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Original Article

Multiomics combined with single-cell analysis shows that 
mitophagy-related genes could accurately predict the prognosis 
of patients with clear cell renal cell carcinoma
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Background: Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor that accounts for a large 
proportion of kidney cancer, It is prone to recurrence and metastasis, and has a high mortality rate. Although 
mitophagy is important for metastasis and the recurrence of various tumors, its effect on renal clear cell 
carcinoma is poorly understood.
Methods: Mitophagy-related genes were obtained through the GeneCards database. We normalised the 
data from different sources by removing the batch effect. Next, we conducted a preliminary screening of 
mitophagy-related genes and obtained prognosis-related genes from differentially expressed genes. We 
constructed a prognostic model using least absolute shrinkage and selection operator (LASSO) regression 
with data from The Cancer Genome Atlas (TCGA) and GSE29609 datasets and validated it internally. 
International Cancer Genome Consortium (ICGC) and E-MTAB-1980 cohorts also provided double 
external validation. In addition, we combined multi-omics and single-cell data to comprehensively analyse 
mitophagy-related gene model signature (MRGMS). Combined with the mitophagy-related gene model 
(MRGM) score, we constructed a nomogram. Finally, we performed pathway enrichment analysis using a 
variety of methods.
Results: Multiomics and single-cell data analysis showed that the MRGMS is important for patients with 
ccRCC and is expected to become a new biomarker. The construction of a nomogram was conducive to 
accurately predicting patient survival. 
Conclusions: Mitophagy-related genes are important for predicting the prognosis of ccRCC and are 
conducive to the development of more personalised treatment plans for patients.
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Introduction

There are many types of kidney tumors, of which renal 
cell carcinoma (RCC) accounts for approximately 90% (1). 
RCC is a very heterogeneous tumor with many subtypes, 
such as papillary RCC, clear cell RCC (ccRCC), and 
chromophotic RCC, of which ccRCC accounts for 60% to 
80% (2-4). ccRCC has a high probability of metastasizing, 
having the most negative prognosis among all subtypes (1,5). 
In addition, even in clear cell carcinoma of the kidney, there 
is still a great deal of tumor heterogeneity (6). Therefore, 
further research on clear cell carcinoma types of the 
kidney is warranted to develop a more accurate treatment 
plan. Recently, the American Cancer Society estimated 
that the number of kidney and renal pelvis tumors would 
reach 81,800 by 2023, with an associated number of 
deaths of 14,890. The disease incidence of deaths in men 
is approximately twice that of women (7), which is higher 
than the 2022 estimates by the same organisation (8). Due 
to the advances in diagnostic technology since the 1990s, 
the incidence of renal clear cell carcinoma globally has 
gradually increased, while the mortality rate has decreased 
given that previously undiagnosed tumors are diagnosed at 
an early stage and receive timely treatment (1). Although 
various treatment modalities are rapidly advancing, the 
prognosis for patients with advanced tumors is still poor 
(6,9,10). Therefore, advancing the tools that allow a more 
personalised treatment plan is necessary.

Mitochondria are the energy-processing factories in 
living organisms that play an important role in cellular life 
activities (11). When mitochondria age or are exposed to 
external stimuli such as hypoxia and inflammation, apoptosis 
and cell death are triggered (12,13). Mitophagy, the removal 
of damaged mitochondria, is important for maintaining stable 
cell function and ensuring energy supply. Many researchers 
have recently studied the relationship between mitophagy 
and tumor occurrence and metastasis (14). The expression 
of the ISG15 and ISGylation protein in pancreatic cancer 
stem cells is necessary to maintain their metabolic plasticity. 
By inhibiting the expression of ISG15, the mitophagy of 
pancreatic cancer stem cells can be dysregulated, inhibiting 
the occurrence and metastasis of pancreatic cancer (15). 
The mitochondrial autophagy-related genes PINK1 and 
PARK2 are also independent prognostic markers for 
survival in patients with RCC and are associated with 
tumor aggressiveness (16). Furthermore, MAPK1/3 kinase-
dependent ULK1 degradation can lead to the attenuation of 
mitophagy, promoting bone metastasis in breast cancer (17).  
In ovarian cancer, inducing mitophagy can inhibit the 
progression of chemotherapy-resistant ovarian cancer (18). 
Therefore, research on the development of new tumor 
treatment modalities for mitophagy is gaining increasing 
popularity (19-21). In addition, RCC is essentially a 
metabolic disease characterised by the reprogramming of 
energy metabolism (22-26). In particular, metabolic fluxes 
are induced by glycolysis and mitochondrial bioenergetics, 
while OxPhox and lipid metabolism are impaired (27-29). 
Therefore, we hypothesised that mitophagy is an important 
regulator of the metabolism of ccRCC cells. However, 
little is known about the role of mitophagy-related genes in 
patients with ccRCC.

