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Development of a multiparametric model for predicting the 
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Background: Choosing the appropriate treatment early and predicting the efficacy of neoadjuvant 
chemotherapy (NAC) for locally advanced breast cancer patients are of particular importance for clinicians. 
Developing and validating a multiparametric model for predicting NAC would be very meaningful for 
clinical practice.
Methods: This study included 91 patients with locally advanced breast cancer treated from 2016 to 2020. 
The correlation between multiparametric characteristics and the efficacy of NAC was examined. The data 
were randomly divided into training and validation sets. A least absolute shrinkage and selection operator 
(LASSO) regression analysis was used for the variable screening. A multivariable logistic regression analysis 
was used to construct the model. Calibration and decision curves were used to assess the performance of the 
established model.
Results: Lymph node metastasis, the first standard apparent diffusion coefficient (ADC) at the baseline, the 
change in the standard ADC at the first follow-up, the change in tumor volume at the first follow-up, and the 
clinical stage of the tumor at the baseline were selected for inclusion in the model. In the receiver operating 
characteristic (ROC) analysis, the areas under the curve (AUCs) were 0.984 [95% confidence interval (CI): 
0.958–1] and 0.815 (95% CI: 0.509–1) for the primary and validation cohorts, respectively. The utility of the 
established model was confirmed by calibration and decision curves, and a nomogram was obtained.
Conclusions: A multiparametric model based on clinical-pathological-magnetic resonance imaging (MRI) 
features was established to predict the effect of NAC in patients with locally advanced breast cancer.
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Introduction

According to worldwide cancer statistics, in 2021, breast 
cancer ranked first among cancers in women in new cancer 
cases, accounting for approximately 30% of all new cancer 
cases for women, and is increasing at a rate of 0.5% per year,  
and was the leading cause of tumor-related death in  
women (1). In China, the incidence rate of advanced breast 
cancer is 545.29 per 100,000 women every year, and 30% of 
patients who are initially diagnosed with early breast cancer 
and receive adjuvant therapy eventually develop recurrence 
or metastasis (2).

The increasing rate of surgical resection of tumors 
is important for locally advanced patients with breast 
cancer. Neoadjuvant chemotherapy (NAC) can lower the 
chance of tumor recurrence after surgery and the clinical 
tumor stage, improve the chance of breast-conserving 
surgery, and provide sensitive information on effective 
drugs (3-5). Breast cancer patients who respond to NAC 
can be prescribed sensitive drugs after underdoing radical 
mastectomy for breast cancer (3-5).

Predicting the efficacy of NAC early and choosing the 
appropriate timing for radical mastectomy are important. 
The histopathological features and genomic expression 
of tumors are used to monitor disease progression and 
responses to treatment, detect tumor reoccurrence, and 
evaluate the prognosis of breast cancer patients (6,7). 
Some studies have reported that the histopathologic 
features of tumor tissue, including programmed death-

ligand 1 expression and Ki-67 status, are related to the 
efficacy of NAC in breast cancer patients (8,9). Moreover, 
the predictive effects of molecular markers and liquid 
biopsies in the NAC of breast cancer patients have received 
widespread attention (10,11). Previous studies have shown 
the effectiveness of NAC using molecular biomarkers and 
liquid biopsies (12-15).

In addition to molecular biomarkers and liquid biopsies, 
significant progress has been made in predicting the efficacy 
of NAC for breast cancer using radiomics methods. Several 
studies have examined the multidimensional features of 
tumor tissues using imaging parameters, such as ultrasound, 
18F-FDG PET/CT, and magnetic resonance imaging 
(MRI) scanning, to predict breast cancer patients’ responses 
to treatment and prognosis early (16-18). Changes in 
the maximum size of the breast cancer combined with 
ultrasonography can be informative in predicting NAC 
efficacy and evaluating residual lesions (19). Notably, 
the volumetric parameters of 18F-FDG PET/CT before 
NAC, such as the metabolic tumor volume and total lesion 
glycolysis, are significantly correlated with the disease-
free survival of breast cancer patients (20). Recent studies 
have also shown that MRI features of tumors identified by 
pretreatment multiparametric MRI examination are related 
to breast cancer patients’ responses to NAC, and can predict 
the sensitivity of breast cancer patients to NAC (21-24). 
Several studies have shown that different MRI sequences of 
tumors can provide microstructural information, including 
information about blood supply, tissue density, and the 
shape and size of the lesion, and these MRI sequences are 
widely used in the clinical diagnosis of breast cancer (25-27). 
Tsukada et al. found that a tumor growth pattern parallel to 
Cooper’s ligaments and a fast wash-out rate on pretreatment 
multiparametric MRI are associated with the pathological 
complete response (pCR) of breast cancer patients by 
combining multiple MRI parameters (28).

