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Introduction

Acute myeloid leukemia (AML) is a highly aggressive 
hematological malignancy involving myeloid precursor cells 
and it is more common in adults and has a poorer prognosis, 
particularly in the elderly. Survival rates for adults with 

AML are significantly poorer compared to children and 
adolescents. The 5-year survival rates for patients aged 
20–49, 50–64 and 65 years and older have been estimated 
at 58%, 35% and 9% respectively (1). With the increasing 
research on the molecular genetics of leukemogenesis 
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in recent years, novel agents (e.g., CPX-351), targeted 
drugs [e.g., BCL-2 inhibitor (venetoclax), FLT3 inhibitor 
(gilteritinib), IDH1/2 inhibitor (ivosidenib and enasidenib), 
TP53 activator (APR-246), etc.] and emerging therapeutic 
modalities (e.g., microtransplantation, immunotherapy) 
have been promoted for use in patients of all ages.

AML has a high degree of clinical and genomic 
heterogeneity, and therefore risk stratification at diagnosis 
plays a crucial role in the development of treatment plans. 
Current risk stratification for AML and treatment options 
are determined by a relatively limited number of genetic 
characteristics. The 2017 European Leukemia Network 
(ELN) risk stratification criteria rely heavily on cytogenetic 
abnormalities (2), but this scoring system is still limited 
by a variety of heterogeneities. A variety of models have 
been reported that can be used to assess the prognosis of 
AML patients, such as the model for elderly AML patients 
with normal karyotype, proposed by Wang et al. (3), the 
scoring model for AML with biallelic CEBPA mutations 
developed by Xu et al. (4), and a novel molecular marker-
based prognostic model for AML patients developed by 
Qu et al. (5). However, most models in the literature are 
specific to certain types of AML patients and lack external 
data validation, which further reduces the extrapolation and 
credibility of the models. Therefore, there is an urgent need 
to integrate clinical and genomic features of AML patients 
to construct new prognostic models.

Our research focuses on developing risk model that 
incorporate additional baseline characteristics to help 

clinicians estimate the survival of AML patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1192/rc).

Methods

Ethical approval

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Hospital 
of Lanzhou University (No. LDYYLL-2023-372). The 
requirement for informed consent was waived due to the 
retrospective nature of the study.

Data collection

GSE146173 (6) was downloaded from the Gene Expression 
Omnibus (GEO) database to construct the model. Adult 
patients diagnosed with AML were included in the 
statistical analysis and were required to have complete 
baseline characteristics and follow-up data. Study variables 
included age, sex, white blood cell count, hemoglobin 
concentration, type of AML (primary or secondary AML) 
and genetic mutations including ASXL1, biallelic CEBPA, 
DNMT3A, EZH2, FLT3-ITD, FLT3-TKD, IDH1, IDH2, 
NPM1, RUNX1, TET2, TP53. The primary endpoint was 
overall survival (OS) at 1, 2 and 3 years, with OS defined as 
the period from the initial diagnosis to either death or the 
final follow-up. In addition, we gathered clinical data from 
135 adult AML patients attending the First Hospital of 
Lanzhou University from December 2017 to June 2022 to 
externally validate the model.

Variable selection

We  s t a r t e d  w i t h  r a n d o m  g r o u p i n g  u s i n g  t h e 
‘createDataPartion’ function in the ‘CARET’ package of the 
R software. The entire GEO set was divided into a training 
set and a validation set on a 1:1 ratio. In the training set, the 
‘survival’ package was used for univariate and multivariate 
Cox regression analysis, and the ‘glmnet’ package was used 
for least absolute shrinkage and selection operator (LASSO) 
regression analysis to address multicollinearity.

Nomogram construction

The nomogram function in the rms R package was used to 
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construct a nomogram containing all the key prognostic 
factors. By matching each variable in the model, we 
calculated the total score and the survival rates at 1, 2 and  
3 years.

Statistical analysis methods

The discriminatory power of the nomogram was mainly 
indicated by the consistency index (C-index) and the area 
under the curve (AUC). The calibration curve reflected the 
extent to which the model’s predicted risk was consistent 
with the actual risk of morbidity. A risk score consisting 
of the five factors in the nomogram was calculated based 
on the regression coefficients from the multivariate Cox 
regression analysis, and the Kaplan-Meier curve was used 
as the threshold for prognostic survival analysis of patients 
with high-risk scores versus those with low-risk scores, 
using the median risk score as the cut-off point. Decision 
curve analysis (DCA) was performed using the R software 
package ‘ggDCA’ to analyse the impact of the model on 
the net clinical benefit at different positive thresholds. In 
addition, these metrics were also evaluated in the validation 
set, the entire GEO set and the northwest China set.

Comparisons of categorical and continuous variables 
were made using the Chi-squared test and Wilcoxon rank 
sum test, respectively. Statistics and graphs were generated 
using R 4.2.2 (www.r-project.org), and commands used with 
R software were available in the Appendix 1.

Results

Patient characteristics

In this study, data containing 246 adult AML cases were 
downloaded from the GEO database. A total of 238 adult 
AML patients were screened. Patients were randomised 
1:1 into two sets with similar clinical characteristics. 
Patients of the training set had a median OS of 21.9 months 
[interquartile range (IQR), 7.3–46.2 months], while patients 
of the validation set had a median OS of 21.7 months (IQR, 
7.1–45.9 months). We also listed the clinical characteristics 
of the patients in both sets (Tables 1,2).

