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Introduction

Background

Surgical resection is the unique treatment option for patients 
with gastric cancer (1). Postoperative adjuvant chemotherapy 
is widely used in clinical practice, greatly improving the 
prognosis of patients (2-4). However, gastric cancer frequently 

progresses to an advanced or metastatic stage due to the lack 
of clinical manifestations (5). Distant spread of tumor cells is 
the most common recurrence pattern in patients with gastric 
cancer after surgery (6). Therefore, it is particularly vital 
to elucidate the molecular mechanism that triggers gastric 
cancer metastasis, which may provide a theoretical basis for 
the development of novel targeted therapies.
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Rationale and knowledge gap

In gastric cancer and other cancers, component remodeling 
of the extracellular matrix (ECM) plays a crucial role 
in the regulation of tumor progression (7-12). FKBP10 
is localized in the coarse endoplasmic reticulum and 
involved in collagen synthesis of organisms via biochemical 
processes (13). Dysfunction of FKBP10 affects the 
synthesis and secretion of ECM proteins, mediating the 
occurrence of diseases, including osteogenesis imperfect 
and idiopathic pulmonary fibrosis (IPF) (14-17). In 
addition, in some cancers, such as melanoma, lung cancer, 
renal cell carcinoma, colorectal cancer, and even gastric 
cancer, upregulation of FKBP10 has been observed and is 
intimately linked to malignant phenotypes of the tumor 
(18-22). Famously, the tumor microenvironment (TME) 
has become a critical element in determining the phenotype 
of cancer and affecting the effect of treatment (23-25). 
Nevertheless, the expression localization of FKBP10 in 
the TME of gastric cancer, as well as its corresponding 
functions, still remain largely unknown.

Objective

Emerging techniques and advances allow us to elucidate 
the causes and dysfunctional effects of FKBP10 aberrantly 
expressed in the TME of primary and metastatic gastric 
cancer (26). Herein, we found that FKBP10 promoted 

the invasion and metastasis of gastric cancer cells. To 
further illustrate the importance of the FKBP10 gene in 
gastric cancer progression, we combined public single-
cell sequencing data for analysis. Unexpectedly, FKBP10 
was concentrated in cancer-associated fibroblasts (CAFs), 
especially in inflammatory CAFs (iCAFs). The FKBP10-
coexpressed genes (FCGs) in iCAFs were calculated, and 
the genes of the corresponding modules were analyzed 
by functional enrichment to evaluate the specific role of 
FCGs in the TME. Finally, based on bulk RNA sequencing 
data, we identified two distinct clusters using nine FCGs 
that correlated with patient prognosis and assessed the 
potential immunotherapeutic significance of FCGs through 
a series of bioinformatics analyses. We present this article in 
accordance with the MDAR reporting checklist (available 
at https:/tcr.amegroups.com/article/view/10.21037/tcr-23-
1484/rc).

Methods

Cell culture and transfection

The gastric cancer cell lines (AGS and HGC-27) utilized 
in our study were purchased from Procell Biotech (Wuhan, 
China). Cells were routinely cultured in Dulbecco’s 
modified Eagle medium (DMEM; Wisent, Nanjing, 
China) at 37 ℃ in 5% CO2, supplemented with 10% fetal 
bovine serum (FBS; Wisent) and 100 U/mL penicillin 
streptomycin (Wisent). The small interfering RNA 
(siRNA) targeting FKBP10 was obtained from Sangon 
Biotech (Shanghai, China) with the sequences as follows: 
5'-CCACACCUACAAUACCUAUAUTT-3'. And the 
siRNA targeting negative control (siNC) was used as 
the control group. When the cells in the six-well plate 
reached 80% confluence, we transfected according to the 
manufacturer’s protocol.