However, few studies have examined the relationship 
between the NAC response and multiparametric features of 
breast cancer patients, including the clinical, pathological, 
and MRI features, using a prediction model. In this study, in 
addition to the basic clinical features of patients with locally 
advanced breast cancers, we gathered pathological data and 
radiological characteristic data by MRI and investigated the 
correlation between clinical-pathological-MRI parameters 
and the pCR by establishing a prediction model. The 
least absolute shrinkage and selection operator (LASSO) 
regression model was used for the variable screening. Some 
features that were significantly associated with pCR were 
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selected by a multivariate logistic regression analysis. A 
multiparametric model to predict the responses of breast 
cancer patients to NAC was built and the performance of 
this model was assessed by calibration and decision curves. 
The established multiparametric model, which is based on 
clinical-pathological-MRI features, can predict the effect 
of NAC for patients with locally advanced breast cancer 
early and enable clinicians to implement timely patient 
treatment regimens. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-770/rc).

Methods

Patients

This retrospective study was approved by the Medical 
Research Ethics Committee (an institutional review board) 
of the First Affiliated Hospital of University of Science and 
Technology of China (number: 2020-P-045), and all the 
participants agreed to participate in the study and signed 
the informed consent form. The study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

In total, 91 patients with locally advanced breast cancer 
who received NAC and radical surgery for breast cancer at 
the First Affiliated Hospital of University of Science and 
Technology of China from 2016 to 2020 were enrolled 
in this study. To be eligible for inclusion in this study, the 
patients had to meet the following inclusion criteria: (I) 
have stage II–III locally advanced breast cancer without 
distant metastasis as confirmed by pathological biopsy and 
imaging examination; (II) have undergone multiparameter 
MRI examinations at the baseline before NAC; (III) have 
not received receive radiotherapy or endocrine therapy 
before NAC; and (IV) have undergone pathological 
examinations of breast cancer tumor tissues by radical 
surgery. Patients were excluded from the study if they met 
any of the following exclusion criteria: (I) had no pathology 
test results available; (II) had not undergone preoperative 
or postoperative pathological assessment; (III) had received 
radiotherapy or endocrine therapy before NAC; and/or (IV) 
had low or poor quality multiparameter MRI images, and 
data that could not be calculated and analyzed.

Magnetic resonance imaging

The enrolled patients received three multiparameter MRI 

tests before radical mastectomy at the following time 
points: the baseline, after two cycles of chemotherapy, 
and after three cycles of chemotherapy. The parameters 
and sequences of the multiparameter MRI included 
intravoxel incoherent motion, diffusion-weighted imaging, 
and dynamic contrast-enhanced MRI. All the patients 
underwent MRI using a 3.0 T MRI (GE Signa HD × T, 
USA) with an 8-channel dedicated breast coil. For more 
detailed information on the MRI images and evaluation 
methods of the different sequences and parameters, see 
our previous study (29). The apparent diffusion coefficient 
(ADC) values were evaluated by two senior radiologists, and 
the test was repeated three times.

Immunohistochemistry

We defined the values of estrogen receptor (ER) and 
progesterone receptor (PR) expression as positive or 
negative, and a cut-off value of 1% was set (30). A positive 
staining area ≤20% was defined as Ki-67 negative, 
while a positive staining area >20% was defined as Ki-
67 positive (31). The histologic grade of the tumor tissue 
was assessed using the Bloom Richardson method. The 
immunohistochemical expression of the human epidermal 
growth factor receptor 2 (HER2) protein was examined 
using the BenchMark ULTRA automated stainer (Ventana, 
USA) using the VENTANA anti-HER2/neu (4B5) rabbit 
monoclonal primary antibody (Ventana, USA). We used 
the anti-HER2/neu (4B5) rabbit monoclonal primary 
antibody and the ultraView Universal DAB text kit with 
the BenchMark ULTRA automated stainer, and the anti-
HER2/neu (4B5) rabbit monoclonal primary antibody was 
incubated for 12 minutes at 36 ℃. Hematoxylin 2 was used 
for counterstaining for 4 minutes. The expression level of 
the HER2 protein was scored as 0, 1+, 2+, or 3+. A score 
of 0 or 1+ was considered negative, while a score of 3+ 
was considered positive. Samples with a score of 2+ were 
subsequently confirmed by fluorescence in situ hybridization 
in accordance with the manufacturer’s instructions (32).