Screening for prognosis-related variables

We used univariate Cox regression to screen all prognostic 
risk factors (age, sex, white blood cell count, hemoglobin, 
type of AML, 12 AML-associated gene mutations) in the 

training set (Table 3). Univariate Cox regression analysis 
showed that age, type of AML, ASXL1, CEBPA, DNMT3A, 
IDH2, RUNX1 and TP53 mutations were all associated 
with OS, and further analysis was conducted using LASSO-
Cox regression analysis (Figure 1A,1B). Finally, age, type of 
AML, DNMT3A, IDH2 and TP53 mutations were identified 
as key independent prognostic factors by multivariate Cox 
regression analysis (Table 3).

Model development

Based on the prognosis-related independent factors 
screened by the final multivariate Cox regression analysis, 
we constructed an OS-related nomogram, as shown in 
Figure 2. The model, although incorporating only five 
variables, was more cumbersome to calculate the total score. 
To facilitate clinicians, we used the ‘DynNom’ package and 
borrowed shinyapp. io to set up an online server (https://
gyc2415940441.shinyapps.io/dynnomapp/) that allows 
for more intuitive access to the predicted values of patient 
survival with 95% confidence intervals (CI) (Figure 3).

Model validation and performance

Each set was assessed and validated using receiver operating 
characteristic (ROC) curves, calibration curves, and DCA 
(Figure 4). In the training set, the C-index for predicting 
OS was 0.70. The AUC values for 1-, 2- and 3-year OS 
were 0.755 (95% CI: 66.30 to 84.77), 0.745 (95% CI: 65.90 
to 83.17) and 0.757 (95% CI: 67.22 to 84.13), respectively 
(Figure 4A). In the validation set, the C-index was 0.61 and 
the AUC values for 1-, 2- and 3-year OS were 0.648 (95% 
CI: 54.23 to 75.46), 0.648 (95% CI: 54.91 to 74.58) and 
0.654 (95% CI: 55.40 to 75.31), respectively (Figure 4B). 
Meanwhile, the calibration curves showed that the predicted 
probabilities of OS in the training set and the validation 
set were generally consistent with the actual probabilities 
(Figure 4D,4E). 

To further assess the validity and performance of the 
prognostic model, 135 patients from a single-centre set in 
northwest China were used for validation (Tables 1,2). The 
C-index for predicting OS was 0.65. The AUC values for 
1-, 2- and 3-year OS were 0.692 (95% CI: 60.13 to 78.26), 
0.724 (95% CI: 62.27 to 82.53) and 0.689 (95% CI: 56.86 to 
80.92), respectively (Figure 4C). In addition, the calibration 
curves for the predicted probabilities of 1-, 2-, and 
3-year OS also showed adequate consistency (Figure 4F). 
Furthermore, the model achieved better net benefits in the 
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Table 1 Patients’ characteristics (all factors)

Variable Level
Entire GEO set

P† Northwest China set (n=135)
Training set (n=120) Validation set (n=118)

Sex Female 64 (53.33) 60 (50.85) 0.80 67 (49.63)

Male 56 (46.67) 58 (49.15) 68 (50.37)

Age (years) <65 92 (76.67) 76 (64.41) 0.05 99 (73.33)

≥65 28 (23.33) 42 (35.59) 36 (26.67)

Type of AML pAML 100 (83.33) 96 (81.36) 0.82 119 (88.15)

sAML 20 (16.67) 22 (18.64) 16 (11.85)

WBC (×109/L) <50 90 (75.0) 98 (83.05) 0.17 99 (73.33)

≥50 30 (25.0) 20 (16.95) 36 (26.67)

Hb (g/L) <60 4 (3.33) 3 (2.54) 0.77 36 (26.67)

60 to <100 83 (69.17) 78 (66.1) 80 (59.26)

≥100 33 (27.5) 37 (31.36) 19 (14.07)

ASXL1 Wild-type 105 (87.5) 101 (85.59) 0.81 124 (91.85)

Mutated 15 (12.5) 17 (14.41) 11 (8.15)

Biallelic CEBPA Wild-type 114 (95.0) 116 (98.31) 0.29 118 (87.41)

Mutated 6 (5.0) 2 (1.69) 17 (12.59)

DNMT3A Wild-type 77 (64.17) 86 (72.88) 0.19 118 (87.41)

Mutated 43 (35.83) 32 (27.12) 17 (12.59)

EZH2 Wild-type 119 (99.17) 115 (97.46) 0.60 128 (94.81)

Mutated 1 (0.83) 3 (2.54) 7 (5.19)

FLT3-ITD Wild-type 95 (79.17) 97 (82.2) 0.67 104 (77.04)

Mutated 25 (20.83) 21 (17.8) 31 (22.96)

FLT3-TKD Wild-type 107 (89.17) 109 (92.37) 0.53 126 (93.33)

Mutated 13 (10.83) 9 (7.63) 9 (6.67)

IDH1 Wild-type 112 (93.33) 109 (92.37) 0.97 127 (94.07)

Mutated 8 (6.67) 9 (7.63) 8 (5.93)

IDH2 Wild-type 105 (87.5) 102 (86.44) 0.96 117 (86.67)

Mutated 15 (12.5) 16 (13.56) 18 (13.33)

NPM1 Wild-type 75 (62.5) 84 (71.19) 0.20 100 (74.07)

Mutated 45 (37.5) 34 (28.81) 35 (25.93)

