sentinel 
lymph node (SLN) metastasis in breast cancer is difficult nowadays. The aim of this work is to identify the 
optimal machine learning model based on the three-dimensional (3D) image features of magnetic resonance 
imaging (MRI) for the preoperative prediction of SLN metastasis in breast cancer patients.
Methods: A total of 172 patients with histologically proven breast cancer were enrolled retrospectively, including 
74 SLN metastasis patients and 98 non-SLN metastasis patients. All of them underwent diffusion-weighted 
imaging (DWI) magnetic resonance imaging (MRI) scan. Firstly, a total of 10,320 texture and four non-texture 
features were extracted from the region of interests (ROIs) of image. Twenty-four feature selection methods and 
11 classification methods were then evaluated by using 10-fold cross-validation to identify the optimal machine 
learning model in terms of the mean area under the curve (AUC), accuracy (ACC), and stability.
Results: The result showed that the model based on the combination of minimum redundancy maximum 
relevance (MRMR) + random forest (RF) exhibited the optimal predictive performance (AUC: 0.97±0.03; 
ACC: 0.89±0.05; stability: 2.94). Moreover, we independently investigated the performance of feature 
selection methods and classification methods, and observed that L1-support vector machine (L1-SVM) (AUC: 
0.80±0.08; ACC: 0.76±0.07) and sequential forward floating selection (SFFS) (stability: 3.04) presented the 
best average predictive performance and stability among all feature selection methods, respectively. RF (AUC: 
0.85±0.11; ACC: 0.80±0.09) and SVM (stability: 8.43) showed the best average predictive performance and 
stability among all classification methods, respectively.
Conclusions: The identified model based on the 3D image features of MRI provides a non-invasive way 
for the preoperative prediction of SLN metastasis in breast cancer patients.
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Introduction

Breast cancer is the most frequently diagnosed cancer 
and the leading type of cancer among females worldwide, 
accounting for 24.5% of newly diagnosed female cancers 
in 2020 (1). An early diagnosis is key to the successful 
treatment of breast cancer (1,2). The axillary lymph 
node (ALN) status, a crucial prognostic factor for breast 
cancer, guides decision-making regarding treatment  
modalities (3); thus, the determination of the ALN status 
is important to the correct staging of breast cancer patients 
(4,5). The sentinel lymph node (SLN) is the first lymph 
node that receives lymphatic drainage from the tumor and 
it can predict the ALN status accurately (6). Therefore, 
SLN biopsy (SLNB) has been introduced as an alternative 
method to screening the ALN for metastasis, especially for 
early-stage breast cancer (7-10). Nevertheless, some work 
presented the morbidity associated with the invasive SLNB 
and highlighted the fact that the procedure inevitably has 
complications (11,12). The accurate non-invasive detection 
method of SLN metastasis is meaningful. Several studies 
have reported that clinical and histopathological data 
provides predictive information for SLN metastasis; but 
some predictive information is just obtained after operation, 
thereby failing to guide SLN detection (13-16). Therefore, 

a new preoperative method for SLN detection has been 
proposed based on contrast-enhanced ultrasonography with 
sonazoid in breast cancer; however, this method has only 
been applied to a small cohort, and its accuracy (ACC) and 
practicality remains controversial (17,18).

Medical images, changing rapidly from being primarily 
a diagnostic tool to playing a key role in precision 
medicine, providing a feasible non-invasive way to decode 
tumor pathophysiology by high-throughput extraction 
of quantitative features that transform visual images into 
quantifiable information (19). Typically, some studies have 
reported that the quantitative features derived from medical 
images are associated with clinical features, including 
histology, grades or stages of cancer, patient survival, 
and metastases (20-23). Several papers have explored the 
potential association between gene expression pattern and 
quantitative features (24,25). Three steps are involved in 
this type of analysis: region of interest (ROI) segmentation, 
feature  extract ion,  and c lass i f ier  model ing.  The 
segmentation of ROIs is usually performed manually by 
radiologists, and the auto segmentation is still a challenge 
due to the indistinct borders of many tumors. The high-
throughput extraction of quantitative features is imperative, 
and image processing technologies have provided a series 
of feature extraction algorithms for quantizing tumor 
heterogeneity (26). A high-performance classifier is then 
required to help making clinical decision. In general, to 
achieve better classification results, the feature selection 
approach is employed to reduce the dimension of the 
features space. Consequently, as a research hotspot, machine 
learning offers numerous feature selection operators; it is 
divided into three main categories, namely, filter, wrapper, 
and embedded methods (27,28). The performance of feature 
selection is entwined with classification method (29,30).