RNA extract and quantitative real-time polymerase chain 
reaction (qRT-PCR)

Total cellular RNA was isolated by cell/tissue total RNA 
isolation kit (Vazyme, Nanjing, China). cDNA was 
subsequently obtained using HiScript III RT SuperMix 
for qPCR (Vazyme). Finally, ChamQ Universal SYBR 
qPCR Master Mix (Vazyme) was used as a fluorescent dye 
for amplification. The specific primers were as follows: 
FKBP10-F, 5 ' -GTTCACCTCGCATGACTAC-3' ; 
FKBP10-R,  5 ' -CCTCTCTCCCACACACAT-3' ; 
ACTB-F, 5'-TGGCACCCAGCACAATGAA-3'; ACTB-R, 
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5'-CTAAGTCATAGTCCGCCTAGAAGCA-3'. The 
relative expression levels of messenger RNA (mRNA) were 
normalized to ACTB.

Scratch assay and invasion assay

Transwell chambers and Matrigel were purchased from 
Corning to evaluate the migration and invasion abilities 
of gastric cancer cells. Cells were diluted with serum-free 
medium, and then, 100 μL single-cell suspension (5×105 cells) 
was planted into the upper chamber, and 600 μL medium 
containing 20% FBS was added to the lower chamber. 
24 hours later, cells were fixed with pure methanol for  
20 minutes and stained with 0.1% crystal violet for 15 minutes.  
Pictures were obtained by microscope and the number of cells 
invaded or metastasized were assessed.

Cells with stable condition were planted into six-
well plates and scratched with a 200 μL tip after the cell 
confluency reached 90%. After washing three times with 
phosphate buffered solution (PBS), the cells were cultured 
in a medium containing 2% serum for 24 hours, then the 
scratch width was observed under the microscope.

Processing and analysis of single-cell sequencing data

The GSE163558 (26) dataset from the Gene Expression 
Omnibus (GEO) (https://ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE163558) was retrieved. Single-cell 
transcriptome data from six gastric cancer patients with 
nine samples were selected, incorporating three primary 
tumor samples (PT1, PT2, and PT3), two liver metastasis 
samples (Li1 and Li2), two lymph nodes metastasis samples 
(LN1 and LN2), one peritoneal metastasis sample (P1), 
and one ovary metastasis sample (O1). Downstream 
principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) analysis were 
performed by the Seurat R package (version 4.2.0). The 
cell filtration criteria were set to cells with <200 genes, 
>5,000 genes, or >20% mitochondrial genes, resulting in 
40,667 cells. After normalizing the gene expression matrix 
using “LogNormalize” method, 2,000 hypervariable genes 
(HVGs) were identified through the “FindVariableFeatures” 
function of the Seurat package. The appropriate principal 
components (PCs) were determined by the functions of 
“JackStraw” and “ScoreJackStraw”. Eventually, 20 PCs 
were used for subsequent analysis. The “FindClusters” 
and “FindAllMarkers” functions of Seurat divided the cells 
into 21 clusters and confirmed the marker genes for each 

cluster. Based on previous literature reports, cell types were 
identified via the marker genes in each cluster (26-28). 
The “scCustomize” package was applied to visualize the 
expression of FKBP10 in the TME. In addition, we further 
validated the expression of FKBP10 using the paired tumor-
adjacent samples from nine patients in the GSE183904 
dataset obtained from the GEO database, following the 
preprocessing steps as described (28). We utilized the 
“monocle3” package to perform pseudotime trajectory 
analysis of the fibroblasts in PT2 samples to observe 
the expression changes of FKBP10. By conducting the 
Wilcoxon rank-sum test, we compared the iCAFs of patients 
with metastatic tumor and patients with primary tumor, and 
further identified differentially expressed genes (DEGs). In 
order to identify statistically significant DEGs in the field 
of statistics, a cutoff point of Bonferroni-corrected p-values 
less than 0.05 was utilized. To elucidate the biological 
effects of iCAFs in tumor progression, we performed gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis on these DEGs 
using the “clusterProfiler” package. The “hdWGCNA” 
package was used to establish FCG networks and functional 
modules associated with iCAFs in PT2 samples.

