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A novel gene signature related to fatty acid metabolism predicts 
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Background: Dysregulation of fatty acid metabolism (FAM) represents a significant metabolic alteration 
in tumorigenesis. However, the role of FAM-related genes (FAMRGs) in early-stage lung squamous cell 
carcinoma (LUSC) remains incompletely understood.
Methods: A series of bioinformatic analyses and machine learning strategies were performed to construct 
a FAMRGs-based signature to predict prognosis and guide personalized treatment for early-stage LUSC 
patients. FAMRGs were screened through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
and the Molecular Signature Database (MSigDB). Prognosis FAMRGs were identified using univariate Cox 
regression, and unsupervised clustering analysis facilitated the division of the cohort into different clusters. 
The least absolute shrinkage and selection operator (LASSO)-Cox regression and multivariate regression 
analysis were employed to develop a FAMRGs-based signature for predicting overall survival (OS). A 
nomogram was subsequently constructed to facilitate risk assessment for individual patients. Comprehensive 
analyses of metabolic pathways, immune infiltration, immunomodulators, and potentially applicable drugs 
were conducted across different FAMRGs-related risk groups.
Results: The FAMRGs-based signature, comprising nine genes (ACOT11, APOH, BMX, CYP2R1, 
DPEP3, FABP6, FADS2, GLYATL2, and THRSP), demonstrated robust predictive capabilities for prognosis 
in The Cancer Genome Atlas (TCGA)-LUSC dataset and validated across six independent Gene 
Expression Omnibus (GEO)-LUSC datasets. Notably, the FAMRGs-base signature exhibited superior 
prognostic capacity and accurate survival prediction compared to conventional clinicopathological features. 
Furthermore, the signature was closely associated with immune cell infiltration, human leukocyte antigen 
(HLA) genes, and immune checkpoint genes expression. Additionally, the signature demonstrated potential 
sensitivity to chemo-/target-therapy.
Conclusions: The FAMRGs-based signature demonstrated superior sensitivity in predicting the prognosis 
of early-stage LUSC. Detecting FAMRGs may provide predictive targets for the development of clinical 
treatment strategies.
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Introduction

Lung cancer stands as a foremost contributor to global 
cancer-related morbidity and mortality (1). The disparate 
survival rates between early-stage and advanced lung cancer 
diagnoses emphasize the criticality of early intervention in 
prognosis (2). Among the various pathologic types, lung 
squamous cell carcinoma (LUSC) ranks as the second 
most prevalent, accounting for approximately 30% of all 
lung cancer cases (3). In contrast to lung adenocarcinoma 
(LUAD), LUSC exhibited a more unfavorable prognosis 
and lacks effective therapeutic targets (3-5). Consequently, 
an in-depth comprehension of the molecular biology 

underlying early-stage LUSC and identification of reliable 
prognostic markers and clinical treatment strategies are 
pressing needs.

Dysregulation of cellular metabolism stands as a hallmark 
of cancer (6). Fatty acid (FA) metabolic reprogramming 
has garnered significant attention in recent years (7). FA 
metabolism (FAM) plays a pivotal role in cancer’s metabolic 
reprogramming by not only augmenting the uptake of 
exogenous FAs and facilitating de novo biosynthesis to 
sustain rapid cancer cell proliferation but also by acting 
as secondary messengers in oncogenic signal transduction 
and serving as an alternate energy source for cellular fuel 
generation (6,8). Previous research has demonstrated that 
alterations in FAM and aberrant expression of FAM-related 
genes (FAMRGs) closely correlate with tumor survival 
and treatment resistance (8-10). For example, oxoglutarate 
dehydrogenase-like (OGDHL) was found to be significantly 
downregulated in clear cell renal cell carcinoma. The 
upregulation of OGDHL expression effectively inhibited 
cancer growth and metastasis both in vitro and in vivo (11). 
Yang et al. showed that RGS2 was highly expressed in 
gastric cancer and may contribute to immune rejection, 
which was closely associated with a poor prognosis (12). 
Furthermore, a study by Li et al. demonstrated that sterol 
regulatory element binding transcription factor 1 (SREBF1) 
as a central mediator linking tumor protein 63 (TP63) with 
FAM, which regulates the biosynthesis of FAs, was essential 
for viability and migration in squamous cell carcinomas 
(SCCs), and its overexpression was associated with poor 
survival in SCC patients (13). However, the characteristics 
of FAM alteration and its potential as a biomarker for 
cancer prognosis and treatment response in early-stage 
LUSC require further exploration. In light of this, our 
study employs a bioinformatic approach to establish a 
robust gene signature rooted in FAM for prognostication. 
This signature aims to offer valuable insights into clinical 
therapeutic strategies for early-stage LUSC. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1640/rc).