NAC regimen and response assessment

The enrolled patients received two to eight cycles of NAC, 
and chemotherapy regimens, including epirubicin plus 
cyclophosphamide, epirubicin plus cyclophosphamide, 
and docetaxel, epirubicin, plus cyclophosphamide, were 
determined as per the guidelines. The Miller-Payne system 
has five grades. pCR was defined as pathological complete 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-770/rc
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remission, and non-pCR was defined as non-pathological 
complete remission. A grade 5 pathological reaction was 
considered pCR, while grade 1–4 pathological reactions 
were considered non-pCR. pCR was defined as the absence 
of invasive cancer cells in the surgical specimen after NAC 
for cancer, with or without the presence of ductal invasive 
carcinoma. Conversely, non-pCR was defined as the 
presence of invasive cancer cells in the surgical specimen 
after NAC. According to the Miller-Payne system, the 
efficacy of NAC was evaluated by comparing the operative 
specimen with the preoperative specimen (33,34).

Clinical characteristics of breast cancer patients and 
magnetic resonance imaging parameters of tumor tissues

In this retrospective study, the clinical, pathological, and 
MRI characteristics were observed and analyzed. The 
basic characteristics included patient age, disease history, a 
family history of tumor, and menstrual history. The clinical 
features included the clinical stage of the tumor, luminal 
type, Miller-Payne grade, tumor marker, chemotherapy 
regimen and cycle, complete blood count, liver function, 
creatinine, D-dimer, and left ventricular ejection fraction. 
The histopathological features included lymph node status, 
vascular and nerve status, and the nipple, basal, and tumor 
tissue margins. The protein expression levels were obtained 
by immunohistochemistry, and the proteins included ER, 
PR, HER2, Ki-67, CD31, CD34, CD56, D2-40, P53, 
P63, CK5/6, CK7, CK5, AR, P120, Syn, CgA, GATA-3, 
GCDFD-15, Sox-11, vimentin, calponin, E-cadherin, and 
lactoglobulin.

Next, the multiparametric MRI features were analyzed. 
First, the type of breast and the morphology of the tumor 
were described. Breast types included heterogeneously 
dense breast, scattered fibroglandular breast and extremely 
dense breast. The morphology of the tumor included the 
size and quadrant of the lesion, the shape of the lesion 
(circular, extent, satellite, or irregular), and the pattern of 
the lesion (burr, necrosis, or hole).

The features of the blood vessels, muscles, and axillary 
lymph nodes around the tumor were also observed. The 
internal mammary, axillary, thoracic, and intercostal arteries 
were described and analyzed. The pectoralis major muscle, 
pectoralis minor muscle, and intercostal muscle were also 
observed and assessed. The features of the axillary lymph 
nodes were described, including the number, size, and signal 
parameters of the lymph nodes. The features of skin edema, 

mammary duct, subcutaneous fascia, areola of the nipple, 
retro-mammary space, ulcer, and Cooper’s ligaments were 
also studied and evaluated.

Other features included the Breast Imaging Reporting 
and Data System grade of the tumor, pleural effusion, 
contralateral breast diseases, and disease of other organs. 
T1- or T2-weighted sequences of the MRI were examined, 
and the above data were recorded. The MRI parameters 
also included different ADC values (standard, fast, or slow 
ADC values) at different time points, the type of the time-
signal intensity curve, and the curve variation type.

Statistical analysis

In this study, the correlation between clinical, pathological, 
or MRI features and Miller-Payne grades were assessed 
by the Chi-squared test or Fisher’s exact test. The LASSO 
binary logistic regression model was used to analyze the 
clinical, pathological, and MRI features. According to 
the logistic regression analysis, the odds ratio (OR) and 
coefficients were estimated. P values less than 0.05 were 
considered statistically significant.