Bulk sequencing data acquisition and investigation

Bulk RNA sequencing data and clinical data of stomach 
adenocarcinoma from The Cancer Genome Atlas (TCGA-
STAD; https://portal.gdc.cancer.gov/) were acquired 
through the “TCGAbiolinks” package. After the non-
tumor samples were rejected, 346 gastric cancer samples 
were retained according to the overall survival (OS) time 
≥10 days. Kaplan-Meier analysis of OS with FCGs from 
single-cell data results was performed by “survival” and 
“survminer” packages, resulting in nine prognosis-related 
FCGs. Based on the above nine FCG expression matrices, 
346 samples were divided into two distinct clusters using 
non-negative matrix factorization (“NMF” package). 
The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm was applied to evaluate differences in immune 
checkpoint blockade (ICB) therapy responses among the 
two clusters (29). A single-sample gene set enrichment 
analysis (ssGSEA) was introduced via “GSVA” package to 
measure the infiltration abundance of 28 immune cell types 
in the TME between the two clusters. After calculating 
the DEGs of the two clusters by “DESeq2” package, 
GSEA for GO and KEGG terms were conducted using 
“clusterProfiler” package. The University of ALabama at 

https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163558
https://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163558
https://portal.gdc.cancer.gov/
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Birmingham CANcer data analysis Portal (https://ualcan.
path.uab.edu/index.html) (UALCAN) was used to analyze 
FKBP10 in different types of gastric cancer samples.

Statistical analysis

All analyses were implemented by R software package 
(version 4.2.1) and GraphPad Prism 9.1.0. Student’s t-test 
and one-way analysis of variance (ANOVA) were applied to 
compare the data from different groups.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

FKBP10 promotes invasion and migration of gastric 
cancer cells

Our previous study had shown that FKBP10 was highly 
expressed in gastric cancer tissue and was connected with 

a poor prognosis (19). To further clarify the effects of 
FKBP10 on tumor biological behavior, we conducted 
an experimental analysis. The knockdown efficiency of 
FKBP10 was verified by RT-qPCR (Figure 1A). The 
transwell assay demonstrated that the migration and 
invasion abilities of HGC-27 and AGS cells decreased 
apparently with the knockdown of FKBP10 (Figure 1B). 
Scratch assays of HGC-27 and AGS cells revealed that the 
wound healing rate in the siFKBP10 group was significantly 
reduced compared with the control group (Figure 1C,1D). 
These results implied the catalytic role of FKBP10 in tumor 
metastasis.

Single-cell atlas of primary and metastatic gastric cancer

In order to further elucidate the cause of abnormally high 
expression of FKBP10 in tumor tissues and the mechanism 
of regulating tumor invasion and migration, we mined 
single-cell transcriptome data for subsequent analysis. 
Based on the single-cell RNA sequencing (scRNA-seq) 
dataset of GSE163558, the gene expression profiles of 
51308 cells were obtained from nine gastric cancer samples, 
including three primary tumor samples (PT1, PT2, and 
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Figure 1 Effect of knockdown FKBP10 on invasion and metastasis of gastric cancer cells. (A) Expression of FKBP10 in cells was measured 
using qRT-PCR. (B) Results of transwell assay in HGC-27 and AGS cells (cells were stained with 0.1% crystal violet; image magnification: 
100×). (C) Wound healing rate at 24 hours for each group of HGC-27 cells (image magnification: 200×). (D) Wound healing rate at 24 hours 
for each group of AGS cells (image magnification: 200×). *, P<0.05; ****, P<0.0001. siNC, siRNA targeting negative control; siRNA, small 
interfering RNA; qRT-PCR, quantitative real-time polymerase chain reaction.
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PT3) containing 15,729 cells and six metastatic samples 
containing 35,579 cells. After quality control, we extracted 
40,667 cells, of which 12,014 cells originated from primary 
tumor samples and another 28,653 cells from metastatic 
samples. The characteristics of each sample after filtration 
are shown in Figure 2A. nFeature_RNA represents the total 
number of genes, nCount_RNA represents the number 
of RNA expressed, the more nCount_RNA, the higher 
nFeature_RNA, and the correlation coefficient was 0.83, 
which indicates that our samples are qualified and available 
(Figure 2B). Then, we obtained highly variable genes 
(HVGs) that expressed significant differences between 
cells, and the top ten genes are demonstrated in Figure 
2C. IGLC2, IGHA1, and IGKC are the top three HVGs 
responsible for encoding allogeneic immunoglobulins (30). 
PCA discerned all 20 PCs and visualized them through 
ElbowPlot (Figure 2D). Twenty-one clusters were identified 
using 20 PCs, and the top five marker genes are exhibited 
in Figure 2E. After removing the fifth low-quality cluster, 
these 20 clusters were annotated into ten cell subsets 