With the study of the mechanisms associated with 
mitochondrial autophagy, we have discovered its important 
role in tumor progression. The development of treatments 
that target the mechanism of mitophagy has benefited many 
cancer patients. However, the role of mitophagy-related 
genes in renal clear cell carcinoma remains unknown. 
Therefore, this study aimed to obtain the expression 
profiles of mitophagy-related genes and explore the 
influence of mitochondrial autophagy-related genes on the 
prognosis of patients with renal clear cell carcinoma using 
bioinformatics. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1765/rc).

Highlight box

Key findings
• A prognostic model was established based on mitophagy-related 

genes, which can accurately predict the prognosis of clear cell renal 
cell carcinoma (ccRCC) patients.  

What is known and what is new? 
• Mitophagy has various effects on tumor progression, however, 

there have been limited studies investigating the impact of 
mitophagy-related genes on the prognosis of ccRCC patients.

• By utilizing mitophagy-related genes, a prediction model for 
the prognosis of ccRCC patients was successfully developed and 
validated. 

What is the implication, and what should change now?
• This model is capable of effectively predicting the prognosis 

of ccRCC patients. Furthermore, the use of nomograms and 
immune-related analysis can be valuable tools in both diagnosing 
and treating ccRCC patients.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1765/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1765/rc
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Methods

Access to research data using public databases

Using “mitophagy” as the keyword, we retrieved 5,655 
mitophagy-related genes (https://www.genecards.org/) 
from the searchable GeneCards database. In addition, the 
expression, mutation, and copy data required for analysis 
were retrieved from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/). The GSE29609 
dataset from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) was combined with 
renal clear cell carcinoma data from the TCGA database 
for prognostic modelling and internal validation. The 
clear cell renal carcinoma cohort from the International 
Cancer Genome Consortium (ICGC) (https://dcc.icgc.
org/) was used for external validation, while the data from 
the E-MTAB-1980 cohort provided additional external 
validation. The GSE40435 and GSE53757 datasets were 
utilised to validate the model at the gene expression level. 
In addition, protein expression data were obtained from the 
University of Alabama at Birmingham Cancer Data Analysis 
Portal (UALCAN) database (https://ualcan.path.uab.edu/
index.html), commonly used for analysing cancer omics 
data (30,31). The Human Protein Atlas (HPA) (https://
www.proteinatlas.org/) provided immunohistochemistry 
data, while the GSE159115 dataset was used for single-
cell analysis (32,33). Finally, the acquisition and analysis of 
single-cell data were achieved using the Tumor Immune 
Single-cell Hub (TISCH) (http://tisch.comp-genomics.
org/) database (34). The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Preliminary screening of genes using R software and data 
standardisation

First, we obtained the expression profiles of mitophagy-
related genes in patients with clear cell carcinoma of the 
kidney in the TCGA database using the limma package. 
The TCGA cohort contained a total of 542 tumor samples 
as well as 72 normal samples. After differential analysis 
of expression profiles, we obtained 762 differential genes 
[log fold change (FC) >1, false discovery rate (FDR) 
<0.05]. To ensure that the results can be extrapolated to 
a larger population, the data from this study were drawn 
from multiple databases. To make data from different 
databases comparable, we standardised the data from 
the TCGA, GEO, ICGC, and E-MTAB-1980 using the 

SVA package. After standardising the gene expression 
data, we eliminated the samples with incomplete survival 
information after combining it with clinical information. 
Finally, we included samples from 759 patients with tumors, 
including 529 oncology patients from TCGA database, 38 
from the GSE29609 dataset, 91 from the ICGC database, 
and 101 from the E-MTAB-1980 cohort. In addition, 
using independent prognostic analysis, we screened 340 
prognostic-related genes from 762 differential genes. The 
genes obtained were further screened for mitophagy-related 
gene model signatures (MRGMS) which were used to build 
the mitophagy-related gene model (MRGM).