Methods

Selection of FAMRGs

FAMRGs were curated through the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database (https://www.
kegg.jp/) and the Molecular Signature Database (MSigDB) 
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(https://www.gsea-msigdb.org/gsea/msigdb). A total of 394 
FAMRGs were extracted from 14 lipid metabolism-related 
gene sets of the KEGG database, and 1,634 FAMRGs were 
extracted from 18 FAMRG sets of the gene set enrichment 
analysis (GSEA) database. After removing the overlapping 
genes, a consolidated list of 1,651 genes was compiled. 
The detailed information of gene sets is provided in table 
available at https://cdn.amegroups.cn/static/public/tcr-23-
1640-1.xlsx. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Data acquisition

Gene expression data and clinical survival information for 
patients diagnosed with stage I–II LUSC were retrieved 
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) and the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo). For 
our study, we incorporated one RNA-seq dataset (TCGA-
LUSC) and six microarray datasets (GSE73403, GSE74777, 
GSE50081, GSE37745, GSE30219, and GSE7157010), 
all with overall survival (OS) data. The TCGA-LUSC data 
served as the training cohort, comprising 396 cases, while 
the validation cohorts consisted of independent datasets 
from GSE73403, GSE74777, GSE50081, GSE37745, 
GSE30219, and GSE7157010, totaling 543 GEO-LUSC 
cases. Detailed clinical information for the cohorts is 
provided in Table 1.

Consensus clustering analysis and functional enrichment 
analyses

To identify potential prognostic FAMRGs for early-stage 
LUSC, we initially conducted univariate Cox regression 
analysis of OS in the TCGA-LUSC dataset, focusing on 
genes with a P value <0.05. Subsequently, unsupervised 
clustering was performed to explore the molecular 
classification of LUSC based on these prognostic FAMRGs, 
utilizing the “ConsensusClusterPlus” R package with 1,000 
iterations to enhance stability (14). The obtained molecular 
classification was visualized through principal component 
analysis (PCA), offering a comprehensive overview of the 
identified clusters. Kaplan-Meier (K-M) analysis was then 
performed to compare the survival outcomes between these 
clusters. Functional enrichment analysis of Gene Ontology 
(GO) pathways was performed using Cytoscape plug-in 
ClueGO to elucidate the biological processes and pathways 
associated with the identified FAMRGs in the context of 

LUSC (15).

Risk model construction and validation

The prognostic FAMRGs were selected for further analysis 
using the least absolute shrinkage and selection operator 
(LASSO) algorithm. LASSO analysis facilitated variable 
selection and shrinkage, determining the optimal λ value 
and screen prognosis risk factors based on the “glmnet” R 
package (16). Subsequently, genes identified in the LASSO 
regression were incorporated into the multivariate Cox 
regression analysis, establishing the FAMRGs signature for 
survival prediction. The signature was based on the relative 
expression and LASSO Cox coefficient of individual genes 
as follows:

1

n

i
Risk score e iβ

=
= ×∑  [1]

Patients were categorized into high- and low-risk groups 
based on the optimal risk score. K-M analysis and receiver 
operating characteristic (ROC) curve analysis assessed 
model accuracy and stability. Furthermore, the prognostic 
value of FAMRGs signature was validated in independent 
cohorts, including GSE73403, GSE74777, GSE50081, 
GSE37745, GSE30219, and GSE7157010.

Nomogram

A nomogram was constructed for risk assessment and predict 
1-, 3-, and 5-year OS probabilities for individual early-
stage LUSC patients by using gender, age, T stage, N stage, 
tumor-node-metastasis (TNM) stage, and risk score. The 
“survival” and “rms” R packages facilitated this process (17).

Gene set variation analysis (GSVA)

We also performed GSVA to elucidate relevant signaling 
pathways and molecular mechanisms in high- and low-
risk groups using the hallmark gene set (c2.cp.kegg.
v7.4.symbols.gmt) from the MSigDB database (18).