based on previous research (Figure 3A). There was distinct 
heterogeneity in the proportion of cell subsets among 
samples (Figure 3B). Bubble chart was used to show the 
expression levels of cell type marker genes (Figure 3C). The 
composition ratio of the intergroup cell cluster is shown 
in Figure 3D. Figure 3E shows the proportion of each cell 
cluster in an independent sample. Compared with the 
primary tumor group, the T cell cluster and B cell cluster in 
the metastatic tumor group increased significantly, while the 
myeloid cell cluster and epithelial cell cluster were clearly 
reduced.

Expression and function of FKBP10 in the TME

FKBP10 was principally expressed in iCAFs, myo-
CAFs (mCAFs), and Edothelial, with specificity between 
different groups (Figure 4A,4B). In primary tumor samples, 
FKBP10 expression was mainly detected in PT2 sample, 
while in metastatic tumor samples, FKBP10 expression 
was primarily identified in O1 sample (Figure 4C). In 
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addition, to further validate the expression pattern of 
FKBP10 in the TME, we performed cell annotation on the 
GSE183904 dataset (Figure 4D) and found that FKBP10 
was predominantly highly expressed on the iCAFs of tumor 
samples (Figure 4E). Due to the small number of cells in 
the O1 sample, which was prone to bias, we subsequently 
extracted 317 iCAFs and 111 mCAFs from the PT2 sample 
to perform pseudo-time analysis. Figure 4F,4G depicted the 
developmental trajectories of fibroblasts based on cell-type 
and pseudotime, respectively. FKBP10 was stably expressed 
during the developmental trajectory of iCAFs (Figure 4H).

Since FKBP10 was primarily expressed in iCAFs, we 
explored the DEGs between primary tumor samples and 
metastatic tumor samples in iCAFs (table available at 
https://cdn.amegroups.cn/static/public/tcr-23-1484-1.xlsx). 

By applying GO and KEGG enrichment analysis to these 
DEGs (Figure 4I), we discovered that iCAFs were mainly 
involved in biological processes such as ECM organization 
(GO:0030198), focal adhesion (GO:0005925, hsa04510), 
CXCR chemokine receptor binding (GO:0045236), IL-17 
signaling pathway (hsa04657), and TNF signaling pathway 
(hsa04668). To further explore the potential function of 
FKBP10 in the TME, we performed high-dimensional 
weighted gene co-expression network analysis (hdWGCNA) 
of iCAFs in PT2 samples, constructed a co-expression 
network, co-expression module (Figure 5A). Then, the 
eigengene-based connectivity (kME) was calculated to 
determine the hub genes within each module (Figure 
5B). After identifying FKBP10 as one of the key genes 
in iCAFs-M16, we proceeded to analyze this module. As 