In this study, we aimed to provide a non-invasive and 
efficient way to predict SLN metastasis in breast cancer 
patients. We built a prediction model, which consisted 
of feature extraction, feature selection and classification 
modules. Figure 1 shows the framework of our study. To 
achieve the optimal combination of feature selection and 
classification methods, we extensively evaluated different 
combination of 24 feature selection and 11 classification 
methods in terms of their average performance and 
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Highlight box

Key findings 
• A non-invasive and efficient prediction model to predict sentinel 

lymph node (SLN) metastasis based on the image features 
of magnetic resonance imaging in breast cancer patients was 
constructed.  

What is known and what is new?  
• The accurate prediction model can be established using the 

method of radiomics.
• The prediction model with combination of minimum redundancy 

maximum relevance and random forest could facilitate clinical 
prediction of SLN metastasis for patients with breast cancer.

What is the implication, and what should change now? 
• More collection of magnetic field inhomogeneity of diffusion-

weighted images and more complex machine learning methods 
should be included in future research.
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stability. Moreover, to explore predictive performance of 
feature selection and classification method separately, we 
independently compared feature selection and classification 
methods. Feature selection and classification methods 
were independently compared. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-22-
2534/rc).

Methods

Patients

This study does not need Institutional Review Board 
(IRB) approval due to the purpose of retrospective study 
and was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The individual consent 

for this retrospective analysis was waived. A total of 172 
patients were retrospectively reviewed from March 2014 to 
June 2016. SLN metastasis (n=74) and non-SLN metastasis 
(n=98) in breast cancer patients had been histologically 
confirmed. All enrolled patients underwent diffusion-
weighted imaging (DWI) magnetic resonance imaging 
(MRI) scan. The baseline characteristics of enrolled patients 
are listed in Table 1. The ROIs were defined as the whole 
single breast tumor. To reduce the perturbance brought 
by random dataset partition, motivated by the approach 
proposed by Haury et al. (30), 172 patients were enrolled 
in total in this work. In order to investigate the stability of 
feature selection-classification combinations and eliminate 
the influence of data division, the 172 patients were 
randomly divided into 50 subsets with 138 patients (80% 
of the enrolled patients). For each subset, 10-fold cross-
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Figure 1 The flowchart of our work in this paper. It mainly refers to three steps, including: (I) ROI segmentation and image preprocessing; 
(II) non-texture and texture feature extraction; and (III) feature selection and classification. SLN, sentinel lymph node; ROI, region of 
interest; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, 
neighborhood gray-tone difference matrix.

https://tcr.amegroups.com/article/view/10.21037/tcr-22-2534/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-22-2534/rc


Wang et al. MRI predicting breast cancer3474

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(12):3471-3485 | https://dx.doi.org/10.21037/tcr-22-2534

validation was used to evaluate the model. Specifically, 
each subset (138 patients) was randomly divided into  
10 folds, where nine folds (124 patients) were used to 
develop prediction model and the rest one (14 patients) was 
used to evaluate the model in sequence. The patients with 
SLN metastasis and non-SLN metastasis were labeled as 
1 and 0, respectively. The ratio of SLN metastasis to non-
SLN metastasis was the same in all subsets.

Imaging data acquisition

MRI was performed by using a 1.5-T MR imager (Achieva 
1.5 T, Philips Healthcare, Best, Netherlands) equipped with 
a 4-channel SENSE breast coil. The diffusion-weighted 
(DW) images were acquired by single-shot spin-echo echo-
planar imaging (EPI) and recorded by the picture archiving 
and communication system (PACS). The data acquisition 
parameters were as follows: resolution, 200 pixels × 196 
pixels; field of volume, 300×300 mm2; time of repetition/time 
of echo (TR/TE), 5,065/66 ms; slice thickness, 5 mm; slice 
gap, 1 mm; b values, 0 and 1,000 s/mm2.

ROI segmentation

Segmentation of ROIs is required before quantitative feature 
extraction. The DWI Digital Imaging and Communications in 
Medicine (DICOM) images that had been archived in the PACS 
were transmitted to the radiologists without any pathological 
information and preprocessing. ITKSNAP 3.6 (ITK-SNAP 
3.xTeam) was used by the radiologists for three-dimensional 
(3D) manual segmentation. Specifically, the radiologists first 
delineated the margin of tumor at each transverse plane, covered 
the whole tumor gradually, and repeated the above-mention 
procedure slice by slice. An example of segmentation is shown 
in the upper left of Figure 1. All manual segmentation was 
performed by a radiologist with 15 years of experience and was 
validated by a senior radiologist with 20 years of experience. A 
total of two radiologists involved in this work. And a radiologist 
with 15 years of experience performed manual segmentation, 
followed by a senior radiologist with 20 years of experience to 
validate and fine-tune the segmented results.