RUNX1 Wild-type 103 (85.83) 89 (75.42) 0.06 126 (93.33)

Mutated 17 (14.17) 29 (24.58) 9 (6.67)

TET2 Wild-type 98 (81.67) 101 (85.59) 0.52 129 (95.56)

Mutated 22 (18.33) 17 (14.41) 6 (4.44)

TP53 Wild-type 110 (91.67) 110 (93.22) 0.84 128 (94.81)

Mutated 10 (8.33) 8 (6.78) 7 (5.19)

Data are shown as n (%). †, P values represent the statistical difference between the training and validation sets for each feature. GEO, 
Gene Expression Omnibus; AML, acute myeloid leukemia; sAML, secondary AML; pAML, primary AML; WBC, white blood cell count; Hb, 
hemoglobin. 
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Table 2 Patients’ characteristics (continuous variables)

Variable
Entire GEO set

Northwest China set (n=135)
Training set (n=120) Validation set (n=118)

Age (years) 57 [45.75–64] 59 [45–67] 51 [44–66]

WBC (×109/L) 16.34 [6.05–47.25] 13.95 [3.62–35.43] 13.68 [2.95–51.9]

Hb (g/L) 90 [81–102] 89.5 [82–103.75] 73 [58.5–88]

Data are shown as median [IQR]. GEO, Gene Expression Omnibus; WBC, white blood cell count; Hb, hemoglobin; IQR, interquartile range.

Table 3 Univariate and multivariable analyses of variables predicting OS in the training set

Variable Comparison groups
Univariate analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Gender Male vs. female 1.05 (0.66–1.67) 0.83

Age (years) ≥65 vs. <65 2.26 (1.37–3.72) <0.001 2.04 (1.22–3.43) 0.007

WBC (×109/L) ≥50 vs. <50 1.21 (0.71–2.07) 0.48

Hb (g/L) 60 to 100 vs. <60 0.65 (0.2–2.08) 0.47

≥100 vs. <60 0.47 (0.14–1.62) 0.23

Type of AML sAML vs. pAML 1.69 (0.95–2.99) 0.07 2.16 (1.15–4.06) 0.02

ASXL1 Mutated vs. wild-type 1.54 (0.81–2.93) 0.19 1.44 (0.59–3.52) 0.43

CEBPA Mutated vs. wild-type 0.22 (0.03–1.58) 0.13 0.48 (0.07–3.6) 0.48

DNMT3A Mutated vs. wild-type 1.63 (1.02–2.61) 0.04 1.65 (1–2.71) 0.05

EZH2 Mutated vs. wild-type 1.92 (0.26–13.89) 0.52

FLT3-ITD Mutated vs. wild-type 0.99 (0.56–1.75) 0.97

FLT3-TKD Mutated vs. wild-type 1.07 (0.53–2.16) 0.84

IDH1 Mutated vs. wild-type 1.58 (0.68–3.64) 0.29

IDH2 Mutated vs. wild-type 1.85 (0.99–3.44) 0.05 2.43 (1.27–4.64) 0.007

NPM1 Mutated vs. wild-type 0.76 (0.47–1.23) 0.26

RUNX1 Mutated vs. wild-type 1.63 (0.89–2.99) 0.11 1.24 (0.55–2.78) 0.61

TET2 Mutated vs. wild-type 0.71 (0.37–1.34) 0.28

TP53 Mutated vs. wild-type 5.14 (2.54–10.39) <0.001 7.19 (3.37–15.34) <0.001

OS, overall survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell count; Hb, hemoglobin; AML, acute myeloid leukemia; 
sAML, secondary AML; pAML, primary AML.

training set, the internal validation set and the northwest 
China set, relative to the case of intervention for all and no 
intervention for all (Figure 4G-4I).

Risk stratification

We divided the patients in each set into high and low risk 
groups based on the median risk score (cut off at 1.64) in 

the training set. Both risk score scatter plots and Kaplan-
Meier analysis showed poorer survival in high-risk patients  
(Figure 5A,5B) .  Similarly, risk scores equally well 
differentiated between high-risk and low-risk patients 
in the validation set (Figure 5C,5D), the entire GEO set  
(Figure 5E,5F) and the northwest China set (Figure 5G,5H). 

Both young (age <60 years) and elderly patients (age 
≥60 years) in the entire GEO set were divided into low- 
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Figure 2 A nomogram for the 1-, 2-, and 3-year overall survival probability prediction. AML, acute myeloid leukemia; WT, wild-type; Mut, 
mutated.

and high-risk groups based on the median risk score, with 
survival curves showing significantly poorer survival in the 
high-risk group than in the low-risk group (Figure 5I,5J). 
Similarly, the model achieved good risk stratification in 
the northwest China set for young and elderly patients  
(Figure 5K,5L).

Model comparison

DCA was performed to compare the clinical usability of the 
nomogram and the ELN 2022 risk stratification model. DCA 
showed that the nomogram had better clinical applicability, 
as it added more net benefits compared with the ELN 2022 
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Figure 3 An interactive tool for predicting the survival of AML patients on Shinyapps. AML, acute myeloid leukemia; WT, wild-type.

risk stratification for most of the threshold probabilities in 
the northwest China set, and with both the treat-all-patients 
scheme and the treat-none scheme (Figure 6).