MRGM construction with prognostically associated 
differential mitophagy-related genes

We combined the TCGA and GSE29609 datasets to 
form a merged cohort, which was randomly divided 
into a M (model) and T (test) cohorts (1:1) using the 
createDataPartition function in the caret package. The 
samples in the M cohort were used to construct the 
MRGM. We applied least absolute shrinkage and selection 
operator (LASSO) regression and cross-validation to 
obtain the best MRGMS for building the model. After 
deriving the MRGM formula, each tumor sample obtained 
an MRGM score. The 759 samples were divided into 
two groups based on the median patient sample score of 
the M cohort (model cohort), which was greater than the 
median value in the H group (high risk group) and less 
than the median value in the L group (low risk group). 
Tumor samples from the T cohort (Test cohort) were used 
internally to verify the accuracy of the MRGM predictions. 
To ensure that MRGM can accurately predict the prognosis 
of patients with clear cell carcinoma of the kidney, we 
performed external verification of MRGM using the ICGC 
cohort. The E-MTAB-1980 cohort provided an additional 
external validation. Using principal component analysis 
(PCA), we observed whether MRGMS can distinguish 
between patients in groups H and L. The survival analyses 
of patients in groups H and L in all cohorts enabled us 
to determine whether the model accurately predicted the 
prognosis of patients with clear cell carcinoma of the kidney. 
The area under the receiver operating characteristic (ROC) 
curve reflected the predictive performance of the MRGM. 
In addition, the distribution map of survival status provided 
a direct indication of the ability of the MRGM to predict 
ccRCC prognosis.

https://dcc.icgc.org/
https://dcc.icgc.org/
https://ualcan.path.uab.edu/index.html
https://ualcan.path.uab.edu/index.html
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
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Analysis of MRGMS using multi-omics data

We further explored MRGMS using the multi-omics data. 
Using the mutation data from TCGA, we explored the 
mutation of MRGMS in renal clear cell carcinoma and 
produced a waterfall plot for visualisation. In addition, we 
located the MRGMS on chromosomes and analysed the 
copy data. Next, we selected the GSE40435 and GSE53757 
datasets to externally verify the differential expression of 
MRGMS at the gene expression level. In addition, using the 
protein expression data of renal clear cell carcinoma in the 
UALCAN database, we performed external verification of 
MRGMS expression at the protein expression level. Finally, 
we queried the immunohistochemistry of MRGMS in the 
HPA database.

Integration of common clinical indicators for building a 
nomogram

Nomograms are widely used in clinical practice because 
they can accurately predict the survival rate of patients. 
Therefore, we combined common clinical indicators with 
MRGM scores to construct a nomogram. Calibration 
curves and decision curve analysis (DCA) curves were used 
to verify the predictive power of nomograms. The area 
under the ROC curve was utilised to recognise the ability of 
a nomogram to predict prognosis.

Channel enrichment using gene set variation analysis 
(GSVA) and other methods

Through GSVA enrichment, we analysed the enrichment 
of Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways in patients with different MRGM scores. Next, 
we examined the genes that were expressed differently 
in patients in groups H and L. Based on the difference 
analysis, we determined the enrichment of Gene Ontology 
(GO) pathways in patients with different risk groups.

Exploration of new immunotherapy options using 
immune-related analysis

Using the CIBERSORT platform, we obtained data on 
immune cell infiltration for all samples. We analysed the 
association between immune cell infiltration and MRGMS 
and MRGM scores. Further, single sample gene set 
enrichment analysis (ssGSEA) enrichment analysis was 
applied to determine immune cells and immune-related 

functions. Finally, we explored the differential expression of 
immune checkpoint-associated genes in groups H and L.

