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Background: The recurrence and mortality rates of bladder cancer are extremely high, and its diagnosis 
and treatment are global concerns. The mechanism of anoikis is closely related to tumor metastasis.
Methods: First, we obtained all the data needed for this study from a public database through a formal 
operational process. The data were then analyzed by bioinformatics technology. Through the limma package, 
we screened and obtained 313 anoikis-related genes [false discovery rate (FDR) <0.05, |log fold change 
(FC) | >0.585]. Then, through univariate independent prognostic analysis, we further screened 146 genes 
(P<0.05) related to the prognosis of bladder cancer from 313 differential genes. These 146 prognostically 
relevant differential genes were used for least absolute shrinkage and selection operator (LASSO) regression 
for further screening to obtain model-related genes and output model formulas. Through the nomogram, we 
can calculate the survival rate of patients more accurately. The accuracy of the nomogram was also confirmed 
by calibration curves, independent prognostic analysis, receiver operating characteristic (ROC) curves, 
decision curve analysis (DCA) curves. We then analysed the sensitivity of immunotherapy in bladder cancer 
patients with different risk scores via Tumor Immune Dysfunction and Exclusion (TIDE). 
Results: Through bioinformatics technology and public databases, a prognostic model including 9 anoikis-
related genes (KLF12, INHBB, CASP6, TGFBR3, FASN, TPM1, OGT, RAC3, ID4) was obtained. Integrating 
risk scores with clinical information, we obtained a nomogram that can accurately predict patient survival. 
By querying the immunohistochemical results of the Human Protein Atlas database, two of the nine model-
related genes (FASN, RAC3) have the value of further research and are expected to become new biomarkers 
to assist the diagnosis and treatment of bladder cancer. Through immune-related analysis, we found that 
patients in the low-risk group appeared to be more suitable for immunotherapy, while drug sensitivity 
analysis showed that bladder cancer patients in the high-risk group were more sensitive to common 
chemotherapy drugs. 
Conclusions: In this study, a prognostic model that can accurately predict the prognosis of patients with 
bladder cancer was constructed. FASN and RAC3 are expected to become a new biomarker for the diagnosis 
and treatment of bladder cancer. 
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Introduction

The recurrence rate and mortality rate of bladder cancer 
are extremely high, because smoking and other factors make 
men to be four-time more vulnerable to bladder cancer 
than women (1,2). Of patients who had undergone surgery 
still face relapse after the surgery. early surgical treatment is 
still advocated to prolong survival (3). Unfortunately, up to 
17% of surgical patients still relapse after surgery. The most 
effective methods for recurrent or metastatic bladder cancer 
are chemotherapy and immunotherapy (4,5). However, the 
5-year survival rate and median survival of bladder cancer 
are still difficult to achieve satisfactory results (6-8). With 
the development of bioinformatics technology, more and 
more literature shows that genes can be used as biomarkers 
for prognosis prediction of bladder cancer (9-13).

Anoikis is an important physiological process in the body, 
which helps clean up aging and abnormal cells, maintain 
vitality and maintain homeostasis (14). Anoikis (Greek for 
“homeless”) is a type of apoptosis (15,16), Its function is 
mainly to remove abnormally adherent cells (17). When the 
malignant tumor metastasis, it will trigger anoikis, and kill 
the displaced malignant tumor cells (18). In addition, related 
studies have also found that in diabetes, cardiovascular 
disease and infectious diseases, it can also trigger anoikis, 
remove abnormal cells, and maintain homeostasis (19,20). 
At present, it has been found that tumor cells can achieve 
distant metastasis of tumors through the resistance 
mechanism of anoikis (21). No related studies have shown 
that the mechanism of apoptosis plays a key role in lung 
cancer and breast cancer metastasis (22,23). However, there 
have been no studies in bladder cancer.

Through previous studies, we have found that the 
mechanism of anoikis is closely related to the development 
of tumors. Combined with bioinformatics, the relationship 
between anoikis-related genes and bladder cancer is 
expected to offer new diagnostic indicators and provide 
reference for clinicians to make diagnosis and treatment 
plans. In this study, we constructed a prognostic model 
of bladder cancer anoikis-related genes by bioinformatics 
techniques. Integrating the scoring of the model formula 
with the clinical information, we created a nomogram. By 
using nomograms, accurate results for survival rates for 
bladder cancer patients can be easily calculated. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1770/rc).