Tumor immune infiltration analysis

To investigate the immune landscape influenced by 
FAMRGs-based signature in LUSC patients, we conducted 
a comprehensive analysis, including the assessment of tumor 
immune cell infiltration, analysis of immune functions, and 
examination the expression of immune regulatory genes 
across different risk groups. We utilized the ESTIMATE 
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Table 1 Clinical characteristics of the patients from multiple institutions

Characteristics

Datasets

TCGA  
(n=396)

GSE157010 
(n=235)

GSE0081  
(n=43)

GSE37745 
(n=55)

GSE30219 
(n=57)

GSE74777 
(n=107)

GSE73403 
(n=46)

Age (years)

≤65 147 93 15 20 33 56 30

>65 244 142 28 35 24 51 16

Unknown 5 – – – – – –

Gender

Male 290 153 25 38 53 96 44

Female 106 82 18 17 4 11 2

Smoking

No 84 – – – – 3 –

Yes 303 – – – – 104 –

Unknown 9 – – – – – –

T stage

T1 109 63 10 – 49 26 3

T2 248 139 33 – 6 65 34

T3 39 31 – – 2 16 9

Unknown – 2 – – – – –

N stage

N0 300 – 27 – 52 72 34

N1 96 – 16 – 5 33 12

Unknown – – – – – 2 –

Stage

Stage I 237 – 27 40 – 54 25

Stage II 159 – 16 15 – 53 21

OS status

Dead 160 119 17 42 39 42 15

Alive 236 116 26 13 18 65 31

Recurrence status

Recurrence 47 – 11 12 18 28 –

No-recurrence 209 – 31 13 38 79 –

Unknown 140 – 1 30 1 – –

TCGA, The Cancer Genome Atlas; OS overall survival.
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algorithm to calculate immune scores, stromal scores, and 
ESTIMATE scores between high- and low-risk groups 
using “estimate” R package (19). Additionally, we employed 
the single simple GSEA (ssGSEA) algorithm to assess the 
immune function analysis, human leukocyte antigen (HLA) 
genes expression, and immune checkpoint genes expression 
based on “gsva” R package (20).

Drug response prediction

Furthermore, we performed drug response in enrolled cases 
using Genomics of Drug Sensitivity in Cancer (GDSC) 
database. Half-maximal inhibitory concentration (IC50) was 
calculated using “pRRophetic” R package for estimating 
drug sensitivity (21).

Statistical analysis

All statistical analyses were conducted using R language 
(version 4.2.1). The Wilcoxon test compared two groups, 
while the Kruskal-Wallis’s test compared more than two 
groups. K-M analysis with log-rank test assess OS, and Cox 
hazard regression analysis identified independent prognostic 
factors. P<0.05 was considered significant.

Results

Identification of FAMRGs and functional annotation

The study’s flowchart is illustrated in Figure 1. A total 
of 396 and 543 patients with early-stage LUSC were 
selected from training (TCGA dataset) and validation 

FAMRGs-based signature in early-stage 
LUSC

Training group (n=396)
TCGA-LUSC (stage I–II)

Validation group (n=543)
GSE73403, GSE74777, GSE50081, 

GSE37745, GSE30219, GSE7157010

Univariate Cox regression

K-means machine learning of 
consensus clustering

LASSO-Cox regression

PCA and Kaplan-Meier 
analysis

9-gene signature model

GO pathway analysis
Risk group

Risk score (Σcoef × expression)

Nomogram 
model

Univariate and 
multivariate 
Cox analysis

Analysis 
of clinical 

characteristics
GSVA

Analysis 
of immune 

characteristics

Drug 
response

Kaplan-Meier 
analysis

Risk group
Risk score (Σcoef × expression)

Figure 1 Flowchart of study design for FAMRGs signature in early-stage LUSC. A TCGA-LUSC dataset (training cohort) and six GEO-
LUSC datasets (validation cohorts, including GSE73403, GSE74777, GSE50081, GSE37745, GSE30219, and GSE7157010) were included 
in this study. The training cohort, comprising 396 patients, was used for feature selection and LASSO-Cox regression model construction. 
Six independent validation cohorts, with a total of 543 patients, were assigned to confirm the model’s performance. FAMRGs, fatty acid 
metabolism-related genes; LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and 
selection operator; PCA, principal component analysis; GO, Gene Ontology; GSVA, gene set variation analysis; GEO, Gene Expression 
Omnibus.
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(GEO datasets) cohorts, respectively. Initially, we cross-
verified RNA expression in the TCGA, GEO, and 
FAMRGs datasets, identifying 1,390 co-expressed genes 
for further investigation (https://bioinformatics.psb.ugent.
be/webtools/Venn/) (Figure 2A). Subsequently, a univariate 