Discussion

In this study, we developed and validated a novel prognostic 
model for adult AML patients by combining clinical 
characteristics and 12 prognosis-related gene mutations, 
and constructed dynamic nomogram. 238 patients with 
AML were separated into the training set and validation 
set. The key prognostic variables, including age, AML type, 
DNMT3A, IDH2 and TP53 mutations, were determined 
through Cox regression and LASSO regression analysis. 
Various assessments were undertaken from different 
perspectives to evaluate the nomograms’ predictive 
performance and applicability. Additionally, validation of 
the model was conducted using 135 AML patients from a 
single centre.

Age at diagnosis has a significant impact on predicting 
long-term survival in AML patients (7,8). Elderly patients 
with AML often have an atypical clinical features and 
poor compliance, they are more likely to have unfavorable 
cytogenetics and expresses multidrug resistance, all of 
which contribute to the very poor survival of elderly 
AML patients (9). In 2020, a study by Martínez-Cuadrón  

et al. randomised 3,637 elderly AML patients to intensive 
chemotherapy, standard chemotherapy (10), reduced-
intensity chemotherapy and supportive therapy and showed 
that median OS was 4.7 months, with 29% surviving at 
1 year and 7% at 5 years. Many prognostic models have 
identified secondary AML as a risk factor for early death. 
Compared to primary AML, patients with secondary AML, 
who tend to be older and whose vital organs have been 
affected by radiotherapy for their primary disease, have a 
poorer prognosis, with significantly lower rates of complete 
remission (CR), relapse-free survival and OS (11).

As shown in the nomogram, TP53 mutations are strong 
predictors in our model. TP53 mutations are associated with 
complex karyotypes, haplotypes and specific chromosomal 
aneuploidies (e.g., -5/5q-, -7/7q-) (12), they come with 
an extremely poor prognosis and have been included in 
the 2022 ELN risk stratification poor prognosis group. 
In addition, TP53 mutations are the most frequently 
mutated gene in secondary AML (13). The high mutations 
rate of TP53 in secondary AML and the selection of 
resistant clones after mutations together lead to resistance 
to chemotherapeutic agents in secondary AML, which 
partly explains the poor prognosis of secondary AML and 
highlights the need for novel therapies. Similar to the 
prognostic model of Ma et al. (14), our model includes 
DNMT3A mutations. The impact of DNMT3A mutations 
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validation set, and northwest China set. AUC, area under the curve; ROC, receiver operating characteristic; DCA, decision curve analysis.

on clinical decision making remains controversial, but 
numerous studies have shown that AML patients with 
DNMT3A mutations, especially R882 mutations, have 
a significantly worse clinical prognosis (15,16). IDH2 
mutations occur in 12% of AML patients (17), and there 
has been controversy regarding the prognostic role of 
IDH2, as its impact on patient prognosis appears to be 
influenced by the mutations site and other co-occurring 
mutational events (18). The IDH2R140 mutation appears 
to be a favorable independent prognostic factor, while 
patients with IDH2R172 mutated AML have an extremely 

poor prognosis (18), with relapse rates comparable to those 
of patients with poor risk cytogenetics. In conclusion, the 
association between DNMT3A, IDH2 and AML needs to be 
further investigated.

Our new model has several advantages. First, the 
DCA showed that our model outperforms the 2022 ELN 
stratification in terms of clinical utility. Second, the model 
was externally validated using an AML dataset from a single 
centre in northwest China, thereby considerably enhancing 
the predictive model’s practicality. Above all, the nomogram 
has been uploaded onto a website that is readily accessible.
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There are some limitations in this study. Firstly, 
cytogenetic classification was not included in this study 
as most cytogenetic information was missing from the 
published data. In addition, the northwest China set was 
retrospective and therefore it was inevitably subject to 
selection and recall bias. Finally, NPM1 and FLT3-ITD 
were not mentioned in this prognostic model, probably 
because the statistical significance of the different effect 
indicators (usually expressed as P values) depends on the 
size of the effect, the sample size, and the distribution 
(variance) of the data. Also, the prognosis of patients 
with NPM1  mutations or FLT3-ITD  is affected by 
allele frequency and co-mutations (e.g., TP53, EZH2,  
ASXL1, etc.).

Conclusions

In summary, we have integrated patient- and AML-
related information to develop and validate a new scoring 
system. With the nomogram and free web-based calculator, 
individual survival probabilities can be quickly assessed 
and accurately calculated to meet the needs of precision 
medicine and personalised cancer management. The 
model’s parameters are routinely assessed and can be 
easily adopted into clinical practice, enabling clinicians to 
quickly complete survival assessments, risk stratification and 
treatment decisions at the time of diagnosis.
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Appendix 1 Commands of R software