Methods

Acquisition of data

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). We downloaded raw 
bladder cancer data from The Cancer Genome Atlas 
(TCGA) database and Gene Expression Omnibus (GEO) 
database through formal channels. Data were organized 
through R (4.2.1) and Perl (Strawberry Edition). TCGA 
data and GEO data were normalized using SVA packages 
to remove batch effects. The external validation data 
were from the GSE32894 dataset of the GEO database. 
The immunohistochemistry (IHC) results of the model-
associated genes were queried by the HPAanalyze The 
GeneCards website was used to obtain anoikis-related genes 
(https://www.genecards.org/).

Screening of prognosis-related differential genes

We searched through the GeneCards website and obtained 
801 anoikis-related genes. The differential gene was 
obtained via the limma package [false discovery rate (FDR) 
<0.05, |log fold change (FC)| >0.585] of R software 
(4.2.2). The differential genes obtained from the screening 
were used for univariate independent prognostic analysis 
(P<0.05). Through a series of screenings, we obtained 
prognostically relevant differential genes.

Model construction and validation

Least absolute shrinkage and selection operator (LASSO) 
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regression was used to screen model-associated genes from 
prognosis-related differential genes. By cross-validation, we 
obtained the genes that are best suited for model building 
Cox regression model (COX) regression is used to build 
the model and output model formulas. All included bladder 
cancer samples were scored by model formula. All included 
bladder cancer patients were randomly divided into two 
equal parts by the createDataPartition function in the caret 
package, half as the Train group (the median risk score of 
the Train group patients were divided into high and low 
risk groups) and half as the Test group (the Test group was 
used for internal validation). Patients GSE32894 dataset 
were used for external validation of the model. Then, the 
accuracy of the model is tested by progression-free survival 
analysis and receiver operating characteristic (ROC) curves. 
Univariate and multivariate independent prognostic analysis 
was then used to assess whether the risk score could be used 
as an independent prognostic factor.

Multiomic analysis of model-related genes

Multiomics data is used for deeper mining of model-related 
genes. First, copies of model-related genes were obtained 
from the original data using Perl (strawberry version). The 
copy data of the model-related genes were then visualized 
by histogram and circle chart. Then the waterfall plot is 
used to show the mutation status of the model-related 
gene, and the heat map is used to show the co-mutation 
of the model-related gene. Finally, in order to screen for 
more valuable biomarkers from nine model-related genes, 
we first screened genes with more than 3-fold differences 
in expression in tumor and normal tissues by differential 
analysis (|logFC| >1.5). Next, we used the HPAanalyze 
package to query the IHC of the differential genes in the 
Human Protein Atlas (HPA) database.

Construction and accuracy verification of nomograms

Linemaps were constructed to more accurately predict 
survival in bladder cancer patients. First, we integrated the 
patient’s risk score with common clinical information to 
construct a nomogram, and used the ninth bladder cancer 
patient in the TCGA-bladder cancer cohort as an example 
to demonstrate the use of nomogram. Next, we use the 
calibration curve to verify the reliability of the nomogram 
by comparing the survival rate of actual patients with the 
nomogram prediction of patient survival. Independent 
prognostic analysis is used to see if nomograms can be used 

as an independent factor in predicting prognosis in patients 
with bladder cancer. By plotting the ROC curve to observe 
the area under the curve, we can further understand the 
ability of nomogram to predict prognosis. The decision 
curve analysis (DCA) curve is also used to confirm the 
accuracy of the prediction nomogram prediction results.

Pathway enrichment analysis

Pathway enrichment analysis was used to gain a deeper 
understanding of the mechanism underlying the onset and 
progression of bladder cancer. First, gene set enrichment 
analysis (GSEA) and gene set variation analysis (GSVA) 
analyses were performed to observe the enrichment of 
patient pathways across different risk groups. The gene 
expressions of patients in distinct risk groups were then 
subjected to differential analysis. Based on the findings 
of differential analysis, conventional pathway enrichment 
analysis was performed on differential genes.

Immune correlation analysis of patients at different risk 
levels

To develop a more accurate treatment plan, the correlation 
between immune cell infiltration and risk scores was 
investigated, followed by additional research into the 
sensitivity of immunotherapy. First, the expression levels 
of 47 genes associated with immune checkpoints in 
various groups were analyzed. By analyzing the tumor 
microenvironment, we had a general understanding of the 
infiltration of immune cells and matrix cells surrounding 
the tumor tissue. The correlation between the filtration of 
immune cells surrounding tumor tissue and the risk scores 
was then analyzed on existing immunoassay platforms. 
Subsequently, the sensitivity of patients in various risk 
groups to immunotherapy was predicted using Tumor 
Immune Dysfunction and Exclusion (TIDE) websites.