Cox regression analysis was applied to the TCGA-LUSC 
dataset, identifying 343 prognostic FAMRGs with a 
corrected P value of regression analysis less than 0.05 (table 
available at https://cdn.amegroups.cn/static/public/tcr-23-
1640-2.xlsx). We then grouped 343 prognostic FAMRGs 
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Figure 2 Screening candidate FAMRGs. (A) Venn chart was used to cross-verified RNA expression in the FAMRGs, one TCGA and six 
GEO datasets. A total of 1,390 co-expressed FAMRGs was identified. (B) Unsupervised clustering analysis was applied to divide the TCGA-
LUSC cohort into two clusters based on 343 prognostic FAMRGs generated by univariate cox analysis. Consensus clustering CDF of k=2. 
(C) PCA revealed a distinct distribution pattern between cluster 1 and cluster 2. (D) The K-M curve showed patients in cluster 1 exhibited 
better OS than patients in cluster 2 (P=0.000042). FAM, fatty acid metabolism; TCGA, The Cancer Genome Atlas; CDF, cumulative 
distribution function; PCA, principal component analysis; FAMRGs, fatty acid metabolism-related genes; GEO, Gene Expression Omnibus; 
LUSC, lung squamous cell carcinoma; K-M, Kaplan-Meier; OS, overall survival.
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using unsupervised clustering analysis, employing the Elbow 
method to determine the optimal number of clusters. The 
result, k=2, revealed a distinct distribution pattern between 
cluster 1 and cluster 2 (Figure 2B,2C). Moreover, patients 
in cluster 1 showed better OS than patients in cluster 2 
(P=0.000042) (Figure 2D). Additionally, the GO analyses 
based on ClueGO indicated that these prognostic FAMRGs 
predominantly participated in positive regulation of lipid 
kinase activity (46.88%), phosphatidylinositol phosphate 
biosynthetic process (28.12%), positive regulation of 
protein phosphorylation (18.75%), and acyl-coenzyme A 
(CoA) metabolic process (6.25%) (P<0.01) (Figure 3A,3B).

Construction and validation of a FAMRGs prognostic 
signature

To identify the most powerful FAMRGs for establishing 
the prognostic signature, we applied the 343 prognostic 
FAMRGs to LASSO regression analysis, resulting in 21 
genes for further analysis (Figure 4A,4B). Subsequently, 
these 21 genes underwent multivariate Cox regression 
analysis, identifying the nine most robust FAMRGs 
(ACOT11, APOH, BMX, CYP2R1, DPEP3, FABP6, FADS2, 

GLYATL2, and THRSP) for model construction (Figure 4C). 
The risk score model was calculated using the formula: risk 
score = 0.253993 × ACOT11 + 0.107299 × APOH + 0.094113 
× BMX + 0.204989 × CYP2R1 + 0.091726 × DPEP3 + 
0.066066 × FABP6 + 0.098061 × FADS2 + (−0.07792) × 
GLYATL2 + 0.108707 × THRSP. In the TCGA cohort, 
patients were classified into high- (n=197) and low-risk 
(n=198) groups based on the optimized cutoff risk score. 
The distribution of risk scores and survival status is shown 
in Figure 4D, with high-risk scores patients exhibiting 
higher survival risk and shorter survival time. The 
expression heatmap of nine genes between the subgroups 
is depicted in Figure 4E. The time-dependent ROC curve 
was utilized to evaluate the performance of the model. The 
results showed that the area under the curve (AUC) values 
for predicting 1-, 3-, and 5-year OS were 0.700, 0.735, and 
0.732, respectively [hazard ratio (HR) =4.26; 95% confidence 
interval (CI): 3.15–5.75; P<0.0001], indicating the robustness 
of the model (Figure 4F). Moreover, K-M survival analysis 
revealed that patients with high-risk scores showed worse 
OS, disease-specific survival (DSS), progression-free interval 
(PFI), and disease-free interval (DFI) than patients with low-
risk scores (P<0.001) (Figure 4G-4J).