rm(list = ls()) 
setwd("D:\\bioinformatics\\Level 4\\L85_Codes\\work") 
options("repos"= c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/") 
if (!requireNamespace("BiocManager", quietly = TRUE)) 
install.packages("BiocManager")
BiocManager::install(‘tidyverse’) 
library(tidyverse) 
options(stringsAsFactors = FALSE) 
df_geo<-read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work\\GEO_R.csv’,header = T,row.names = 1) 
df_out<-read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work\\OUT_R1.csv’,header = T,row.names = 1
df<-read.csv(‘F:\\bioinformatics\\Level 4\\L81_Codes\\Lesson1_Rawdata\\PartI_clinical_data.csv’,header = T,row.names = 1) 
df_out[1:5,1:5] 
apply(df_geo, 2, class)
dim(df_out) 
source(‘D:\\bioinformatics\\Level 4\\L81_Codes\\Lesson1_Function\\FindoutNA.R’, encoding = "utf-8")
FindoutNA(df_geo)
FindoutNA(df_out)
df_geo_omit <- na.omit(df_geo) 
dim(df_geo)
dim(df_geo_omit)
nrow(df_geo) - nrow(df_geo_omit) 
rm(df_train) 
rm(FindoutNA) 
table(df_geo_omit$gender)
summary(df_geo_omit$age)
str(StepI_Rawdata)
str(df_geo_omit)
df_geo_omit$gender<-factor(df_geo_omit$gender,levels = c(0,1),labels = c(‘female’,’male’))
df_geo_omit$futime<-as.numeric(as.character(df_geo_omit$futime))
df_geo_omit$fustatus<-as.numeric(as.character(df_geo_omit$fustatus))
df_geo_omit$HB<-as.numeric(as.character(df_geo_omit$age))
str(df_out)
df_out$PLT<-as.numeric(as.character(df_out$PLT))
df_out$futime<-as.numeric(as.character(df_out$futime))
write.csv(df_geo_omit,’D:\\bioinformatics\\Level 4\\L85_Codes\\work\\GEO_Rdata.csv’)
write.csv(df_out,’D:\\bioinformatics\\Level 4\\L85_Codes\\work\\OUT_Rdata.csv’)
df_train <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work\\GEO_Rdata.csv’,header = T,row.names = 1) 
df_validation <- read.csv(‘D:\bioinformatics\Level 4\L85_Codes\work\\OUT_Rdata.csv’,header = T,row.names = 1) 

library(rms) 
library(ResourceSelection)
library(dplyr)
df_omit_clear <- data.frame(Samples_ID = rownames(df_omit_clear),
df_omit_clear)
library(rms) 

Supplementary
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library(ResourceSelection)
library(dplyr)
library(caret)
library(ggpubr)
dir.create(‘F:\\bioinformatics\\Level 4\\L85_Codes\\work\\StepV_Compare_Results2’)
source(file = ‘F:\\bioinformatics\\Level 4\\L81_Codes\\Lesson1_Function\\GetTable_comparet.R’, encoding = "utf-8")
setwd(‘F:\\bioinformatics\\Level 4\\L85_Codes\\work’)
GetTable_compare(data1 = df_train, 
data2 = df_validation,
df_name = ‘Compare’)
setwd(‘G:/Others_analysis/JLX_Nomogram/Lesson1/Part1’)
rm(GetTable_compare)
df <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\Total3.csv’,header = T,row.names = 1) 
set.seed(43)
library(rms) 
library(ResourceSelection)
library(dplyr)
df_omit_clear <- data.frame(Samples_ID = rownames(df), df) 
library(rms) 
library(ResourceSelection)
library(dplyr)
library(caret)
index_train <- createDataPartition(y = df$futime, 
p = 0.5,
list = FALSE)
df_train <- df_omit_clear[index_train, ]
df_validation <- df_omit_clear[-index_train, ]
rm(index_train)
rm(df_omit_clear)
dir.create(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43’)
source(file = ‘D:\\bioinformatics\\Level 4\\L81_Codes\\Lesson1_Function\\GetTable_comparet.R’, encoding = "utf-8")
setwd(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43’)
GetTable_compare(data1 = df_train, 
data2 = df_validation,
df_name = ‘Compare’)

LASSO regression analysis 

library(glmnet)
library(survival)
library(tidyverse)
df_train_lasso <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train_lasso.

csv’,header = T,row.names = 1) 
for(i in names(dt)[c(1:9)]) {dt[,i] <- as.factor(dt[,i])}
x.factors <- model.matrix(~ dt$age+dt$diagnosis+dt$ASXL1+dt$CEBPA+dt$DNMT3A+dt$IDH2+dt$RUNX1+dt$TP53,dt)[,-1]
x <- as.matrix(data.frame(x.factors,dt[,10:11]))
y <- data.matrix(Surv(dt$time,dt$status))
dt$time<-as.numeric(dt$time)
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dt<-df_train_lasso
str(dt)
fit <-glmnet(x.factors,y,family = "cox",alpha = 1)
plot(fit,label=T)
plot(fit,xvar="lambda",label=T)
fitcv <- cv.glmnet(x.factors,y,family="cox", alpha=1,nfolds=10)
plot(fitcv)
coef(fitcv, s="lambda.min")
expr_df<-dt%>%as.matrix()
coef.min=coef(fitcv,s="lambda.min")
active.min=which(coef.min!=0)
(lasso_geneids<-colnames(expr_df)[active.min])
df_train<-df_train[,-1]
df_validation<-df_validation[,-1]
df_train$fustatus<-as.numeric(as.character(df_train$fustatus))
str(df_train)
df_train$futime<-as.numeric(as.character(df_train$futime))
BaSurv<-Surv(time = df_train$futime,
event = df_train$fustatus)
Unicox<-function(x){
FML<-as.formula(paste0(‘BaSurv~’,x))
GCox<-coxph(FML,data = df_train)
GSum<-summary(GCox)
HR<-round(GSum$coefficients[,2],2)
PValue<-round(GSum$coefficients[,5],3)
CI<-paste0(round(GSum$conf.int[,3:4],2),collapse = "-")
Unicox<-data.frame("characteristics"=x,
"Hazard Ratio"=HR,
"CI95"=CI,
"P Value"=PValue)
return(Unicox)
}
Unicox(colnames(df_train)[4])
VarNames<-colnames(df_train)
VarNames<-c("gender","age","diagnosis","WBC","HB","ASXL1","CEBPA","DNMT3A","EZH2","FLT3ITD","FLT3TKD","ID