https://cdn.amegroups.cn/static/public/tcr-23-1484-1.xlsx
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Figure 4 The expression distribution of FKBP10. (A) The general distribution of FKBP10 expression. Each dot represented a cell, and 
the color represented the level of expression. (B) Comparison of FKBP10 expression distribution in primary and metastatic tumors. (C) 
FKBP10 expression distribution in each sample. (D) t-SNE analysis of GSE183904. Different cell types were labeled with unparalleled 
colors. (E) In the GSE183904 dataset, the expression distribution of FKBP10 was compared between tumor samples and normal samples. 
(F) Developmental trajectories of fibroblasts from PT2 sample based on cell-type. (G) Developmental trajectories of fibroblasts from PT2 
sample based on pseudo-time. (H) Alterations of FKBP10 expression in iCAFs developmental trajectory. (I) Radar plots for the GO and 
KEGG enrichment analysis of iCAFs between primary tumors and metastatic tumors. t-SNE, t-distributed stochastic neighbor embedding; 
NK, natural killer; iCAF, inflammatory cancer-associated fibroblast; mCAFs, myo-cancer-associated fibroblasts; UMAP, uniform manifold 
approximation and projection; BP, biological process; CC, cellular component; MF, molecular function; GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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Figure 5 hdWGCNA analysis of iCAFs in PT2 sample. (A) Dendrogram of 28 colored modules. (B) Visualization of the top 10 hub genes 
based on kME. (C) Violin plot of correlation between iCAFs-M16 and cell types. (D) Network diagram of the top 25 FCGs in iCAFs-M16. 
(E) Histogram of KEGG enrichment analysis of FCGs in iCAFs-M16. (F) Histogram of GO enrichment analysis of FCGs in iCAFs-M16. 
iCAF, inflammatory cancer-associated fibroblast; hdWGCNA, high-dimensional weighted gene co-expression network analysis; kME, 
eigengene-based connectivity; hMEs, harmonized module eigengenes; NK, natural killer; mCAFs, myo-cancer-associated fibroblasts; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology; FCG, FKBP10-coexpressed gene.
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shown in Figure 5C, epithelial cells and proliferative cells 
exhibited higher harmonized module eigengenes (hMEs). 
Figure 5D illustrates the co-expression network of the top 
25 FCGs of kME in iCAFs-M16. Finally, GO and KEGG 
enrichment analysis on the 86 hub genes (table available 
at https://cdn.amegroups.cn/static/public/tcr-23-1484-
1.xlsx) of iCAFs-M16 were carried out. KEGG pathway 
analysis revealed enrichment of protein processing in the 
endoplasmic reticulum, focal adhesion, and pathways in 
cancer (Figure 5E). Enriched in these GO terms were 
connected with the ECM (Figure 5F), including collagen 
fibril organization (GO:0030199), ECM organization 
(GO:0030198), collagen-containing ECM (GO:0062023), 
dolichyl-diphosphooligosaccharide-protein glycotransferase 
activity (GO:0004579).

Identification of gastric cancer subtypes based on single-cell 
data results

Then, we selected 86 hub genes (Table S1) from iCAFs-M16 
and performed Kaplan-Meier analysis, and obtained nine 
genes, namely, FKBP10, BCAT1, FNDC3B, SEC23A, 
CCND1, INHBA, ADAM10, TCEAL9, and COL5A2 (Table 
S2). Based on the expression of these genes, the TCGA-
STAD cohort (n=346) was divided into two clusters (Figure 
6A) by NMF with the appropriate rank value of 2. Kaplan-
Meier analysis demonstrated that patients in cluster 2 had 
a worse prognosis than those in cluster 1 (Figure 6B). The 
TIDE algorithm was applied to predict the immunotherapy 
response effect of patients in clusters, and the proportion of 
responders in cluster 2 was lower than cluster 1 (Figure 6C). 
Figure 6D reveals that the TIDE score, Dysfunction score, 
exclusion score in cluster 2 were significantly increased, 
indicating that the immune escape potential of patients 
in cluster 2 was elevated, and the efficacy of immune 
checkpoint inhibitors may be terrible. Meanwhile, the 
CAF score in cluster 2 was distinctly multiplied, which was 
consistent with single-cell sequencing results, implying that 
FKBP10 and FCGs mainly played a role in CAFs. Figure 6E 
shows the difference distribution of 28 immune cell types 
between the two distinct clusters. Cluster 2 had significantly 
lower T cell infiltration abundance (including activated 
CD4 T cells, activated CD8 T cells, central memory CD4 
T cells) compared to cluster 1, whereas immunosuppressive 
cell subsets were obviously evaluated [including regulatory 
T cells, macrophages, myeloid-derived suppressor cells 
(MDSCs)]. To confirm the gene expression signatures 
between the two clusters, we explored DEGs with a total of 

585 up-regulated and 45 down-regulated DEGs preserved 
(table available at https://cdn.amegroups.cn/static/public/
tcr-23-1484-2.xlsx). Besides, we conducted GSEA on 
these DEGs and visualized them with a ridge map, which 
was basically consistent with the results of single-cell 
sequencing data analysis, principally enriched in the ECM-
related pathways (Figure 6F). Ultimately, by utilizing the 
corresponding clinical data (table available at https://cdn.
amegroups.cn/static/public/tcr-23-1484-3.xlsx) and gene 
expression data, we had further validated the expression 
of FKBP10 in tumors. Consistent with previous findings, 
FKBP10 exhibited high expression in various types of tumor 
tissues (Figure S1).