A

B

Figure 3 The interaction network of GO terms generated by the Cytoscape plug-in ClueGO. (A) The node colors represent the pathway 
enrichment significance. (B) Proportion of each GO terms group in the total. **, P<0.01. CoA, coenzyme A; GO, Gene Ontology.
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Figure 4 Establishment of prognostic gene signature by LASSO Cox regression analysis in TCGA-LUSC cohort. (A) LASSO coefficient 
profiles of the 21 genes in LUSC. Selection of the optimal parameter (lambda) in the LASSO model for LUSC. (B) A coefficient profile 
plot was generated against the log (lambda) sequence. (C) Twenty-one genes underwent multivariable Cox proportional hazards regression 
analysis and identified nine prognostic genes. The X-axis represents the HR. *, P<0.05; **, P<0.01. (D) The distribution of risk score and 
survival status. Patients with high-risk scores (red) exhibited higher survival risk and shorter survival time. (E) The expression heatmap 
of the nine identified FAMRGs. (F) The AUC values of ROC curve for predicting 1-year (red), 3-year (yellow), and 5-year (green) OS 
(HR =4.26; 95% CI: 3.15–5.75; P<0.0001). (G-J) K-M curves of OS, DSS, PFI and DFI between high- and low-risk group (P<0.001). CI, 
confidence interval; AIC, Akaike information criterion; AUC, area under the curve; OS, overall survival; DSS, disease-specific survival; PFI, 
progression-free interval; DFI, disease-free interval; LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome 
Atlas; LUSC, lung squamous cell carcinoma; HR, hazard ratio; FAMRGs, fatty acid metabolism-related genes; ROC, receiver operating 
characteristic; K-M, Kaplan-Meier.
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Furthermore, six independent GEO datasets (GSE73403, 
GSE74777, GSE50081, GSE37745, GSE30219, and 
GSE7157010) were used to validate the performance of the 
model. Each cohort was classified into a high-risk group and 
a low-risk group according to the optimistic cutoff value of 
the risk score. The results demonstrated that patients with 
high-risk scores exhibit worse OS than patients with low-
risk scores in the six GEO datasets (GSE74777, P=0.0276; 
GSE37745, P=0.0352; GSE157010, P=0.0367; GSE50081, 
P=0.0133; GSE73403, P=0.0061; GSE30219, P=0.082) 
(Figure 5A-5F), indicating that the signature based on 
FAMRGs can accurately predict the prognosis of early-stage 
LUSC.

As the FAMRGs-based signature having undergone 
robust validation in independent cohorts, we further carried 
out univariate and multivariate Cox regression analysis to 
assess its viability as an independent prognostic predictor 
for early-stage LUSC patients in the TCGA-LUSC 
cohort. Notably, the risk score derived from the signature 
emerged as an independent indicator in both univariate (HR 
=1.740; 95% CI: 1.509–2.007; P<0.001) and multivariate 
Cox analyses (HR =1.722; 95% CI: 1.494–1.983; P=0.001) 
even after adjusting for various clinical features such as 

age, gender, stage, and smoking status (Figure 6A,6B). To 
facilitate risk assessment and predict 1-, 3-, and 5-year OS 
probabilities for individual LUSC patients, we constructed 
a personalized scoring nomogram. This nomogram 
seamlessly integrated the risk score with other pertinent 
clinicopathological features, including age, gender, T stage, 
N stage, and TNM stage. An illustrative example of the 
nomogram’s application in predicting survival probability 
for a patient is depicted in Figure 6C. The calibration curves 
were employed to validate the nomogram’s performance, 
revealing a high degree of consistency between the actual 
1-year (green line), 3-year (blue line), and 5-year (red 
line) OS predictions and the predicted survival (45° line) 
(Figure 6D). Additionally, ROC analysis was performed to 
compare the predictive abilities of risk score, nomogram, 
and other clinicopathological features in predicting OS. 
The results demonstrated that the AUC value of the risk 
score was 0.721, while the AUC of the nomogram was 0.690, 
surpassing the performance of other parameters (Figure 6E). 
These findings affirm that both risk score and nomogram 
exhibit remarkable predictive capabilities for early-stage 
LUSC, with the risk score performed better.