Development of the multiparametric model

The correlation between the multiparametric characteristics 
and NAC efficacy was analyzed. A LASSO regression model 
was used for the dimension reduction of the data, feature 
selection, and feature building. With the 10-fold cross-
validation, the optimization target would be a binomial 
deviance of no more than the simplest models that would 
provide the minimum nominal deviance standard deviation. 
A generalized and linear model with a L2 penalty was 
used to fit the model, and a multiparametric model was 
established.

A LASSO regression model can be used to study the 
relationship between the dependent variable (target) 
and the independent variable (predictor), and thus has a 
wide range of uses in clinical applications. For example, 
LASSO regression models can be used for: (I) disease 
prediction: a LASSO regression model can be used to 
predict the occurrence and progression of diseases. By 
choosing appropriate independent variables, prediction 
models can be built to help doctors identify high-risk 
patients and implement appropriate interventions. (II) 
Biomarker research: a LASSO regression model can be 
used to screen the biomarkers associated with diseases. By 
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analyzing large-scale biological data, key biomarkers related 
to diseases can be identified, which can help in the early 
diagnosis and treatment of diseases. (III) Drug discovery 
and developments: a LASSO regression model can be used 
to build effect prediction models for screening new drugs. A 
LASSO regression model can be built to predict the efficacy 
of some new drugs. Drug development can help clinicians 
formulate individualized treatment schemes.

Performance of the multiparametric model

A nomogram was used to visualize the multiparametric 
model. To further evaluate the performance of the model, 
calibration and decision curves were plotted. To verify the 
effect of the model, we repeatedly used 5-fold cross-validation 
for the data. The cross-validation data were independently 
selected and fitted with the model by processing the whole 
data. Through multiple cross-validations, the values and 
95% confidence intervals (CIs) of accuracy, the area under 
the curve (AUC), positive predictive value (PPV), negative 
predictive value (NPV), sensitivity, and specificity were 
calculated to assess the model.

Results

Clinical characteristics

The clinical characteristics of 91 breast cancer patients 
who received NAC were analyzed and are shown in  
Table 1. In the primary cohort, the breast cancer patients 
had an average age of 47.33±18.56 years in the pCR group 
and 48.56±11.85 years in the non-pCR group (P=0.894). 
In the validation cohort, the breast cancer patients had 
an average age of 45.91±9.45 years in the pCR group 
and 49.88±10.45 years in the non-pCR group (P=0.260)  
(Table 1). As Table 1 shows, 7 (26.9%) and 19 (73.1%) 
patients had pCR and non-pCR in the primary cohort, 
respectively. The pathological types of tumor tissue included 
invasive carcinoma, high-grade intraductal carcinoma, 
ductal carcinoma, invasive lobular carcinoma, and mucinous 
adenocarcinoma. In the pCR group, 71.4% and 78.6% had 
the invasive type in the primary and validation cohorts, 
respectively. In terms of the clinical stage of the primary 
cohort, 85.7% had stage II and 14.3% had stage III in the 
pCR group, and 26.3% had stage II and 73.7% had stage 
III in non-pCR groups, and the difference between the two 

Table 1 Characteristics of the patients in the clinical prediction model

Characteristic
Primary cohort Validation cohort

non-pCR pCR P non-pCR pCR P

Age, years 48.56±11.85 47.33±18.56 0.894 49.88±10.45 45.91±9.45 0.260

Histological type* 0.211 0.397

Invasive 17 (89.5) 5 (71.4) 43 (84.3) 11 (78.6)

Mixed invasive 2 (10.5) 2 (28.6) 8 (15.7) 3 (21.4)

Clinical stage* 0.007 0.014

II 5 (26.3) 6 (85.7) 18 (35.3) 10 (71.4)

III 14 (73.7) 1 (14.3) 33 (64.7) 4 (28.6)

HER2 status 0.548 0.541

Positive 10 (55.6) 3 (42.9) 19 (37.3) 7 (50.0)

Negative 8 (44.4) 4 (57.1) 32 (62.7) 7 (50.0)

Unkown 1 0

Ki-67 status 0.369 0.527

≤20% 7 (38.9) 4 (57.1) 16 (31.4) 6 (42.9)

>20% 11 (61.1) 3 (42.9) 35 (68.6) 8 (57.1)

Unkown 1 0

Data are presented as mean ± SD or number (percentage). *, data are measured at baseline. HER2, human epidermal growth factor 
receptor 2; pCR, pathologic complete response; SD, standard deviation.
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groups was significant (P=0.007). A significant difference 
(P=0.014) between the pCR and non-pCR groups was also 
observed in the validation cohort (Table 1).