Discussion

Key findings

The TME is a dynamic system coordinated by cellular 
communication, which is an indispensable component to 
promote tumor progression and metastasis (24). While 
studies have demonstrated that targeting FKBP10 may be 
a prospective strategy for the treatment of gastric cancer 
(31,32), our research concentrates on exploring the function 
of FKBP10 in the TME. In the present study, we found 
that FKBP10 was involved in the invasion and migration 
of gastric cancer. FKBP10 was predominantly expressed in 
CAFs, especially in iCAFs. Importantly, FKBP10 and FCGs 
may guide cancer cells to their surroundings by mediating 
ECM remodeling, particularly through influencing collagen 
synthesis and secretion. Eventually, the NMF algorithm 
based on nine FCGs (FKBP10, BCAT1, FNDC3B, SEC23A, 
CCND1, INHBA, ADAM10, TCEAL9, and COL5A2) 
achieved satisfactory clustering effect, and significantly 
disparate immune activity and immunotherapy response in 
the two clusters were observed.

Strengths and limitations & comparison with similar 
researches

Incorporating our previous research, there is substantial 
evidence that FKBP10 is abnormally expressed in many 
cancers and affects the malignant biological behavior of 
cancer cells (18-22). Consistent with these results, our 
experiment manifested that knockdown FKBP10 inhibited 
the invasion and metastasis of gastric cancer cells in vitro. 
Admittedly, the TME is composed of a variety of cell types, 
including cancer cells, immune cells (33,34), fibroblasts (35),  

https://cdn.amegroups.cn/static/public/tcr-23-1484-1.xlsx
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tissue-resident cells (36), etc. Unlike existing studies, 
we attempted to hunt for the cell-specific expression of 
FKBP10 in the TME, hoping to decipher the ability of 
FKBP10 to mediate cancer cell invasion and migration. 
Remarkedly, FKBP10 is principally localized in CAFs, 
especially iCAFs, which is not only in accord with the 
literature reports (17,37), but also renders vital clues for 
the function of FKBP10 in the TME. The CAFs that 
express α-smooth-muscle-actin (αSMA) is an indispensable 
element of the tumor stroma in the TME (38,39). Studies 
have indicated that stroma contributes to the progression 
of tumors, and when tissues are exposed to the stromal 
environment of chronic inflammation for a lengthy term, 
the incidence of tumors increases accordingly, especially 
Helicobacter pylori gastritis connected with gastric cancer 
(40,41). What can be determined is that CAFs are engaged 
in the mutual communication between cancer and stroma, 
supporting tumor formation, progression, and metastasis 
(42-44). Compared with normal fibroblasts, CAFs isolated 
from cancer tissues accelerate angiogenesis (45), facilitate 
the transformation of non-tumorigenic epithelial cells into 
tumorigenic cells (46), and compel cancer cells to invade 
via heterogeneous cell-cell interactions (47). Consequently, 
we hypothesize that specific expression of FKBP10 in CAFs 
may actuate tumor invasion and migration through multiple 
pathways.

As a key component of the TME, the ECM not only 
supports cell adhesion and migration, but also regulates 
angiogenesis and immune factor activation by integrin 
family signaling (48,49). Excessive synthesis and deposition 
of ECM proteins by CAFs is the characteristic of cancer-
associated stroma (42). In the current study, we unexpectedly 
found that FKBP10 and FCGs may affect collagen synthesis 
and secretion by iCAFs, which was the first exploration 
in the field of TME. Previous researches demonstrated 
that the deletion of FKBP10 in pulmonary fibroblasts, 
dermal fibroblasts, and bone could diminish cross-linking 
and secretion of collagen, which offers a potent proof for 
our findings (13-17). There is accumulating evidence that 
collagen is overexpressed in a variety of cancers and has 
a profound impact on tumor progression. Increasing the 
length of collagen can prolong the migration distance of 
breast cancer cells and fortify the hardness of the ECM, 
thereby accelerating cancer invasion (50). In squamous 
cell carcinoma of the head and neck, adenocarcinoma of 
the esophagus, and colorectal cancer, extended collagen 
fibers are associated with undesirable clinical outcome (51). 
Additionally, a recent study manifested that increases in the 

density, length, and width of collagen fibers could predict 
adverse outcomes in patients with gastric cancer (8). To sum 
up, we provide a novel perspective on how iCAF-expressed 
FKBP10 performs its biological function in the TME.