Image preprocessing and feature extraction

The preprocessing of ROIs is necessary, because the DWI 

Table 1 The baseline characteristics of enrolled patients

Characteristics
Non-SLN metastasis 

group (n=98)
SLN metastasis 

group (n=74)

Age (years) 47.10±11.0 48.0±10.2

Histological grade

I 14 (14.3) 3 (4.1)

II 35 (35.7) 27 (36.5)

III 42 (42.9) 25 (33.8)

Other 7 (7.1) 19 (25.7)

ER status

Negative 23 (23.5) 5 (6.8)

1+ 14 (14.3) 8 (10.8)

2+ 12 (12.2) 10 (13.5)

3+ 42 (42.9) 32 (43.2)

Other 7 (7.1) 19 (25.7)

PR status

Negative 19 (19.4) 5 (6.8)

1+ 24 (24.5) 16 (21.6)

2+ 9 (9.2) 8 (10.8)

3+ 39 (39.8) 26 (35.1)

Other 7 (7.1) 19 (25.7)

cerbB-2

Negative 22 (22.4) 10 (13.5)

1+ 19 (19.4) 13 (17.6)

2+ 28 (28.6) 21 (28.4)

3+ 22 (22.4) 11 (14.9)

Other 7 (7.1) 19 (25.7)

HER2 status

Positive 26 (26.5) 16 (21.6)

Negative 65 (66.3) 39 (52.7)

Other 7 (7.1) 19 (25.7)

Ki-67 (%) 34.0±25.0 28.1±19.7

ADC value 0.88±0.25 0.83±0.20

Data are presented as mean ± SD or n (%). Other means that 
information absence or other types. SLN, sentinel lymph node; 
ER, estrogen receptor; PR, progesterone receptor; HER2, 
human epidermal growth factor receptor 2; ADC, apparent 
diffusion coefficient; SD, standard deviation.
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images of different patients have different scan parameters 
(31,32). In the current study, a series of preprocessing 
methods were preformed, including: (I) wavelet bandpass 
filtering, aiming to denoise the noise in ROIs and focus 
on different bandwidth information, and the operator was 
performed by setting different weights to the bandpass 
or sub-bands of the ROIs in the wavelet domain; (II) 
isotropic resampling, aiming to keep rotation invariance 
and normalize the pixel and thickness, and the operator 
was carried out by cube interpolation to an appropriate 
resolution; and (III) quantization of gray level, aiming to 
normalize the different gray level of images affecting feature 
extraction, and the operator was performed by using equal-
probability and Lloyd-Max quantization algorithms (33).

A series of texture and non-texture features were 
extracted from ROIs. Texture feature extraction was 
based on statistical distributions, including: (I) global 
features [dimension (D) =3], describe the histogram 
distribution of the ROIs intensity; (II) gray-level co-
occurrence matrix (GLCM, D =9), depicting the statistical 
interrelationships between voxels of ROIs; (III) gray-
level run-length matrix (GLRLM, D =13) and gray-
level size zone matrix (GLSZM, D =13), computing the 
statistical interrelationship of neighboring voxels along a 
longitudinal run and the statistical distribution of similar 
and dissimilar regions; and (IV) neighborhood gray-tone 
difference matrix (NGTDM, D =5), quantifying the spatial 
interrelationship of neighboring voxels between adjacent 
image planes (34,35). Notably, the same preprocessing 
procedure with different parameters resulted in different 
features. As shown in Table 2, different parameters were 
used in the same procedure to enrich the texture features. 
Finally, (3+9+13+13+5)×(5×6×2×4)=10,320 enhanced texture 

features were obtained.
In addition, non-texture features were extracted to depict 

intuitional and simple image information, including: (I) 
volume, computed by the number of voxels in the ROIs 
multiplied by the dimension of voxels; (II) size, obtained by 
measuring the longest diameter of ROI; (III) solidity, the 
ratio of the number of voxels in the ROIs to the number 
of voxels in the 3D convex hull of the ROIs; and (IV) 
eccentricity, obtained by measuring the eccentricity of the 
ellipsoid that best fits the ROIs. All used features in our 
work are listed in Table 3. Totally, 10,320 texture features 
and four non-texture features were extracted from ROIs. 
Afterward, a linear normalization operator minimum–
maximum method was used to eliminate the magnitude of 
features and negative effects of large magnitude difference.