H1","IDH2","NPM1","RUNX1","TET2","TP53")
UniVar<-lapply(VarNames,Unicox)
UniVar<-ldply(UniVar,data.frame)
library(plyr)
GetFactors_uni<-UniVar$characteristics[which(UniVar$P.Value<0.2)] %>% as.character()

Multifactor COX regression analysis 

fml<-as.formula(paste0(‘BaSurv~’,paste0(GetFactors_uni,collapse = ‘+’)))
MultiCox<-coxph(fml,data = df_train)
MultiSum<-summary(MultiCox)
MHR<-round(MultiSum$coefficients[,2],2)
setwd(‘G:/Others_analysis/JLX_Nomogram/Lesson1/Part1’)
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library(ggpubr)
rm(GetTable_compare)
write.csv(df_train,’D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train.csv’)
write.csv(df_validation,’D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_validation.csv’)

nomogram

Final<-read.csv(file = "D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\Final.csv",header = 
T,row.names = 1,encoding = "UTF-8")

(Final_GetFactors <- Final$characteristics[which(Final$P.Value.y < 0.05)] %>% as.character()) 
# save(GetFactors,file =‘Chr3_Univariate_Cox.RData’)
fml<-as.formula(paste0(‘BaSurv~’,paste0(Final_GetFactors,collapse = "+")))
MultiCox<-coxph(fml,data = df_train)
MultiSum<-summary(MultiCox)
Final_GetFactors<-c("age","diagnosis","DNMT3A","IDH2","TP53")
dd<-datadist(df_train)
options(datadist="dd")
BaSurv<-Surv(time = df_train$futime,event = df_train$fustatus)
fml<-as.formula(paste0(‘BaSurv~’,paste0(Final_GetFactors,collapse = "+")))
f<-cph(fml,x=T,y=T,surv=T,data = df_train)
surv<-Survival(f)
nom<-nomogram(f,
fun = list(function(x)surv(365,x),
function(x)surv(365*2,x),
function(x)surv(365*3,x)),
lp=T,funlabel=c("1-year survival","2-year survival","3-year survival"),
maxscale=100,
fun.at=seq(0.1,0.9,0.1))
plot(‘normgram.plot’,width = 12,height=12,onefile = FALSE) 
plot(nom,cex.var=2,cex.axis=1.5,lwd=10,xfrac=0.5,tcl=0.5)
dev.off()

dynamic nomogram 

install.packages(‘shinyPredict’)
library(shinyPredict)
Cox_nomo<-coxph(Surv(futime, fustatus)~ age+diagnosis+DNMT3A+IDH2+TP53,
data = df_train,model = F,y=F)
shinyPredict(models =list("model 1"=Cox_nomo),
path ="D://bioinformatics//Level 4//L85_Codes//work//StepV_Compare_Results4seed49//gyc2415940441",
data = df_train[,c(2:4,13:14,18:20)],
title ="Dynamic nomogram",
shinytheme ="paper")
str(df_train)
install.packages(‘rsconnect’)
library(rsconnect)
rsconnect::setAccountInfo(name=‘gyc2415940441’,
token=‘F05C38E1C858DFF6C8BD718560615845’,
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secret=‘1mB2GC0DJQuHq5rx2TvMWnN2oJBqCsPOVdIJLC8e’)
if(!require(rsconnect)) install.packages("rsconnect")
rsconnect::setAccountInfo(name=‘gyc2415940441’,
token=‘72B83328FD03A5E06AABF2554AD27C73’,
secret=‘DeKq8KzhSmIibeWknftpJB7A1f6JL2iebZShWqHs’)

ROC curve 

df_train_ROC <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train_ROC.
csv’,header = T) 

install.packages(‘timeROC’)
library(rms)
library(timeROC)
data<-df_train_ROC
ROC <- timeROC(T = data$futime/(365.5/12), 
delta = as.numeric(data$fustatus),
marker = data$riskscore,
cause = 1,
weighting = "marginal",
times = c(12, 24, 36),
iid = T)
ROC 
confint(ROC)$CI_AUC 
{
plot(ROC, time=12*1, lwd=2,col = "blue", add = F, title = F)
plot(ROC, time=12*2, lwd=2,col = "red", add = T)
plot(ROC, time=12*3, lwd=2,col = "black", add = T)
legend(x=0.5,y=0.25, text.width=1,
x.intersp=0.6,y.intersp=0.5,lty = 1, cex = 1,bty=‘n’,
col = c("blue", "red", "black"),
legend = c("1y AUC:0.755",
"2y AUC:0.745",
"3y AUC:0.757"))
}

dev.new()

Discrimination analysis 

library(rms)
df_train <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train.csv’,header = 