Analysis of MRGMS using single-cell data

Using the TISCH database, we obtained and annotated the 
cell clusters in the GSE159115 dataset and observed the 
distribution of MRGMS in various cell lineages. Next, we 
analysed the differential expression of MRGMS in tumor 
and normal tissues in malignant tumor cell lineages.

Statistical analyses

All statistical analyses in this study were performed using R 
software (version 4.2.2). Unless otherwise stated, a P<0.05 
was set as the significance value in this study. 

Results

Research process and preliminary data processing 

The research process is illustrated in the flowchart (Figure 1).  
We found 5,655 genes associated with mitophagy. Through 
differential analysis, we obtained 762 mitophagy-related 
significantly differentially expressed genes. Among them, 
274 and 488 genes were highly and poorly expressed 
in tumor tissues, respectively. Next, using independent 
prognostic analysis, we screened out 340 prognostic-related 
genes from 762 differential genes.

MRGM can stably predict patient prognosis in different 
cohorts

The LASSO regression as well as cross-validation analyses 
showed that 2-16 signatures were the most accurate to 
construct MRGMs (Figure 2A,2B). We identified eight 
genes as MRGMS (ATP1A1, IGFBP3, LIPA, PLG, IFI16, 
TUBB6, PSAT1, NOX4). Among these MRGMS, IFI16, 
TUBB6, and PSAT1, which were positively correlated with 
MRGM scores, while ATP1A1, IGFBP3, LIPA, PLG, and 
NOX4 were negatively correlated. The MRGMS were 
used to derive the following model formula: MRGM score 
= EXP [(ATP1A1 × −0.198081408034518) + (IGFBP3 × 
−0.649722900971) + (LIPA × −0.213274094277372) + (PLG 
× −0.154808702949903) + (IFI16 × 0.518561327288619) 
+  ( T U B B 6  ×  0 . 3 7 8 8 5 3 6 7 8 0 8 7 3 3 3 )  +  ( P S AT 1  × 
0.261673272955883) + (NOX4 × −0.177373744381922)]. 
The PCA plot shows that the mitophagy-related gene alone 
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does not distinguish well between patients in the high H and 
L groups (Figure 2C). However, MRGMS allows for a good 
distinction between the two groups of patients (Figure 2D).  
The progression-free survival in group H was much lower 
than that in group L, and the difference between the two 
was statistically significant (Figure 2E). First, in the survival 
analysis curve of the pooled cohort, we can see that the 
prognosis is worse for the patients in group H (Figure 2F). 
In addition, the area under the ROC curve at 1-year, 3-year, 
and 5-year was higher than 0.7 (Figure 2G). Similar results 
of M and T cohorts were found, where the prognosis was 
better for patients in the L group and worse for patients 
with higher MRGM scores (Figure 2H-2K). In addition, 
the area under the ROC curve confirmed the predictive 
performance of the model. To extrapolate the model to a 
wider population, the ICGC and E-MTAB-1980 cohorts 
validated the model as external data. The survival analysis 

curve of the ICGC cohort showed a better prognosis and 
statistically significant difference in patients in the L group 
(Figure 2L). In addition, the area under the ROC curve 
of the ICGC cohort was greater than 0.65 (Figure 2M). 
External data from the ICGC cohort provided an accurate 
external validation for the results. Further, we provided 
an additional external validation using data from the 
E-MTAB-1980 cohort, from which we observed consistent 
results with the previous internal validation as well as the 
ICGC cohort external validation (Figure 2N,2O).

Multiomics data validation of MRGMS

In the TCGA database, we found four MRGMS (LIPA, 
IGFBP3, TUBB6, and IFI16) that were highly expressed 
in tumor tissues. PLG, ATP1A1, PSAT1, and NOX4 were 
poorly expressed in tumor tissue (Figure 3A). We reached 