The HER2 and Ki-67 status of the tumor tissues was 
also analyzed. The data indicated that 55.6% and 37.3% 
of the non-pCR patients had positive HER2 expression 
in the primary and validation cohorts, respectively. As  
Table 1 shows, 61.1% and 68.6% of the non-pCR patients 
had positive Ki-67 expression in the primary and validation 
cohorts, respectively. There were no significant differences 
between HER2 and Ki-67 statuses in the two cohorts, and 
the P values for the HER2 expression difference between 
the two groups were 0.548 and 0.541 in the primary and 
validation cohorts, respectively. The P values for the Ki-67 
expression difference between the two groups were 0.369 
and 0.527 in the primary and validation cohorts, respectively.

Feature selection and multiparametric model construction

In our study, 102 clinical, pathological, and MRI features 
were analyzed using the LASSO binary logistic regression 
model (Figure 1). The selected λ value and log(λ) were 
0.1466567 and −1.919661, respectively. The optimal five 
features were selected to build the multiparametric model 
(Figure 1). The features of the established model included 
lymph node metastasis, the first standard ADC at the 
baseline, the change in the standard ADC at the first follow-
up, the change in tumor volume at the first follow-up, and 

the clinical stage at the baseline.

Development and evaluation of the nomogram

By multiple logistic and linear regression analyses, a 
multiparametric and predictive model was established based 
on the five features, and a nomogram was developed based 
on the model (Figure 2A). As Figure 2B shows, the gray, 
long and dashed line (ideal) represents perfect prediction, 
while the gray, short and dashed line (apparent) shows the 
predicted probability of the nomogram, which was close 
to the ideal line. The results indicated that the two curves 
had a good correlation, and that the nomogram had good 
predictive performance (Figure 2B). The bias correction 
(as represented by the solid black line) was estimated using 
internal verification and bootstrap methods (Figure 2B). 
Figure 2C displays the decision curves for the nomogram, 
and the cost-to-benefit ratio was 1:10. The established 
nomogram showed good performance regardless of whether 
the patients had pCR or non-pCR.

Performance of the multiparametric model

Next, the performance of the established model was 
examined by a receiver operating characteristic (ROC) 
analysis (Figure 3A,3B). As Figure 3 show, the AUCs were 
0.984 (95% CI: 0.958–1) and 0.815 (95% CI: 0.509–1) 
in the primary and validation cohorts, respectively. The 

Figure 1 Feature selection was performed by the LASSO binary logistic regression model. (A) The significant parameters were selected and 
assessed via the 1-se criteria, default setting of the LASSO algorithm, and 10-fold cross-validation. Five significant variables were identified, 
and a nomogram was drawn with the L2 penalty. (B) The relation between lambda and the fitted parameters was calculated and evaluated. 
LASSO, least absolute shrinkage and selection operator.
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accuracy rates of the predictive model were 0.945 (95% 
CI: 0.865–1) and 0.753 (95% CI: 0.583–0.833) in the 
primary and validation cohorts, respectively. As Table 2 
shows, the PPVs were 0.832 (95% CI: 0.619–1) and 0.535 
(95% CI: 0.333–0.667) in the primary and validation 
cohorts, respectively. The NPVs of the predictive 
model were 0.990 (95% CI: 0.951–1) and 0.871 (95% 
CI: 0.778–1) in the primary and validation cohorts, 

respectively (Table 2). The sensitivity and specificity of the 
model were also analyzed, and the results are set out in  
Table 2. The model had a sensitivity of 0.871 (95% CI: 
0.778–1) and 0.955 (95% CI: 0.769–1), and a specificity of 
0.642 (95% CI: 0.333–1) and 0.938 (95% CI: 0.816–1) in the 
primary and validation cohorts, respectively.