Establishment of the optimal predictive model for SLN 
metastasis

As shown in Figure 1, the predictive model for SLN 
metastasis also included feature selection and classification 
modeling.

Feature selection methods
Feature selection can efficiently improve the performance 
of classification by eliminating redundant and irrelevant 
features. In general, feature selection methods are 
classified into three categories, namely, filter, wrapper, and 
embedded methods (36,37). Filter methods rank all the 
features in terms of their relevance scores based on their 
correlations with the class label, and choose an appropriate 
feature subset. Wrapper methods directly search for the 
feature subset with the optimal predictive performance 
for a given classification method. Embedded methods 
perform feature selection during classifier training to 
select stable and sparse features based on some strategies 
such as bootstrap and regularization. To compare different 
feature selection methods, 24 representative methods 
[including Las Vegas wrapper (LVW), sequential forward 
floating selection (SFFS), minimum redundancy maximum 
relevance (MRMR), and so on] were selected from the 
three categories. The abbreviations of all feature selection 
methods and their category are listed in Table 4.

Classification methods
Different classification methods with various complexity 
affect the performance of model directly. Therefore, 11 
classifications methods [including boosting (BST), decision 

Table 2 Setting of different parameters in feature extraction

Parameters name Values
Number of 
parameters

Wavelet band-
pass filtering

Weight = [1/2, 2/3, 1, 3/2, 2] 5

Isotropic voxel size Scale = {in-pR, 1, 2, 3, 4, 5} 6

Quantization 
algorithm

Quan algorithm = {Equal, Lloyd} 2

Number of gray 
levels

Ng† = [8, 16, 32, 64] 4

†, Ng denotes gray levels respectively. in-pR, initial in-plane 
resolution.
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tree (DT), random forest (RF), etc.] were extensively 
investigated. The abbreviations of all classification 
methods are also listed in Table 4. Most parameters in the 
classification methods were selected by 10-fold cross-
validation in each training set, whereas others were chosen 
based on fine-tuning default parameters in all methods.

Optimal feature selection—classification combination 
analysis

The optimal combination of feature selection and 
classification methods in terms of their predictive 
performance and stability were first identified. The 
feature selection and classification were then compared 
independently to explore predictive performance of feature 
selection and classification method separately.

Predictive performances of feature selection-
classification combinations
In this paper, the predictive performances of the feature 
selection and classification methods were compared by 
cross-combination. The features selected by each feature 
selection method were subsequently transferred to the 
classification method. The predictive performance of each 
combination for each subset was evaluated using area under 

the curve (AUC) and ACC. The aforementioned process 
was repeated to the 50 subsets. The final performance of 
any combination was assessed in terms of average values of 
AUC and ACC over 50 subsets.

Stability of feature selection-classification combinations
The stability of combination of feature selection and 
classification method is mainly caused by the perturbance 
of random dataset partition. In addition to perturbance of 
dataset, choice of feature selection and classification method 
is also an important factor for stability of feature selection 
and classification category. To quantify stability, the relative 
standard deviation (RSD) was used to assess the feature 
selection and classification methods. RSD is the absolute 
value of the ratio of standard deviation (SD) to average, and 
it is defined as:

RSD 100AUC

AUC

σ
µ

= ×  [1]

where σAUC and μAUC are the SD and average of AUC, 
respectively. It indicates that a lower value means more 
stability. For each combination of feature selection and 
classification method, AUCsubset was first obtained over 10-
fold at each subset, and then σAUC and μAUC were computed 
based on AUCsubset over the 50 subsets.