Furthermore, we assessed the association of FAMRGs-
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Figure 5 Validation for prognostic value of the signature in GEO cohorts. (A-F) K-M curves of OS in various GEO cohorts based on risk 
score. Patients with high-risk scores exhibited worse OS than patients with low-risk scores in six GEO datasets (GSE74777, P=0.0276; 
GSE37745, P=0.0352; GSE157010, P=0.0367; GSE50081, P=0.0133; GSE73403, P=0.0061; GSE30219, P=0.082). GEO, Gene Expression 
Omnibus; K-M, Kaplan-Meier; OS, overall survival.
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Figure 6 The FAMRGs-based signature could predict prognosis in TCGA-LUSC cohort. (A,B) Univariate and multivariate Cox regression 
analysis indicated that the risk score derived from the signature emerged as an independent indicator in both univariate (HR =1.740; 95% 
CI: 1.509–2.007; P<0.001) and multivariate Cox analyses (HR =1.722; 95% CI: 1.494–1.983; P=0.001). (C) A nomogram was constructed 
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based signature with clinicopathological features. The 
distribution of clinicopathological features and gene 
expression level between high- and low-risk groups is shown 
in Figure 7A. Boxplots were used to assess differences in 
risk scores among different clinical parameters. The results 
showed that there were no significant differences in risk 
scores based on age, gender, smoking status, and T stage. 
Contrary to our conjectures, patients with lower TNM 
stage (P=0.0087) and less lymph node metastasis (P=0.0085) 

had higher risk scores (Figure 7B-7G).

GSVA

GSVA was employed to analyze the differences in 
metabolic processes between the high-risk and low-risk 
groups. As shown in Figure 8, the metabolic pathways 
in apoptosis, NOD-like receptor signaling pathway, 
glycosphingolipid biosynthesis ganglio series, complement 
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Figure 7 The correlation between risk score and clinical parameters in TCGA-LUSC cohort. (A) The distribution of clinicopathological 
features and gene expression level between high-risk and low-risk group. **, P<0.01; ***, P<0.001. Differences in risk scores among different 
clinical parameters, such as TNM stage (B), N stage (C), T stage (D), age (E), gender (F), and smoking status (G). TCGA, The Cancer 
Genome Atlas; LUSC, lung squamous cell carcinoma; TNM, tumor-node-metastasis.

and coagulation cascades, glycosaminoglycan degradation, 
other glycan degradation, focal adhesion, lysosome, and 
N-glycan biosynthesis were enriched in the high-risk 
group. In contrast, the metabolic pathways in linoleic acid 

metabolism, glycosphingolipid biosynthesis-lacto and 
neolacto series, starch and sucrose metabolism, pentose 
and glucoronate interconversions, ascorbate and aldarate 
metabolism, and drug metabolism other enzymes were 
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Figure 8 GSVA was performed to analyze the differences in metabolic processes between the high- and low-risk groups in TCGA-LUSC 
cohort. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis; TCGA, The Cancer Genome Atlas; LUSC, 
lung squamous cell carcinoma.

enriched in the low-risk group.

Immune infiltration analysis and immunomodulators 
expression in LUSC patients

Previous research has linked high immune cell infiltration 
in lung cancer to a poor prognosis (22). Therefore, we 
evaluated the infiltration levels of various immune cells on 
TCGA-LUSC samples by ESTIMATE algorithm analysis. 
We observed that elevated stromal score, immune score, 
and ESTIMATE score in the high-risk group compare 
to the low-risk group, indicating increased immune cell 
infiltration in the high-risk group (Figure 9A-9C). The 
immune function analysis further revealed that a significant 
increase in C-C chemokine receptor (CCR), HLA, 
parainflammation, type-II-interferon (INF)-response, 
major histocompatibility complex (MHC)-class-I, and 
type-I-INF-response in the high-risk group (Figure 9D). 
Additionally, we conducted a comparative analysis of the 
expression levels of immune regulatory molecules, including 