T,row.names = 1) 
df_train$futime<-as.numeric(as.character(df_train$futime))
df_train$fustatus<-as.numeric(as.character(df_train$fustatus))
str(df_train)
Final_GetFactors<-c("age","diagnosis","DNMT3A","IDH2","TP53")
BaSurv<-Surv(time = df_train$futime,event = df_train$fustatus)
fml<-as.formula(paste0(‘BaSurv~’,paste0(Final_GetFactors,collapse = "+")))
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dd<-datadist(df_train)
options(datadist="dd")
f<-cph(fml,x=T,y=T,surv=T,data = df_train)
validate(f,method = "boot",B=1000,dxy = T)
c_index<-rcorrcens(Surv(futime,fustatus)~predict(f),data = df_train)
index<-1-c_index[1]%>%round(.,3)
low95CI<-c(index-c_index[4]/2)%>%round(.,3)
up95CI<-c(index+c_index[4]/2)%>%round(.,3)
sink(‘c_index.txt’)
(cindex_df<-data.frame(c_index=index,low95CI=low95CI,up95CI=up95CI))
sink()

calibration analysis

f1<-cph(fml,x=T,y=T,surv = T,data = df_train,time.inc = 365)
install.packages("rms")
dev.off()
library(rms)
cal1<-calibrate(f1,
cmethod = "KM",
method = "boot",
u=365,
m=nrow(df_train)/3,
B=1000)
pdf(‘cal11.pdf’,width = 12,height = 12,onefile = F)
plot(cal1,
lwd=2,
lty=0,
conf.int=F,subtitles = FALSE,
riskdist = FALSE,par.corrected=list(col=‘white’),
errbar.col=c("#1159AC"),
xlab = "Nomogram-Predicted Probability",
ylab = "Actual survival",
xlim=c(0,1),ylim=c(0,1),
cex.lab=1.0,cex.axis=1,cex.main=1.2,cex.sub=0.6,add = F)
lines(cal1[,c(‘mean.predicted’,"KM")],
type = ‘b’,
lwd=3,
pch=16,
col=c("#548C00"))
mtext("")
box(lwd=2) 
abline(0,1,lty=3,
lwd=2,
col=c("gray66")
)
dev.new()
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f2<-cph(fml,x=T,y=T,surv = T,data = df_train,time.inc = 365*2)
cal2<-calibrate(f2,
cmethod = "KM",
method = "boot",
u=365*2,
m=nrow(df_train)/3,
B=1000)
plot(cal2,
lwd=2,
lty=0,
conf.int=F,subtitles = FALSE,
riskdist = FALSE,par.corrected=list(col=‘white’),
errbar.col=c("#1159AC"),
xlab = "Nomogram-Predicted Probability of 1-year OS",
ylab = "Actual 1-year OS(Proportion)",
cex.lab=1.0,cex.axis=1,cex.main=1.2,cex.sub=0.6,add = T)
lines(cal2[,c(‘mean.predicted’,"KM")],
type = ‘b’,
lwd=3,
pch=16,
col=c("#A23400"))
mtext("")
box(lwd=2) 
abline(0,1,lty=3,
lwd=4,
col=c("#224444")
)

f3<-cph(fml,x=T,y=T,surv = T,data = df_train,time.inc = 365*3)
cal3<-calibrate(f3,
cmethod = "KM",
method = "boot",
u=365*3,
m=nrow(df_train)/3,
B=1000)
plot(cal3,
lwd=2,
lty=0,
conf.int=F,subtitles = FALSE,
riskdist = FALSE,par.corrected=list(col=‘white’),
errbar.col=c("#1159AC"),
xlab = "Nomogram-Predicted Probability of 1-year OS",
ylab = "Actual 1-year OS(Proportion)",
cex.lab=1.0,cex.axis=1,cex.main=1.2,cex.sub=0.6,add = T)
lines(cal3[,c(‘mean.predicted’,"KM")],
type = ‘b’,
lwd=3,
pch=16,
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col=c("#2166AC"))
mtext("")
box(lwd=2) 
abline(0,1,lty=3,
lwd=2,
col=c("#224444")
)
legend("bottomright", bty = ‘n’,
legend=c("1-year", "2-year","3-year"),
col=c("#548C00", "#A23400","#2166AC"),
lwd=2,plot = T)

DCA curves 

install.packages("htmltools")
library(ggDCA)
library(foreign)
dca_train<-dca(f)
f<-cph(Surv(futime,fustatus)~age+diagnosis+DNMT3A+IDH2+TP53,df_train)
install.packages("ggprism")
library(ggprism)
ggplot(dca_train,linetype =F,lwd = 1.2)+
theme_classic()+
theme_prism(base_size =17)+
theme(legend.position="top")+
theme(axis.line.x=element_line(size=0.5))+
theme(axis.line.y=element_line(size=0.5))+
scale_x_continuous(
limits = c(0, 1),
guide = "prism_minor") +
theme(axis.ticks.x=element_line(size=0.5))+
theme(axis.ticks.y=element_line(size=0.5))+
theme(axis.text.x = element_text(face="plain",size=10))+
theme(axis.text.y = element_text(face="plain",size=10))+
scale_y_continuous(
limits = c(-0.03, 0.4),
guide = "prism_minor")+
scale_colour_prism(
palette = "candy_bright",
name = "Cylinders",
label = c("nomogram", "ALL", "None"))+
theme(legend.position = c(0.8,0.8))+
theme(text = element_text(size = 16))+
theme(axis.title = element_text(face="plain",size = 12))