Explanations of findings & implications and actions needed

A synthetical understanding of the interactions between 
cancer cells and the immune system could contribute 
to the exploitation of innovative strategies for cancer 
treatment (52-54). Evading immune surveillance is one 
of the emerging features of cancer (55). On the one hand, 
when normal cells develop into malignant cells, cancer cells 
continue to evade anticancer immune responses and form 
tumors, on the other hand, immune surveillance by immune 
cells within the TME enables the immune system to 
identify potentially hazardous tumors in the body to impose 
restrictions on the occurrence and progression of tumors. 
To interrupt immune evasion, agents targeting ICB have 
revealed considerable clinical gains in metastatic melanoma, 
non-small cell lung cancer, and metastatic kidney cancer 
(56-58). At the same time, several prospective trials have 
demonstrated that ICB therapy provides an unprecedented 
survival benefit for patients with advanced gastric cancer 
(59-62). Although the efficacy of ICB therapy has been 
recognized, limited response rates have been found in 
clinical applications, which means that the identification 
of biomarkers that can predict the effectiveness of 
immunotherapy in cancer patients is imminent. In this 
study, we inputted nine prognosis-related FCGs (FKBP10, 
BCAT1, FNDC3B, SEC23A, CCND1, INHBA, ADAM10, 
TCEAL9, and COL5A2) obtained from hdWGCNA 
into the NMF algorithm, identified two clusters in the 
TCGA-STAD cohort, and the ICB therapy response ratio 
of cluster 1 was predicted by the TIDE algorithm to be 
higher. The function of several FCGs (FKBP10, BCAT1, 
CCND1, INHBA, ADAM10, and COL5A2) in gastric cancer 
progression has been confirmed (63-67). This is the first 
time to exposit these FCGs and immunotherapy in gastric 
cancer, which provides an integrated index for predicting 
the efficacy of ICB therapy in gastric cancer patients.

Conclusions

In brief, by integrating single-cell sequencing data with 
bulk sequencing data, our study reveals the characteristics 
and function of FKBP10 in the TME, promotes the 
understanding of cell-specific FKBP10-dependent 
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biological alterations in human gastric cancer, and renders 
available clues to guide ICB therapy decisions.
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Supplementary

Figure S1 FKBP10 expression in various types of tumor tissues. *, P<0.05; **, P<0.01; ****, P<0.0001. TCGA-STAD, stomach 
adenocarcinoma from The Cancer Genome Atlas; NOS, no otherwise specified.

Table S1 Eighty-six hub genes of iCAFs-M16

Gene name Module kME

SSNA1 iCAFs-M16 0.109182

DPP8 iCAFs-M16 0.129979

SRP68 iCAFs-M16 0.141757

RGS10 iCAFs-M16 0.141866

DLGAP4 iCAFs-M16 0.145682

IDH1 iCAFs-M16 0.147279

HMGCR iCAFs-M16 0.156192

NAPG iCAFs-M16 0.164184

LIMK2 iCAFs-M16 0.165105

RNF14 iCAFs-M16 0.177171

UCK2 iCAFs-M16 0.177586

MINPP1 iCAFs-M16 0.178921

TLDC1 iCAFs-M16 0.181453

TOR1A iCAFs-M16 0.18753

ZBED1 iCAFs-M16 0.188609

PGM2L1 iCAFs-M16 0.189402

RAB12 iCAFs-M16 0.190296

TCEAL9 iCAFs-M16 0.193872

XPOT iCAFs-M16 0.19428

Table S1 (continued)

Table S1 (continued)