HLA genes and eight immune checkpoint genes between 
different risk groups. The results showed that high-risk 
group exhibited higher expression of HLA genes and several 
immune checkpoint genes such as CTLA4, HAVCR2, 
LAG3, PDCD1, PDCD1LG2, SIGLEC15, and TIGIT 
(Figure 9E,9F). These results illuminate the possibility 
that early-stage LUSC patients with high-risk scores may 
manifest a more robust response to therapies targeting the 
mentioned immune checkpoints. Furthermore, considering 
the central role of HLA molecules in immunity, variation 
at the HLA loci could differentially affect the response to 
immune checkpoint inhibitors (ICIs) (23). For example, 
the loss of heterozygosity at the HLA-I locus (HLA-LOH) 
was associated with immune resistance in non-small cell 
lung cancer (NSCLC) (24). Consequently, enhancing the 
expression of HLA may hold the potential to augment 
T immune cell activities and improve the response to 
immunotherapy in NSCLC (25). These findings contribute 
to our understanding of the immune landscape mediated 
by FAMRGs in LUSC and provide potential avenues for 
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Figure 9 Immune infiltration analysis and immunomodulators expression between different risk scores in LUSC patients. (A-C) Violin 
plots showed elevated stromal score, immune score, and ESTIMATE score in the high-risk group compared to the low-risk group. (D) The 
immune function analysis revealed a significant increase in CCR, HLA, parainflammation, type-II-INF-response, MHC-class-I, and type-
I-INF-response in the high-risk group. (E,F) The expression of HLA genes and eight immune checkpoint genes between the high-and 
low-risk group. *, P<0.05; **, P<0.01; ***, P<0.001. APC, antigen-presenting cell; CCR, C-C chemokine receptor; HLA, human leukocyte 
antigen; MHC, major histocompatibility complex; INF, interferon; LUSC, lung squamous cell carcinoma.
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therapeutic intervention.

Signature predict the response to chemotherapy and 
targeted therapy

Since GSVA revealed an enrichment of drug metabolism 
pathway in the low-risk group, we hypothesized that our 
FAMRGs-based signature may influence the response to 
anti-tumor treatment in LUSC. We utilized the GDSC 
database for drug response prediction. Our results 
demonstrated that patients with low-risk scores exhibited 
heightened sensitivity to several antineoplastic drugs 
(gemcitabine, paclitaxel, and erlotinib) relevant to LUSC. 
The IC50 values for gemcitabine, paclitaxel, and erlotinib 
were significantly lower in the low-risk group compared to 
the high-risk group (Figure 10A-10F, P<0.001).

Discussion

FAs are essential for synthesizing complex lipids critical 
for cancer cell proliferation (7). FAs metabolism in cancer 
cells is influenced not only by intracellular oncogenic 
signals but also by various factors in the tumor immune 
microenvironment, such as lipids, cells, cytokines, growth 

factors, DNA, RNA, and nutrients (6). Emerging evidence 
highlights the role of FAs metabolism in immune escape 
and immune tolerance, involving immune checkpoint 
molecules, antigen presentation loss, and lipid metabolic 
reprogramming (26,27). Understanding the interplay 
between FAM and immune cell function could reveal 
valuable markers for tumor prognosis and treatment. 
However, while studies on lung cancer metabolism are 
primarily focused on adenocarcinoma, research on SCC 
remains limited. Our study aimed to uncover the unique 
FAM characteristics in early-stage LUSC and its association 
with prognosis, tumor immunity, and therapeutic response.