According to the logistic regression analysis, lymph node 
metastasis (OR: 0.442; 95% CI: 0.072–2.707; P=0.377), the 

Figure 2 The performance of the multiparametric model was assessed. (A) The nomogram of the established model included five related 
factors; (B) the consistency of the nomogram was examined between the predicted probability and actual probability of the pCR by 
calibration curves; (C) the decision curve analysis results for the established nomogram. The assumption that all the patients had a pCR 
is denoted by a gray line. The assumption that all the patients had a non-pCR is indicated by the black line. ADC, apparent diffusion 
coefficient; pCR, pathological complete response.
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first standard ADC at the baseline (OR: 3.165; 95% CI: 
1.396–7.175; P=0.006), the change in the standard ADC 
at the first follow-up (OR: 2.304; 95% CI: 0.915–5.804; 
P=0.077), the change in tumor volume at the first follow-
up (OR: 0.572; 95% CI: 0.254–1.287; P=0.177), and the 
clinical stage at the baseline (OR: 0.089; 95% CI: 0.013–
0.611; P=0.014) were five predictive factors for NAC in the 
established model (Table 3).

Discussion

The efficacy of chemotherapy in breast cancer patients 
is often evaluated by pathological and imaging results, 
and the Response Evaluation Criteria in Solid Tumors 
(RECIST) 1.1 are often recommended for assessing the 

efficacy of chemotherapy in breast cancer patients (35,36). 
The Miller-Payne system is widely used to evaluate NAC 
for breast cancer patients. The standard is based on the 
postoperative pathological results and thus it cannot predict 
the effect of chemotherapy before breast cancer surgery. 
In clinical practice, new methods are needed to predict 
NAC efficacy and to choose optimal treatment plans early 
for breast cancer patients. Dammu et al. established a new 
neural network based on MRI omics for predicting lymph 
node metastasis and the survival time of breast cancer  
patients (37). Some scholars have established predictive 
models using multiparametric MRI sequences that can 
predict pCR early and prognosis after NAC for patients 
with breast cancer (38,39).

The correlation between lymph node metastasis and 
NAC efficacy for breast cancer has also been confirmed by 
other studies using computed tomography, B-ultrasound, 
and MRI methods (40-42). In this retrospective study, 
lymph node metastasis was related to NAC efficacy, and 
some other parameters (e.g., the first standard ADC value 
at the baseline, the change in the standard ADC, and 
tumor volume at the first follow-up) were also found to be 
predictors of NAC efficacy. These results provide useful 
information for predicting the efficacy of NAC in patients 
with breast cancer. Unfortunately, our study showed that 
pathological features were not significantly associated with 
pCR in the predictive model.

The AUC values for the ROC curves were 0.984 (95% 
CI: 0.958–1) and 0.815 (95% CI: 0.509–1) in the primary and 

Figure 3 The ROC curves of the predictive model were computed and drawn. The ROC curves for the primary (A) and validation cohorts (B). 
AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristic.

Table 2 Performance of the clinical prediction model

Metrics
Clinical prediction model

Primary cohort Validation cohort

Accuracy (95% CI) 0.945 (0.865–1) 0.753 (0.583–0.833)

AUC (95% CI) 0.984 (0.958–1) 0.815 (0.509–1)

PPV (95% CI) 0.832 (0.619–1) 0.535 (0.333–0.667)

NPV (95% CI) 0.990 (0.951–1) 0.871 (0.778–1)

Sensitivity (95% CI) 0.871 (0.778–1) 0.955 (0.769–1)

Specificity (95% CI) 0.642 (0.333–1) 0.938 (0.816–1)

AUC, area under the curve; CI, confidence interval; NPV, negative 
predictive value; PPV, positive predictive value.
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validation cohorts, respectively. A penalty was adopted in the 
model, and the 95% probability of the AUC values in the two 
cohorts was greater than 0.8. The results indicated that there 
was no obvious overfitting and that the established model 
had predictive validity in the two cohorts. The PPV value in 
the validation cohort was 0.535 (95% CI: 0.333–0.667). The 
specificity of the model in the primary cohort was 0.642 (95% 
CI: 0.333–1). Due to the small sample size of our study, the 
PPV and specificity were not high. In future research, we will 
increase the sample size to improve the predictive efficiency 
of our established model.

Conclusions

In conclusion, our study established a multiparametric 
and predictive model for breast cancer patients. The 
established model could be used early for preoperative and 
individualized predictions of NAC efficacy in patients with 
breast cancer and could help clinicians to select treatment 
regimens in a timely manner.
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