Gene name Module kME

GNAI2 iCAFs-M16 0.198239

S100A4 iCAFs-M16 0.209105

AP3D1 iCAFs-M16 0.209131

SMAD4 iCAFs-M16 0.216049

CCND1 iCAFs-M16 0.222519

CDR2L iCAFs-M16 0.22644

COPB2 iCAFs-M16 0.231315

HSP90B1 iCAFs-M16 0.23823

UBP1 iCAFs-M16 0.23855

EDEM1 iCAFs-M16 0.252363

SYVN1 iCAFs-M16 0.255122

ADAM10 iCAFs-M16 0.257047

KCTD10 iCAFs-M16 0.257383

ARPC4 iCAFs-M16 0.257661

STRAP iCAFs-M16 0.257788

AMPD2 iCAFs-M16 0.258725

TSKU iCAFs-M16 0.261398

PDIA4 iCAFs-M16 0.264308

Table S1 (continued)
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Table S1 (continued)

Gene name Module kME

RAP1B iCAFs-M16 0.267824

YKT6 iCAFs-M16 0.271487

SLC39A6 iCAFs-M16 0.276366

IBTK iCAFs-M16 0.277789

IMPAD1 iCAFs-M16 0.283146

CHPF2 iCAFs-M16 0.285215

RPN2 iCAFs-M16 0.295929

SLC2A10 iCAFs-M16 0.299124

TANC1 iCAFs-M16 0.302261

RPN1 iCAFs-M16 0.305996

SIPA1L1 iCAFs-M16 0.306172

GNA12 iCAFs-M16 0.306304

NPTN iCAFs-M16 0.318676

YAP1 iCAFs-M16 0.320466

WWC2 iCAFs-M16 0.329593

SGCB iCAFs-M16 0.331213

P3H1 iCAFs-M16 0.331958

SEC23A iCAFs-M16 0.338058

TTYH3 iCAFs-M16 0.340158

ACTR2 iCAFs-M16 0.343272

COPB1 iCAFs-M16 0.354172

CHSY1 iCAFs-M16 0.355412

TMEM30A iCAFs-M16 0.36788

ATP2A2 iCAFs-M16 0.372208

ROBO1 iCAFs-M16 0.375012

P3H4 iCAFs-M16 0.37971

IGF1R iCAFs-M16 0.381148

MORF4L2 iCAFs-M16 0.383077

BCAT1 iCAFs-M16 0.383448

PRRX1 iCAFs-M16 0.38796

SEC24D iCAFs-M16 0.391883

FRMD6 iCAFs-M16 0.404829

TIMP2 iCAFs-M16 0.422682

MRC2 iCAFs-M16 0.426173

Table S1 (continued)

Table S1 (continued)

Gene name Module kME

MICAL2 iCAFs-M16 0.431465

LAMB1 iCAFs-M16 0.443021

GREM1 iCAFs-M16 0.447023

PLOD1 iCAFs-M16 0.454652

FNDC3B iCAFs-M16 0.46111

DKK3 iCAFs-M16 0.468781

FKBP10 iCAFs-M16 0.483669

BMP1 iCAFs-M16 0.493333

LAMC1 iCAFs-M16 0.514643

INHBA iCAFs-M16 0.568777

ADAMTS2 iCAFs-M16 0.589985

LOXL2 iCAFs-M16 0.608765

MXRA5 iCAFs-M16 0.645813

COL3A1 iCAFs-M16 0.672014

COL5A2 iCAFs-M16 0.677248

iCAF, inflammatory cancer-associated fibroblast; kME, 
eigengene-based connectivity.
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Table S2 Kaplan-Meier analysis results of nine hub genes

Gene HR HR.95L HR.95H P value

FKBP10 1.175172 1.058042 1.305269 0.002585

TCEAL9 1.231983 1.044333 1.453352 0.013343

COL5A2 1.18364 1.033626 1.355426 0.014758

BCAT1 1.147804 1.025342 1.284893 0.016633

INHBA 1.171453 1.0291 1.333498 0.016671

ADAM10 1.203479 1.026723 1.410664 0.022291

SEC23A 1.324737 1.040329 1.686897 0.022572

FNDC3B 1.100847 1.00929 1.20071 0.030106

CCND1 0.765005 0.589363 0.992992 0.044135

HR, hazard ratio; HR.95L, lower 95% confidence interval of hazard ratio; HR.95H, upper 95% confidence interval of hazard ratio.