Drug sensitivity analysis

The oncoPredict package was utilized for drug sensitivity 
analysis, allowing for targeted drug administration based on 
the results of the analysis.

Statistical analysis

The statistical analysis was performed using R software 
(version 4.1.2). The chi-square test was used to analyse 
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differences in patients, with Kaplan-Meier analysis and log-
rank analysis used to assess patients’ overall survival (OS) 
and progression-free survival (PFS). The Wilcoxon test was 
used to check the deviation between the components. A P 
value <0.05 was considered statistically significant.

Results

A total of 146 prognosis-related differential genes  
were obtained

The process flowchart of this study depicts the entire 
process of this study (Figure 1). Differential analysis gave 
a total of 635 genes differentially expressed in tumor and 
normal tissues. Then, 313 genes with significant differences 
in expression based on |logFC| >0.585 and FDR <0.05 
were obtained and displayed using heat map and volcano 
map (Figure S1). An independent univariate prognostic 
analysis was conducted on the 313 differential genes, and 
146 prognosis-related differential genes were subsequently 
screened from these genes.

Construction of prognostic scoring model and validation of 
accuracy

The 146 differential prognosis-related genes were used for 

LASSO regression (Figure 2A). Cross-validation results 
indicated that the scoring model constructed with 2–15 genes  
contained the fewest errors (Figure 2B). After a series of 
screenings, 9 genes (KLF12, INHBB, CASP6, TGFBR3, 
FASN, TPM1, OGT, RAC3, and ID4) were utilized in 
the model’s construction, and the model’s formula was 
output. Risk score = EXP[(KLF12*0.38) + (INHBB*0.30) 
+ (CASP6*−0.38) + (TGFBR3*−0.15) + (FASN*0.49) + 
(TPM1*0.24) + (OGT*−0.53) + (RAC3*0.23) + (ID4*−0.22)] 
(the result of risk coefficient was rounded up to two 
decimal places). This formula was applied to all patients 
included in this study, and the median risk score of patients 
in the Train group was used to stratify these patients. 
Principal component analysis (PCA) demonstrated that 
the risk score effectively distinguished between patients 
belonging to distinct risk groups (Figure 2C). Results from 
both univariate and multivariate independent prognostic 
analyses indicated that the risk score was an independent 
factor unaffected by other variables (Figure 2D,2E). The 
model’s accuracy could be assessed in greater detail using 
the survival curve and ROC curve. The survival analysis 
results of the entire cohort, the Train cohort, and the Test 
cohort revealed that there were significant differences 
in survival between different risk groups (P<0.001), and 
that the area under the curve (AUC) of 1-, 3-, and 5-year 

Drug susceptibility 
analysis

Immune-related 
analysis

Pathway enrichment 
analysis

Construction and 
verification of Nomogram

Multiomics analysis of 
model-related genes

Variance analysis (|logFC| >0.585, FDR <0.05)
313 Anoikis-related differential genes were selected

External validation

Univariate independent prognostic analysis (coxPfilter <0.05)
146 prognostically relevant differential genes were selected

LASSO regression model construction and internal validation
(9 prognostically relevant differential genes were selected)

TCGA database (N=19, T=412)

GEO 
Database (GSE32894)

GeneCards database (Anoikis-related genes801)

Figure 1 Flowchart of this study. TCGA, The Cancer Genome Atlas; FC, fold change; FDR, false discovery rate; GEO, Gene Expression 
Omnibus; LASSO, least absolute shrinkage and selection operator.

https://cdn.amegroups.cn/static/public/TCR-23-1770-Supplementary.pdf
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Figure 2 Construction of risk models and independent prognostic analysis of risk scores. (A) Expression coefficient maps of LASSO 
regression; (B) cross-test maps of penalty terms; (C) PCA maps of high-and hypo-risk categories; (D) univariate independent prognostic 
analysis of risk scores; (E) results of multivariate independent prognostic analysis. PC1, principal component 1; PC2, principal component 2; 
LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.

survival were all greater than 0.65 (Figure 3A-3C). External 
data were utilized to validate the accuracy of this model’s 
predictions (Figure 3D,3E). In the multivariate ROC curve, 
we discovered that the risk score had the highest prediction 
accuracy (Figure 3F). 