Table 3 Summary of texture feature extraction

Type of texture Parameters

First order

Global (D† =3) Variance (No. 1), skewness (No. 2), kurtosis (No. 3)

Second order

GLCM (D =9) Energy (No. 4), contrast (No. 5), correlation (No. 6), homogeneity (No. 7), variance (No. 8), sum average (No. 9), entropy 
(No. 10), dissimilarity (No. 11), auto-correlation (No. 12)

High order

GLRLM (D =13) Short run emphasis (No. 13), long run emphasis (No. 14), gray-level nonuniformity (No. 15), run-length nonuniformity 
(No. 16), run percentage (No. 17), low gray-level run emphasis (No. 18), high gray-level run emphasis (No. 19), short run 
low gray-level emphasis (No. 20), short run high gray-level emphasis (No. 21), long run low gray-level emphasis (No. 22), 
long run high gray-level emphasis (No. 23), gray-level variance (No. 24), run-length variance (No. 25)

GLZSM (D =13) Small zone emphasis (No. 26), large zone emphasis (No. 27), gray-level nonuniformity (No. 28), zone-size nonuniformity 
(No. 29) zone percentage (No.30), low gray-level zone emphasis (No. 31), high gray-level zone emphasis (No. 32), small 
zone low gray-level emphasis (No. 33), small zone high gray-level emphasis (No. 34), large zone low gray-level emphasis 
(No. 35), large zone high gray-level emphasis (No. 36), gray-level variance (No. 37), zone-size variance (No. 38)

NGTDM (D =5) Coarseness (No. 39), contrast (No. 40), busyness (No. 41), complexity (No. 42), strength (No. 43)
†, D denotes dimension of feature space. The number inside parenthesis denotes the feature number. GLCM, gray-level co-occurrence 
matrix; GLRLM, gray-level run-length matrix; GLZSM, gray-level size zone matrix; NGTDM, neighborhood gray-tone difference matrix.
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Obviously, combination of feature selection and 
classification methods with the highest prediction 
performance and the best stability is the optimal model for 
prediction of SLN metastasis in breast cancer.

Performance analysis based on feature selection and 
classification method respectively
The predictive performance of feature selection and 
classification methods were further compared separately. 

For each feature selection method, the average AUC and 
ACC were computed over the 11 classification methods. 
Meanwhile, the stability of feature selection methods and 
classification methods were investigated separately. The RSD 
of each feature selection method and classification method 
was also calculated. As to each feature selection method, σAUC 
and μAUC were yielded over the 11 classification methods. 
Correspondingly, to each classification method, σAUC and μAUC 
were yielded over the 24 feature selection methods.

Table 4 The list of all feature selection and classification methods used in our work

Feature selection 
method acronym

Feature selection method name
Classification method 
acronym

Classification method name

LVW† Las Vegas wrapper BAG Bagging

SFFS† Sequential forward floating selection BAYES Naive bayes

SFS† Sequential forward selection BST Boosting

RF‡ Random forest L-DA Linear discriminant analysis

RFE‡ Recursive feature elimination DT Decision tree

L1-SVM‡ L1 regularization based on SVM GLM Generalized linear model

L2-SVM‡ L2 regularization based on SVM K-NN k-nearest neighbor

CHSQ§ Chi-square score SVM Support vector machine

CIFE§ Conditional infomax feature extraction MARS Multi-adaptive regression splines

CMIM§ Conditional mutual information maximization PLSR Partial least squares regression

DISR§ Double input symmetric relevance RF Random forest

DC§ Distance correlation

FSCR§ Fisher score

GINI§ Gini index

ICAP§ Interaction capping

ILFS§ Infinite latent feature selection

JMI§ Joint mutual information

LS§ Laplacian score

MIFS§ Mutual information feature selection

MIM§ Mutual information maximization

MRMR§ Minimum redundancy maximum relevance

RELF§ Relieff

SIS§ Sure independence screening

TSCR§ T-score
†, the feature selection method from wrapper category; ‡, the feature selection method from embedded category; §, the feature selection 
method from filter category. And more details can refer to (34,35).
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Statistical analysis

All the analyses were implemented using R software 3.4.2 
(R Core Team, Vienna, Austria) and MATLAB 2016b 
(MathWorks, Natick, MA, USA).

Results

Predictive performances of feature selection-classification 
combinations

AUC and ACC were used to quantify the predictive 
performances of the cross-combinations of 24 feature 
selection and 11 classification methods. In total, 264 
different combinations were assessed in this study.  
Figures 2,3 showed the specific AUC and ACC values. 
The results show that MRMR + RF exhibited the optimal 
predictive performance [(AUC: 0.97±0.03; range: 0.95–1.00) 
and (ACC: 0.89±0.05; range: 0.86–0.93)], followed by chi-

square score (CHSQ) + RF [(AUC: 0.95±0.04; range: 
0.94–0.98) and (ACC: 0.89±0.05; range: 0.86–0.93)] and L2-
support vector machine (L2-SVM) + RF [(AUC: 0.94±0.05; 
range: 0.91–0.98) and (ACC: 0.87±0.05; range: 0.86–
0.93)]. The confusion matrix of three feature selection-
classification combinations with good model performance 
(i.e., MRMR + RF, CHSQ + RF, and L2-SVM + RF) are 
shown in Figure 4, which contained the testing results in all 
subsets. The three methods could correctly predict most of 
the positive and negative classes, and the positive samples 
were relatively easier to classify compared with the negative 
ones.