In this study, we developed a FAMRGs-based prognostic 
signature for early-stage LUSC based on the TCGA 
dataset. First, we identified 343 prognosis-related genes 
from a pool of 1,390 FAMRGs in the TCGA-LUSC 
cohort through univariate Cox regression analysis. Based 
on unsupervised clustering, these 343 prognosis FAMRGs 
can be classified into two clusters (cluster 1 and cluster 2) 
and significantly different OS were observed between the 
two clusters. Concurrently, these prognostic FAMRGs 
were found to be predominantly involved in regulation of 
lipid kinase activity and various metabolic pathways. To 
select the most robust candidate genes for constructing the 
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FAMRGs-based prognostic signature, we employed LASSO 
Cox regression analysis and multivariate regression analysis. 
Ultimately, nine genes (ACOT11, APOH, BMX, CYP2R1, 
DPEP3, FABP6, FADS2, GLYATL2, and THRSP) were 
identified as the most reliable contributors to established 
signature. Notably, these genes were predominantly 
involved in regulating tumor lipid metabolism and 
progression. For instance, ACOT11, a FA-CoA metabolic 
enzyme, was proved as an oncogene in lung cancer, which 
could bind CSE1L to promote cell proliferation, migration, 
and invasion (28). FA-binding protein 6 (FABP6), a bile 
acid carrier protein, was overexpressed in colorectal cancer, 
bladder cancer, and glioma (29). Inhibition of FABP6 
reduced tumor cell invasion and angiogenesis by reducing 
MMP-2 and VEGF in human glioblastoma cells (30). 
Kothapalli et al. showed that as a dominant FA desaturase 
(FAD), FADS2 upregulated in various cancer cells including 
melanoma, prostate, liver, and lung cancer, which could 
accelerate lipid metabolic activity and tumor invasiveness (31).  
In ovar ian cancer,  inhibi t ion of  FADS2 direct ly 
downregulated GPX4 and the GSH/GSSG ratio, disrupted 
cellular/mitochondrial redox balance, and then leaded 
to iron-mediated lipid peroxidation and mitochondrial 
dysfunction in ascites-derived ovarian cancer cells (32). 
Another study indicated that FADS2 mediated resistance 
to PI3K/mTOR inhibitors in NSCLC (33). These 
findings suggest that the genes within this signature could 
potentially impact the prognosis of LUSC by regulating 
tumor lipid metabolism. The predictive performance of the 
prognostic signature was validated across six independent 
GEO-LUSC datasets. Furthermore, even after adjusting 
for clinicopathological confounders in multivariate Cox 
regression analysis, the signature maintained its accurate 
prognostic predictive capacity. To enhance the practical 
application, we developed a scoring nomogram as a visual 
tool for predicting survival in individual LUSC patients.

Considering the potential link between FAMRGs 
and immune escape, immune tolerance, and antigen 
presentation loss, as well as the crucial role of tumor 
immune microenvironment in tumorigenesis, prognosis, and 
response to immunotherapy (34-36), we investigated tumor 
immune cell infiltration and immunomodulators expression 
in different risk groups. Our investigation demonstrated an 
upregulation of immune-related genes, particularly those 
associated with HLA and immune checkpoint genes, in the 
high-risk group. Notably, immune functions such as CCR, 
HLA, parainflammation, type-II-INF-response, MHC-
class-I, and type-I-INF-response were markedly elevated 

in this cohort. These findings strongly suggest intrinsic 
differences in tumor immunogenicity between FAMRGs-
defined risk groups and FAMRGs may play a pivotal 
role in shaping the tumor immune microenvironment. 
Furthermore, through GSVA, we identified the NOD-
like receptor signaling pathway as a major pathway in the 
high-risk group. Previous research has highlighted the 
involvement of this pathway in inflammation-associated 
tumorigenesis, angiogenesis, cancer cell stemness, and 
chemoresistance (37). Based on these findings, we propose 
a hypothesis that FAMRGs may contribute to early-stage 
LUSC tumorigenesis by regulating the tumor immune 
microenvironment particularly through the modulation of 
NOD-like receptor signaling pathway.

In addition, GSVA analysis unveiled an enrichment of 
drug metabolism pathway in the low-risk group. We used 
GDSC for drug sensitivity analysis. Our results indicated 
that enhanced effectiveness of gemcitabine, paclitaxel, and 
erlotinib in early-stage LUSC patients with low-risk scores. 
These findings underscore the potential of our FAMRGs-
based signature as a valuable tool for predicting and 
stratifying patient responses to specific chemotherapeutic 
and targeted therapeutic agents. The identification of such 
predictive signature holds promise for guiding personalized 
treatment approaches in LUSC patients, thereby enhancing 
the effectiveness and precision of therapeutic interventions.

Although the FAMRGs-based signature proves 
effective as a prognostic marker and emerges as a potential 
therapeutic target in early-stage LUSC, this study still 
had some limitations. Firstly, our study was based on some 
retrospective datasets, and a prospective study to validate the 
utility of this FAMRGs-based signature will be necessary. 
Secondly, the conclusion drawn from our integrated analysis 
of clinical samples obtained from public databases, and the 
findings need validated through new methodologies and the 
inclusion of fresh specimens. Thirdly, while we indirectly 
assessed the ability to predict responses to immune, chemo, 
and targeted therapies, a more in-depth exploration of 
the underlying mechanisms of the signature in predicting 
treatment responses is warranted.

Conclusions

This study establishes a robust prognostic signature based 
on nine FAMRGs, providing a reliable tool for predicting 
prognosis, delineating immune landscape, and offering 
profound insights for the development of personalized 
treatment strategies in early-stage LUSC patients.
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