Multiomics analysis of model-related genes

Analysis of the model-related genes’ copy number revealed 
that approximately 88% of model-related genes increased, 
while the copy number of TGFBR3 decreased (Figure 4A). 
TGFBR3 was located on chromosome 1, while the circle 
plot displayed the locations of other model-related genes 
(Figure 4B). From the analysis of the mutation data of 
model-related genes, about 55% of model-related genes 
were confirmed to have mutations (FASN had the highest 

mutation frequency), and nearly all the mutations were 
missense mutations (Figure 4C). Four genes screened 
were found to be significantly differentially expressed 
between tumor and normal tissues (FASN, RAC3, TPM1, 
and TGFBR3) (Figure 4D). We found consistency between 
the IHC results of FASN, RAC3, and TGFBR3 and the 
gene expression results by analyzing the statistical results, 
but no significant differences between the IHC results 
of TPM1 in normal tissue and tumor tissue. Then, the 
detailed IHC of FASN, RAC3, and TGFBR3 was displayed 
(Figure 4E).

Construction and verification of nomogram

To accurately predict the survival rate of patients with 
bladder cancer, a nomogram was developed by integrating 
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Figure 3 Internal and external validation of risk model. (A) Survival curves for all data as well as ROC curves; (B) survival curve of the train 
group as well as ROC curve; (C) survival curves for the test group as well as ROC curves; (D) survival curve of GEO data as well as ROC 
curve; (E) TCGA data survival curve as well as ROC curve; (F) PFS curves and multivariate ROC curves in the high and low risk groups of 
bladder cancer. ROC, receiver operating characteristic; AUC, area under the curve; GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas; PFS, progression-free survival.
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Figure 4 Multiomic analysis and immunohistochemical validation of model-related genes. (A) Model related gene copy number statistics; (B) 
circle plot of copy number of model-associated genes; (C) waterfall plot of model-associated genes; (D) heat map of significant differences 
in the expression of model-associated genes in tumor and normal tissue; (E) immunohistochemical results of model-related genes obtained 
based on HPA database (all images are magnified by a factor of 40). FASN: Tumor, https://www.proteinatlas.org/ENSG00000169710-
FASN/pathology/urothelial+cancer#ihc; Normal, https://www.proteinatlas.org/ENSG00000169710-FASN/tissue/urinary+bladder. RAC3: 
Tumor, https://www.proteinatlas.org/ENSG00000169750-RAC3/pathology/urothelial+cancer#ihc; Normal, https://www.proteinatlas.
org/ENSG00000169750-RAC3/tissue/urinary+bladder. TGFBR3: Tumor, https://www.proteinatlas.org/ENSG00000069702-TGFBR3/
pathology/urothelial+cancer#ihc; Normal, https://www.proteinatlas.org/ENSG00000069702-TGFBR3/tissue/urinary+bladder. HPA, 
Human Protein Atlas; CNV, copy number variations; TMB, tumor mutational burden. 

risk scores with clinical data, and the method of using the 
nomogram was demonstrated in the ninth patient of the 
cohort (Figure 5A). The calibration curve revealed that 
the nomogram’s prediction results were almost identical 
to the actual results (Figure 5B). Independent univariate 
and multivariate prognostic analysis confirmed that the 
predictive ability of the nomogram was unaffected by 
other variables (Figure 5C,5D). The largest AUC (AUC 
=0.757) was observed for the nomogram in the ROC curve, 
indicating that the nomogram had superior prediction effect 
(Figure 5E); the DCA curve also confirmed the accuracy of 
the nomogram’s prediction results (Figure 5F).