Stability of the feature selection-classification combinations

The RSD was computed to assess the stability of the 
different combination models. As Figure 5 shown, MRMR + 
RF exhibited the best stability (stability: 2.94), followed by 
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Figure 2 Heatmap depicting the predictive performance (AUC) of feature selection (in rows) and classification (in columns) methods. It 
depicts the mean AUC of any combination over 50 datasets. The top and the far right of figure shows the average AUC of feature selection 
and classification method, separately. The abbreviations of feature selection and classification methods were defined in Table 4. AUC, area 
under curve.
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Figure 3 Heatmap depicting the predictive performance (ACC) of feature selection (in rows) and classification (in columns) methods. It 
depicts the mean ACC of any combination over 50 datasets. The top and the far right of figure shows the average ACC of feature selection 
and classification method, separately. The abbreviations of feature selection and classification methods were defined in Table 4. ACC, 
accuracy.

DC + RF (stability: 3.96) and CHSQ + RF (stability: 3.97).

Performance analysis based on feature selection and 
classification method respectively

For the average performance of prediction made by feature 
selection and classification method separately, as the top 
and the far right of Figures 2,3 shown, L1-SVM selection 
methods [(AUC: 0.80±0.08; range: 0.59–0.90) and (ACC: 
0.76±0.07; range: 0.56–0.86)] and RF classifier [(AUC: 
0.85±0.11; range: 0.55–0.97) and (ACC: 0.80±0.09; range: 
0.55–0.89)] showed the best predictive performance among 
their respective categories. As to the average stability made 
by feature selection methods and classification methods 
separately, it can be observed from the top and the far right 
of Figure 5 that SFFS (stability: 3.04) and RF (stability: 

8.84) showed the optimal stability among their respective 
categories. Overall, in addition to the RF classifier, 
bootstrap aggregating (BAG) was also a well-performed 
ensemble method [(AUC: 0.81±0.10; range: 0.53–0.89), 
(ACC: 0.78±0.09; range: 0.54–0.85), and (stability: 9.36)], 
followed by multi-adaptive regression splines (MARS) 
[(AUC: 0.79±0.10; range: 0.47–0.88), (ACC: 0.74±0.09; 
range: 0.49–0.82), and (stability: 9.59)], while SVM, 
generalize linear model (GLM), linear discriminant analysis 
(L-DA), k-nearest neighbor (KNN), and DT [(average 
AUC range: 0.73–0.76), (average ACC range: 0.71–0.73), 
and (stability range: 10.04–10.43)] obtained similar model 
performance. In contrast, binary search tree (BST), naive 
bayes (BAYES), and partial least squares regression (PLSR) 
[(average AUC range: 0.59–0.68), (average ACC range: 
0.58–0.66), and (stability range: 11.21–13.64)] had relatively 
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Figure 4 Confusion matrix of the promising feature selection-classification combinations (i.e., MRMR + RF, CHSQ + RF, and L2-SVM + 
RF). It depicts the numbers of true positive, false positive, false negative, and true negative samples in the testing stage over all 50 subsets. 
MRMR, minimum redundancy maximum relevance; RF, random forest; CHSQ, chi-square score; SVM, support vector machine.

Confusion Matrix

MRMR + RF CHSQ + RF L2-SVM + RF

False negative:0 False negative:7 False negative:3

False positive:77 False positive:70 False positive:88

Confusion Matrix Confusion Matrix

P
re

di
ct

ed
 p

os
iti

ve

P
re

di
ct

ed
 p

os
iti

ve

P
re

di
ct

ed
 p

os
iti

ve

P
re

di
ct

ed
 n

eg
at

iv
e

Actual positive Actual positive Actual positiveActual negative Actual negative Actual negative

P
re

di
ct

ed
 n

eg
at

iv
e

P
re

di
ct

ed
 n

eg
at

iv
e

True positive:400 True positive:393 True positive:397

True negative:223 True negative:230 True negative:212

Figure 5 Heatmap depicting the stability of feature selection (in rows) and classification (in columns) methods. It depicts the mean stability 
of any combination over 50 datasets. The top and the far right of figure shows the average stability of feature selection and classification 
method, separately. The abbreviations of feature selection and classification methods were defined in Table 4.
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inferior results.

