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Targeted mitogen-activated protein kinase inhibitor 
(MAPKi) therapies have had limited efficacy in patients 
with v-Raf murine sarcoma viral oncogene homolog B 
(BRAF) -mutant, unresectable or metastatic melanomas 
and tumor relapse is almost inevitable (1). There has been 
a great deal of studies dissecting heterogeneous molecular 
mechanisms of acquired resistance to mutant BRAF-targeted 
therapies. For example, up-regulation of mitochondrial 
biogenesis and altered tumor bioenergetics (2), increased 
phosphorylation of protein kinase B (AKT) (3), and 
selection for subpopulations expressing epidermal growth 
factor receptor (EGFR) (4) are mechanisms responsible for 
acquired resistance. Some approaches to overcome acquired 
drug resistance are combining MAPKi with immune 
checkpoint blockade inhibitor targeting programmed cell 
death protein 1 (PD-1) (5), targeting both the MAPK and 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/
AKT pathway (6), and targeting mitochondrial biogenesis 
through inhibition of tumor necrosis factor receptor-
associated protein 1 (TRAP1) (2). However, much work 
needs to be done in investigating and therapeutically 
preventing the emergence of the initial intrinsic resistance 
to MAPKi.

Several studies have implicated microphthalmia-associated 
transcription factor (MITF) as a key driver of intrinsic drug 
resistance. Drug-sensitivity to MAPKi is correlated with 
expression and activity of MITF and inversely correlates 
with nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) and AXL receptor tyrosine kinase (AXL) 
expression (7). A MITF-low/AXL-high/drug-resistance 
phenotype is common in BRAF- and neuroblastoma RAS 

viral oncogene homolog (NRAS)-mutant melanoma cell 
lines (8). Smith and colleagues built upon these and other 
MITF studies as a driver of intrinsic drug resistance, which 
is reversible and non-mutational (9). MITF and paired box 
3 (PAX3) are concurrently up-regulated as an adaptive 
response to MAPKi and ultimately drive initial intrinsic 
resistance. This result was consistent with PAX3’s known 
function as a transcriptional regulator of MITF (10). The 
authors hypothesized that inhibiting MITF and PAX3 would 
improve MAPKi efficacy and identified nelfinavir mesylate, 
an HIV-1 protease inhibitor, as a potent inhibitor of those 
genes in a drug screen (Figure 1).

Nelfinavir inhibited MITF and PAX3 expression by up-
regulating the mothers against decapentaplegic homolog  
2/mothers against decapentaplegic homolog 4/Ski 
(SMAD2/SMAD4/SKI) repressor complex. Nelfinavir also 
increased phosphorylated SMAD2 and SKI repressor bound 
to PAX3. Suppression of MITF and PAX3 by nelfinavir 
improved the efficacy of MAPKi by inhibiting tumor 
growth to a greater degree. Ectopic overexpression of MITF 
and PAX3 rescued the tumor’s survival ability to MAPKi. 
Mechanistically, mitogen-activated protein kinase kinase 
(MEK) suppressed PAX3 through SKI, which stimulated 
SMAD2 to repress the PAX3 promoter. 

Nelfinavir sensitized not only BRAF- but also NRAS-
mutant melanoma cells to MAPKi. Interestingly, even in 
melanoma cells without up-regulated MITF, the improved 
sensitivity to MAPKi through nelfinavir was still effective. This 
combination therapy is especially relevant for patients with 
NRAS-mutant melanomas, who have markedly worse clinical 
prognosis and no FDA approved targeted therapies (11). The 
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increase in expression of MITF in NRAS-mutant melanoma 
cells upon MEK inhibition has been shown previously (12). 
Thus, Nelfinavir may also be effective in combination use 
with the MEK1/2 inhibitor, MEK162, to treat NRAS-mutant 
melanomas (13).

MITF also directly regulates peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PPARGC1α) 
and drives oxidative phosphorylation (14). Suppression 
of MITF with nelfinivir may synergize with MAPKi and 
inhibit aberrant oxidative metabolism, which is a significant 
MAPKi-acquired resistance mechanism. Altered tumor 
metabolism and bioenergetics are important considerations 
when assessing the full effects of new combinatorial 
therapies. 

Drug repositioning, or repurposing an existing drug for 
a new usage, has become increasingly recognized and can 
provide a new source of potent inhibitors in melanoma 
therapy. Another example of drug repositioning is riluzole, 
used in treatment of amyotropic lateral sclerosis, which can 
inhibit cell proliferation of metabotropic glutamate receptor 
1 (GRM1)-expressing melanoma cells (15). Using existing 
drug libraries previously unexplored for anti-tumor activity 
can bear new fruits of discovery.

Taken together, Smith and colleagues identify a clinically 
relevant combinatorial therapy through drug repositioning 
that could improve initial response to targeted MAPKi 

therapy. MITF repression has been linked to increased 
cell invasion and metastasis (16). Thus, there needs to be 
further studies to fully examine the nelfinavir and MAPKi 
combination. Nonetheless, this study is an important step 
in discovering new personalizable combinatorial treatments 
that could improve response to targeted therapies and 
perhaps even immunotherapies.
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Figure 1 Improving efficacy of MAPKi with nelfinavir. MAPKi such as BRAF and MEK inhibitors lead to increased MITF and PAX3 
expression. A small molecule screen against MITF and PAX3 identified nelfinavir as the most potent inhibitor. Nelfinavir in combination 
with MAPKi leads to increased cell death and could improve clinical response to MAPKi therapies.
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aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. 
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