Pathway enrichment analysis

Metabolic pathways were enriched in the low-risk group, 
whereas tumor-related pathways were enriched in the high-
risk group. GSEA analysis revealed that pathways including 
ascorbate-and-aldarate, drug-metabolism-cytochrome-p450, 
metabolism-of-xenobiotics-by cytochrome-p45, pentose-
and-glucuronate-interconversions, and retinol-metabolism 
were enriched in the low-risk group (Figure 6A). Several 
pathways were enriched in the high-risk group, including 
cell-adhesion-molecules-cams, cytokine-cytokine-
receptor-interaction, extracellular matrix (ECM)-receptor-
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Figure 5 Construction and verification of nomograms. (A) Nomogram predicts the prognosis of patients with bladder cancer; (B) calibration 
curve for nomogram; (C) results of univariate independent prognostic analysis; (D) results of multivariate independent prognostic analysis; 
(E) ROC curve for nomogram; (F) DCA curve of nomogram. *, P<0.05. ROC, receiver operating characteristic; AUC, area under the curve; 
DCA, decision curve analysis; OS, overall survival.

interaction, focal-adhesion, and regulation-of-actin-
cytoskeleton (Figure 6B). According to GSEA analysis, 
cellular-hormone-metabolic-process, cellular-response-
to-xenobiotic-stimulus, monocarboxylic-acid-catabolic-
process, xenobiotic-catabolic-process, and xenobiotic-
metabolic-process were all associated with biological 
processes (Figure 6C). Interestingly, the majority of enriched 
pathways in the high-risk group were associated with 
cellular components (Figure 6D).

Patients with lower risk scores were more suitable to receive 
immunotherapy

First, the differential analysis of immune checkpoint-
related genes revealed that 76% of immune checkpoint-
related genes were significantly expressed differently in 
patients from different risk groups (Figure S2). Following 
this, tumor microenvironment analysis revealed statistically 
significant differences in the filtration of ECM and immune 

cells between risk groups (Figure 7A). The analysis of seven 
platforms (TIMER, CIBERSORT, CIBERSORTABS, 
XCELL, QUANTISEQ, EPIC, and MCP-counter) led 
to the following generalization: the correlation coefficient 
of 54% of immune cells with the model score, was greater 
than 0, and 46% were negatively correlated with the risk 
scores (Figure 7B). We reached the same conclusion with 
the TIDE platform’s analysis results (Figure 7C). 

Patients with higher risk scores were more sensitive to 
common chemotherapeutic drugs

The results of the drug sensitivity analysis revealed that 
patients with higher risk scores were more sensitive to 
common chemotherapeutic drugs (foretinib, taselisib, 
cisplatin, staurosporine, trametinib, dasatinib, entospletinib, 
talazoparib, and 5-fluorouracil) (Figure 8). These results 
could help in providing more precise treatments for patients 
with bladder cancer at different risk levels. 
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Figure 6 Pathway enrichment analysis results. (A) The KEGG pathway enriched in the low-risk group; (B) KEGG pathway enriched in high-
risk groups; (C) enrichment results of GO pathways in low-risk groups; (D) enrichment results of GO pathways in high-risk groups. KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; CC, cellular component.

Discussion

Bladder cancer is a significant threat to public health and 
safety. Previous research has demonstrated a strong link 
between anoikis and tumor progression. With the rapidly 
expanding of the bioinformatics field, we utilized anoikis-
related genes in this study to identify significant biomarkers. 
Using LASSO regression, a stable prognosis model was 
established, and a nomogram was created to accurately 
predict the survival rate of patients with bladder cancer. 
We screened nine model-related genes in the present study, 
including KLF12, INHBB, CASP6, TGFBR3, FASN, TPM1, 
OGT, RAC3, and ID4.

Study indicates that CASP6 is primarily responsible 

for encoding the Caspase-6 protein, and its expression is 
negatively correlated with tumor development (24). In 
this study, we also discovered that patients with bladder 
cancer who expressed a greater number of CASP6 genes 
had a better prognosis. ID4, a negative transcription factor, 
was linked to poor breast cancer prognosis and metastasis 
as early as 2005 (25). ID4 expression was shown to be 
higher in non-invasive bladder cancer but lower in invasive 
bladder cancer, according a study published in 2018 (26). 
In other words, the higher the ID4 expression, the better 
the prognosis of the patient, which was confirmed in our 
study. INHBB is a heterodimer glycoprotein belonging 
to the transforming growth factor β (TGFβ) family (27). 
The expression of INHBB in tumors is not completely 
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Figure 7 Results of immune-related analyses. (A) Analysis results of tumor microenvironment differences in high and low risk groups; (B) 
results of multi-platform analysis of the correlation between immune cell infiltration and risk score; (C) immunotherapy sensitivity analysis 
results are based on TIDE. *, P<0.05; ***, P<0.001. TIDE, Tumor Immune Dysfunction and Exclusion; TME, tumor microenvironment; 
NK, natural killer cell.