Figure 1 Flowchart of this study. UALCAN, The University of Alabama at Birmingham Cancer Data Analysis Portal; HPA, Human Protein 
Atlas; TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; GEO, Gene Expression Omnibus; TISCH, 
Tumor Immune Single-cell Hub; IHC, Immunohistochemistry; M, model; T, test; LASSO, least absolute shrinkage and selection operator; 
COX, Cox regression model.
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Figure 3 Multiomics comprehensive analysis of model-related genes. (A) Differential expression of model-related genes in the TCGA 
database; (B) differential expression of model-related genes in the GSE40435 dataset; (C) differential expression of model-related genes 
in the GSE53757 dataset; (D) proteomic data for model-related genes; (E) immunohistochemical data of model-associated genes (DAB 
staining, ×40). Tumor—IFI16: https://www.proteinatlas.org/ENSG00000163565-IFI16/pathology/renal+cancer#ihc; LIPA: https://www.
proteinatlas.org/ENSG00000107798-LIPA/pathology/renal+cancer#ihc; TUBB6: https://www.proteinatlas.org/ENSG00000176014-
TUBB6/pathology/renal+cancer#ihc; ATP1A1: https://www.proteinatlas.org/ENSG00000163399-ATP1A1/pathology/renal+cancer#ihc; 
PLG: https://www.proteinatlas.org/ENSG00000122194-PLG/pathology/renal+cancer#ihc; PSAT1: https://www.proteinatlas.org/
ENSG00000135069-PSAT1/pathology/renal+cancer#ihc. Normal—IFI16: https://www.proteinatlas.org/ENSG00000163565-IFI16/
tissue/kidney; LIPA: https://www.proteinatlas.org/ENSG00000107798-LIPA/tissue/kidney; TUBB6: https://www.proteinatlas.org/
ENSG00000176014-TUBB6/tissue/kidney; ATP1A1: https://www.proteinatlas.org/ENSG00000163399-ATP1A1/tissue/kidney; PLG: 
https://www.proteinatlas.org/ENSG00000122194-PLG/tissue/kidney; PSAT1: https://www.proteinatlas.org/ENSG00000135069-PSAT1/
tissue/kidney. TCGA, The Cancer Genome Atlas; RCC, renal cell carcinoma.
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consistent conclusions with the external GSE40435 and 
GSE53757 datasets (Figure 3B,3C). The results of the 
differential analysis of the protein expression data were 
also consistent with the gene expression data (Figure 3D). 
Finally, we queried the immunohistochemistry of six of the 
MRGMS in the HPA database. The immunohistochemistry 
of IFI16, LIPA, TUBB6, ATP1A1, PLG, and PSAT1 was also 
consistent with the gene expression (Figure 3E).

Nomograms can accurately predict patient survival

Using the age, tumor stage, MRGM score, and other 
information, we accurately predicted the survival rate of 
patients. For example, the 6th patient in the M cohort had 
a 1-year survival rate of 0.975, a 3-year survival rate of 
0.928, and a 5-year survival rate of 0.881 (Figure 4A). As the 
duration of the disease increased, the survival rate of the 
patient gradually decreased, which was consistent with the 
clinical observations. The calibration curve showed that the 
predicted results of the nomogram were almost identical 
to the actual results (Figure 4B). The area under the ROC 

curve of the nomogram was 0.872, where the larger the area 
under the ROC curve, the higher the prediction efficiency of 
the nomogram (Figure 4C). In the DCA decision curve, we 
can determine that the predictive power of the nomogram 
was better than other clinical indicators (Figure 4D). Both 
univariate and multivariate independent prognostic analyses 
demonstrated that predicting the survival of patients with 
clear cell renal carcinoma using the nomogram did not 
depend on other indicators (Figure 4E,4F).

Pathway enrichment analysis 

The heat map of the GSVA enrichment analysis showed 
that the top 50 pathways were predominantly enriched in 
patients in group L. Only 11 pathways were enriched in 
patients in group H (Figure 5A). From the GO enrichment 
analysis, we selected the top 8 pathways to plot circles. 
On the left side of the circle plot were genes enriched in 
the pathway, which were connected to the corresponding 
pathway by a curve. Genes were arranged from top to 
bottom according to the size of the LogFC value. On 