Contributing features based on feature selection methods

The top 5 contributing features obtained by each feature 
selection method are shown in Table 5. All the best 
performed contributing features were texture features, 

probably because the non-texture features did not contain 
as much abundant information as the texture ones. The 
five most common features among all 24 feature selection 
methods were small zone emphasis (No. 26), large zone low 
gray-level emphasis (No. 35), small zone high gray-level 
emphasis (No. 34), zone percentage (No. 30), and zone-size 
nonuniformity (No. 29).

Table 5 The list of top 5 contributing factors in each feature selection method

Feature selection 
method acronym

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

LVW† No. 24 [209] No. 30 [15] No. 14 [52] No. 37 [237] No. 43 [36]

SFFS† No. 26 [39] No. 26 [63] No. 26 [85] No. 32 [110] No. 26 [157]

SFS† No. 26 [154] No. 26 [14] No. 26 [10] No. 32 [5] No. 26 [49]

RF‡ No. 43 [73] No. 34 [138] No. 31 [142] No. 27 [12] No. 30 [14]

RFE‡ No. 34 [89] No. 28 [17] No. 31 [165] No. 34 [173] No. 28 [225]

L1-SVM‡ No. 1 [241] No. 38 [1] No. 34 [173] No. 33 [105] No. 33 [14]

L2-SVM‡ No. 29 [229] No. 34 [89] No. 31 [165] No. 26 [229] No. 28 [17]

CHSQ§ No. 36 [142] No. 36 [71] No. 36 [23] No. 26 [98] No. 29 [146]

CIFE§ No. 35 [8] No. 35 [47] No. 35 [24] No. 35 [95] No. 35 [96]

CMIM§ No. 12 [126] No. 43 [169] No. 22 [19] No. 20 [24] No. 41 [27]

DISR§ No. 12 [126] No. 10 [150] No. 34 [104] No. 16 [200] No. 13 [200]

DC§ No. 38 [14] No. 38 [62] No. 25 [105] No. 38 [110] No. 28 [177]

FSCR§ No. 26 [105] No. 26 [159] No. 26 [14] No. 29 [111] No. 29 [159]

GINI§ No. 12 [1] No. 10 [3] No. 34 [2] No. 16 [1] No. 13 [4]

ICAP§ No. 15 [126] No. 15 [150] No. 9 [104] No. 28 [200] No. 19 [200]

ILFS§ No. 28 [5] No. 29 [5] No. 30 [5] No. 31 [5] No. 32 [5]

JMI§ No. 23 [143] No. 32 [56] No. 32 [72] No. 9 [143] No. 23 [144]

LS§ No. 30 [128] No. 30 [31] No. 30 [72] No. 30 [120] No. 30 [135]

MIFS§ No. 35 [8] No. 35 [24] No. 35 [32] No. 35 [40] No. 35 [47]

MIM§ No. 12 [126] No. 10 [150] No. 34 [104] No. 16 [200] No. 13 [200]

MRMR§ No. 26 [77] No. 38 [110] No. 26 [207] No. 27 [210] No. 29 [54]

RELF§ No. 34 [61] No. 19 [34] No. 32 [42] No. 34 [10] No. 29 [206]

SIS§ No. 26 [159] No. 29 [159] No. 26 [105] No. 26 [14] No. 26 [63]

TSCR§ No. 35 [196] No. 35 [204] No. 35 [212] No. 35 [228] No. 35 [236]

Total No. 26 No. 35 No. 34 No. 30 No. 29
†, the feature selection method from wrapper category; ‡, the feature selection method from embedded category; §, the feature selection 
method from filter category. The bottom row shows five most common features among all feature selection methods. The number out of 
square bracket denotes the feature number in Table 3. The number inside square bracket denotes combination of parameters in Table 2. 
The abbreviations of feature selection methods were defined in Table 4.
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Discussion

Key findings

Recent studies have proven that SLNB is an alternative 
method for ALN metastasis detection (7,8,10). However, 
biopsy can bring discomfort and injury to patients, such 
as pain, bleeding, infection, etc. (11,12). Therefore, it 
is of great importance to develop a non-invasive SLN 
metastasis detection method. So far, machine-learning 
based approaches have been applied in medical image-
based auxiliary diagnostic studies for varied cancers 
(20,23,34), histology (36,37), survival prediction (24,38), 
and so on. In this study, a machine learning framework for 
preoperative prediction of SLN metastasis in breast cancer 
was proposed with assessments of different selection and 
classification model. The findings suggested an optimal 
model of combination of MRMR feature selection and 
RF classification methods and showed a relatively high 
efficiency for prediction of SLN metastasis in breast cancer.