Risk scores 

Final_GetFactors<-c("ELN","ELN")
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fml<-as.formula(paste0(‘BaSurv~’,paste0(Final_GetFactors,collapse = ‘+’)))
df_geo<-df_geo_ELN
MultiCox<-coxph(fml,data = df_geo)
MultiSum<-summary(MultiCox)
index.min<-MultiSum$coefficients[,1]
(index.min<-as.numeric(index.min))
signature<-as.matrix(subset(df_train,select = Final_GetFactors))%*%as.matrix(exp(index.min))
library(rms)
install.packages(‘ggrisk’)
library(ggrisk)
library(pheatmap)
library(ggplot2)
library(ggplotify)
library(cowplot)
summary(MultiCox,data=df_geo)
riskscore<-predict(MultiCox,type = "risk",df_geo)
names(riskscore)=rownames(df_geo)
write.csv(riskscore,"df_geo_ROC")
fp<-riskscore
phe<-outer
fp_dftrain=data.frame(patientid=1:length(fp),fp=as.numeric(sort(fp)))
fp_dftrain$riskgroup=ifelse(fp_dftrain$fp>=1.637178,’high’,’low’)
sur_dat=data.frame(patientid=1:length(fp),
time=phe[names(sort(fp)),’futime’],
event=phe[names(sort(fp)),’fustatus’])
sur_dat$event=ifelse(sur_dat$event==0,’alive’,’dead’)
sur_dat$event=factor(sur_dat$event,levels = c("dead","alive"))
exp_dat=dat[names(sort(fp)),(ncol(dat)-7):ncol(dat)]
library(ggplot2)
p1=ggplot(fp_dftrain,aes(x=patientid,y=fp))+geom_point(aes(color=riskgroup))+
scale_colour_manual(values = c("red3","blue3"))+
theme_bw()+labs(x="",y="Risk score")+
geom_vline(xintercept=sum(fp_dftrain$riskgroup=="low"),colour="black", linetype="dotted",linewidth=0.8)
p1
p2=ggplot(sur_dat,aes(x=patientid,y=time))+geom_point(aes(col=event))+theme_bw()+
scale_colour_manual(values = c("red3","blue3"))+
labs(x="Patient ID",y="Survival time(year)")+
geom_vline(xintercept=sum(fp_dftrain$riskgroup=="low"),colour="black", linetype="dotted",size=0.8)
p2
p1/p2
library(ggplot2)
library(survminer)
library(survival)
df_train_ROC <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train_ROC.

csv’,header = T) 
df_train_riskscore<-cbind(df_train,df_train_ROC[,3])
colnames(df_train_riskscore)[20]=‘riskscore’
write.csv(df_train_riskscore,’D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_train_
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riskscore.csv’)
df<-df_train_riskscore
df$riskscore_by2<-ifelse(df$riskscore>median(df$riskscore),’High-score’,’Low-score’)
fit<-survfit(Surv(futime/30,fustatus)~riskscore_by2,data = df)
p<-ggsurvplot(fit,conf.int = T,pval = T,risk.table = T,
legend.labs=c(‘High-score’,’Low-score’),
legend.title=‘‘,palette = c("red3","blue3"),
risk.table.height=0.3,
break.time.by=12,xlab="Time(months)")

elderly vs young 

train young

df_geo_riskscore <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_geo_
riskscore.csv’,header = T,row.names = 1) 

df_geo<-rbind(df_train,df_validation)
df_geo_ROC<-rbind(df_train_ROC,df_validation_ROC)
df_geo <- read.csv(‘D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\Total3.csv’,header = T,row.names = 1) 
df_geo_riskscore<-cbind(df_geo,df_geo_ROC[,3])
colnames(df_geo_riskscore)[20]=‘riskscore’
write.csv(df_geo_riskscore,’D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\StepV_Compare_Results4seed43\\df_geo_

riskscore.csv’)
df<-df_geo_riskscore
df_young$riskscore_by2<-ifelse(df_young$riskscore>median(df_young$riskscore),’High-score’,’Low-score’)
fit<-survfit(Surv(futime/30,fustatus)~riskscore_by2,data = df_young)
p_young<-ggsurvplot(fit,conf.int = T,pval = T,risk.table = T,
legend.labs=c(‘High-score’,’Low-score’),
legend.title=‘‘,palette = c("red3","blue3"),
risk.table.height=0.3,title="Young AML",
break.time.by=12,xlab="Time(months)")
p_young

df_young<-df[df$age=="adult",]

model comparison 

library(ggDCA)
library(foreign)
dca_train<-dca(f)
df_outer<-read.csv("D:\\bioinformatics\\Level 4\\L85_Codes\\work1\\outer.csv",header = T, row.names = 1)
dd<-datadist(df_outer)
options(datadist="dd")
f<-cph(Surv(futime,fustatus)~age+diagnosis+DNMT3A+IDH2+TP53,df_outer)
f1<-cph(Surv(futime,fustatus)~ELN+ELN,df_outer)
install.packages("ggprism")
library(ggprism)
dt=dca(f,f1)
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ggplot(dt,linetype =F,lwd = 1.2)+
theme_classic()+
theme_prism(base_size =17)+
theme(legend.position="top")+
theme(axis.line.x=element_line(size=0.5))+
theme(axis.line.y=element_line(size=0.5))+
scale_x_continuous(
limits = c(0, 1),
guide = "prism_minor") +
theme(axis.ticks.x=element_line(size=0.5))+
theme(axis.ticks.y=element_line(size=0.5))+
theme(axis.text.x = element_text(face="plain",size=10))+
theme(axis.text.y = element_text(face="plain",size=10))+
scale_y_continuous(
limits = c(-0.03, 0.4),
guide = "prism_minor")+
scale_colour_prism(
palette = "candy_bright",
name = "Cylinders",
label = c("nomogram","ELN","ALL","None"))+
theme(legend.position = c(0.8,0.8))+
theme(text = element_text(size = 16))+
theme(axis.title = element_text(face="plain",size = 12))