consistent. Few studies have discovered reduced expressions 
of INHBB in renal cell carcinoma, pancreatic cancer, and 
lung cancer (28,29). And one study even considers it to be 
a tumor-inhibiting factor (30). Despite this, a large number 
of studies have demonstrated elevated INHBB expression in 
rectal cancer, endometrial cancer, adrenocortical carcinoma, 
oral squamous cell carcinoma, and placental tumor 
(28,31,32). In this study, we discovered that high INHBB 
expression was associated with a poor prognosis in patients 
with bladder cancer; similar findings have been reported in 

other study on gastric cancer (33). KLF12 is a member of 
the Krüppel-like factors (KLFs) family (34). Some studies 
found that KLF12 was abnormally expressed in a variety of 
tumors (35-37). In addition, KLF12 plays a crucial role in 
the occurrence and progression of bladder cancer (38,39). 
Multiple tumors, including lung cancer, liver cancer, and 
prostate cancer, have been shown to express OGT at high 
levels (40-42). Rozanski et al. reported in 2012 that OGT 
mRNA expression was detected in the urine of patients 
with bladder cancer, with the expression level correlating 
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Figure 8 Results of sensitivity analysis of common chemotherapy drugs in high- and low-risk groups.

to the malignancy of bladder cancer (43). In 2018, Wang 
et al. knocked out OGT and discovered that bladder cancer 
cells were more sensitive to chemotherapeutic drugs (44). In 
recent years, emphasis has been placed on the role of OGT in 
bladder cancer, and numerous studies have again confirmed 
the role of OGT in the occurrence and progression of bladder 
cancer (45,46). In 2022, Lee et al. experimentally confirmed 
that OGT expression in patients with bladder cancer could 
be considered a potential therapeutic target (47). TGFBR3 
inhibits the development of tumors such as renal cancer, 
lung cancer, and liver cancer, and has been considered a 
tumor-inhibiting factor (48-50). Encouragingly, Chen et al. 

discovered in 2022 that TGFBR3 was negatively correlated 
with the progression and metastasis of bladder cancer (51). 
The results of our study confirmed this conclusion. TPM1, 
a type of tropomyosin (52,53), is abundant in numerous 
cell types (54). One study indicates that TPM1—a cancer 
suppressor gene—is expressed at low levels in a variety 
of tumor cells (55). The findings regarding this gene and 
bladder cancer are encouraging.

FASN is essential for the development and occurrence 
of tumors; 95% of fatty acids in tumor cells are synthesized 
by FASN (56,57). FASN, an important gene associated with 
tumors, is detectable in numerous tumor cells (58-60). FASN 
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overexpression is associated with a poor prognosis in patients 
with bladder cancer; when FASN expression is inhibited, 
tumor metastasis and recurrence may be prevented, and 
patients’ sensitivity to chemotherapeutic drugs may be 
improved (61-65). This suggests that FASN will likely 
provide a new treatment target for bladder cancer as the 
subject of additional research. Multiple tumors are associated 
with RAC3, a member of the Rho GTP enzyme subfamily 
(66-68). Its high expression in patients with bladder cancer 
is frequently correlated with poor prognosis (69). Recent 
research indicates that RAC3 can predict the prognosis of 
patients with bladder cancer (70). Multiple findings indicate 
that additional research on RAC3 may produce unexpected 
results.

In  r ecen t  yea r s ,  numerous  s tud i e s  on  tumor 
immunotherapy have been conducted. The results of 
this study revealed that immunotherapy may be more 
appropriate for low-risk group patients with bladder cancer. 
The correlation analysis revealed that risk scores were 
negatively correlated with T-cells and positively correlated 
with M2 macrophages. Previous research has shown that a 
high level of M2 macrophage infiltration is associated with 
a poor prognosis, while a low level of T-cell infiltration may 
result in tumor cells that are resistant to immunotherapy 
(71,72). This is consistent with our findings.

Conclusions

In this study, we constructed a model that can accurately 
predict the prognosis of patients with bladder cancer. Low-
risk patients are more likely to benefit from immunotherapy, 
whereas high-risk patients are more susceptible to 
chemotherapeutic drugs.
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Figure S1 Results of differential analysis of anoikis-related genes. (A) Heat map; (B) volcano map. FC, fold change; FDR, false 
discovery rate.

Supplementary

Figure S2 Differential expression of immune checkpoint-associated genes in patients with different risk groups. *, P<0.05; **, P<0.01; 
***, P<0.001.
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