Strengths and limitations

The one limitation of our work is that our proposed 
model is lack of large and independent external validation. 
Therefore, we used 10-fold cross-validation to assess 
the performance of model, which is an efficient way to 
decrease the variance of performance due to random dataset 
partition, especially for the limited number of patients. 
On the one hand, multicenter and prospective patient 
collection should be proceeded; on the other hand, a more 
proper way to solve the limited data problem deserves 
further investigation. Another possible limitation of our 
study is that the effect of magnetic field inhomogeneity is 
not considered. And the DW image is sensitive to magnetic 
field inhomogeneity which might result in bias for the 
results.

Comparison with similar researches

The promising prediction performance partly benefited 
from the feature selection method that decreased the 
dimension of feature space by identifying a set of the most 
contributing features. During the feature selection process, 
the redundancy between features and the risk of model 
overfitting partly decreased. In addition, classification 
methods play a leading role based on the given feature set 
after feature selection, and classification methods from 
different families have their own operational mechanisms 

with discrepant performances (39).

Explanations of findings

The results of our experiments showed that the ensemble 
methods such as RF classifier and BAG could obtained 
outstanding performance, followed by MARS, while 
SVM, GLM, L-DA, KNN, and DT achieved general 
results. Meanwhile, BST, BAYES, and PLSR got inferior 
performance compared with others.  The possible 
confounding factors leading to inferior performance might 
be that BST, BAYES, and KNN are relatively sensitive 
to noise and data distribution (40-42), PLSR and GLM 
relied on linear assumption and could not handle nonlinear 
problem, MARS, L-DA and DT were likely to suffer 
from overfitting (43,44), SVM was easily impacted by the 
selection of kernel function (45). Although RF and BAG 
might also be affected by noise interference and required 
more computational power, they combined multiple 
uncorrelated base models and made decision based on 
the majority of votes that helped improve the ACC (46), 
thus these two models were more suitable for the current 
study. It is worth noting that, from the machine learning 
point of view, different combinations of feature selection 
and classification methods would lead to differences in 
performance, particularly for a high-dimensional dataset. 
The current study widely studied and compared the 
performances and stability of cross-combinations of 24 
typical feature selection and 11 classification methods 
from different categories. On the basis of predictive 
performance and stability for preoperative prediction 
of SLN metastasis in breast cancer, our study offered 
evidence that the combination MRMR + RF is the optimal 
model than other combinations. MRMR is a filter method 
based on mutual information. It selects a feature set with 
minimum redundancy and maximum relevance (47). The 
results suggested that the enhanced features might have 
more redundancy. RF classifier is a supervised learning 
classification method (39). This classifier consists of an 
ensemble of tree predictors, with each tree depending 
on the values of a random vector sampled independently. 
RF has ability to expose the hidden linear or nonlinear 
relationship between the feature and target. Its favorable 
performance has also been confirmed in several previous 
studies (20,34,48).

Performance for the categories of feature selection and 
classification method was also explored separately in this 
study. The results showed that L1-SVM and SFFS had the 
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best average predictive performance and the stability among 
all feature selection methods, respectively. RF and SVM 
showed the best average predictive performance and the 
stability among all classification methods (49), respectively. 
These results indicated that L1-SVM and SFFS has better 
robustness for feature selection in general, and RF and 
SVM are better selection of classifiers compared with other 
approaches. In general, for similar tasks, such as metastasis 
of other lymph node, priority can be given to the above 
feature selection methods and classifiers.

Implications and actions needed

Therefore, more collection of magnetic field inhomogeneity 
of DW images should be included in future research. In 
addition, our work only identified the combination of 
traditional methods with a relatively high predictive and 
stable performance for preoperative prediction of SLN 
metastasis in breast cancer. In the future, we will study the 
influences of different parameters in image acquisition and 
feature extraction and use more complex machine learning 
methods, including deep learning methods based on patch 
strategy (34).

Conclusions

In conclusion, an optimal machine-learning model for 
preoperative prediction of SLN metastasis in breast cancer 
was established based on the image features of MRI. 
The combination of MRMR and RF suggested the best 
predictive efficiency. It could facilitate clinical prediction of 
SLN metastasis for patients with breast cancer.
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