Figure 4 Construction and verification of nomograms. (A) Nomogram predicts the prognosis of patients with clear cell carcinoma of the 
kidney; (B) calibration curve for nomogram; (C) ROC curve for nomogram; (D) DCA curve of nomogram; (E) univariate independent 
prognostic analysis of nomogram; (F) multivariate independent prognostic analysis of nomogram. ***, P<0.001. OS, overall survival; AUC, 
area under curve; ROC, receiver operating characteristic; DCA, decision curve analysis; CI, confidence interval.
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Figure 5 Pathway enrichment analysis results. (A) GO enrichment analysis circle chart; (B) GO enrichment analysis bubble chart; (C) GO 
Enrichment analysis bar chart. GO, Gene Ontology; FC, fold change; BP, biological process; CC, cellular component; MF, molecular function.

the right side of the circle plot, the enrichment pathway 
was shown, and the larger the area, the more genes were 
enriched in the pathway. For example, the largest area of the 
external encapsulating structure organisation and leukocyte 
migration pathway means that the genes enriched in these 
two pathways were the largest. In addition, we can observe 
that in GO results, the three genes were mainly closely 
related to the biological process (Figure 5B). Finally, the top 
10 pathways with the highest number of genes in the GO 
were shown as bubble and column plots (Figure 5C).

Immune-related analysis

In the ssGSEA analysis, 14 immune cell infiltrates differed 
between patients in groups H and L (Figure 6A). Further, 
10 immune-related functions differed in patients in groups 
H and L (Figure 6B). Immune checkpoint inhibitors can 
thus offer new hope for patients with advanced clear 
cell carcinoma of the kidney. We observed significant 
differences in groups H and L of 36 immune checkpoint-
associated genes, most of which were highly expressed in 
group H (Figure 6C). 

Single-cell data analysis

By clustering, single-cell data from the GSE159115 
dataset were divided into 32 cell subtypes (Figure 7A). 
The annotation of single-cell data using the major lineage 
demonstrated that cells of subtype 11 and subtype 28 were 
annotated as CD8 T cells. Cells of subtypes 1, 10, 22, 27, 
and 29 were annotated as endothelial cells. Cells of subtypes 
6, 8, 17, 21, 23, and 24 were annotated as epithelial cells. 
Cells of subtypes 9 and 31 were annotated as erythroblast 
cells. Cells of subtypes 0, 3, 7, 13, 14, 16, 19, and 26 were 
annotated as malignant cells. Cells of subtypes 4, 5, 12, 
18, and 32 were annotated as mono/macro cells. Cells of 
subtypes 2, 15, 20, and 30 were annotated as pericytes. Cells 
of subtype 25 were annotated as plasma cells (Figure 7B).  
A total of 1,247 CD8 T cells, 3,798 endothelial cells, 5,477 
epithelial cells, 82 erythroblasts, 9,027 malignant cells, 4,730 
mono/macro cells, 3,059 pericytes, and 249 plasma cells 
were obtained from the GSE159115 dataset (Figure 7C). In 
addition, through the scale column chart, we observed the 
proportion of various cells in each sample (Figure 7D). Next, 
we analysed whether MRGMS was expressed differently 
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Figure 6 Comprehensive analysis of immunity in patients with different risk groups. (A) Column plot of immune cell differences in patients 
with different risk groups; (B) column chart of differences in immune function of patients in different risk groups; (C) column plot of 
differences in immune checkpoint-related gene expression in patients with different risk groups. *, P<0.05; **, P<0.01; ***, P<0.001.

between tumor and normal tissues in the malignancy lineage 
cells such as immune, malignant, and stromal cells. The 
results showed that the expression of ATP1A1, IGFBP3, 
LIPA, NOX4, PLG, and PSAT1 in immune cells was 
significantly different between tumor and normal tissues. In 
the malignant cells, ATP1A1, IFI16, IGFBP3, LIPA, NOX4, 
and TUBB6 expression differed significantly. In the stromal 
cells, ATP1A1, IFI16, IGFBP3, NOX4, TUBB6, and PSAT1 
expression differed significantly (Figure 7E).

Discussion

We studied the prognostic effect of mitochondrial 
autophagy-related genes on patients with clear cell 
carcinoma of the kidney to construct a model. We used 
multiple datasets to verify the model to ensure the stability 
of prediction ability. The results of the multi-dataset 
validation show that the MRGM can stably predict the 
prognosis of patients in different datasets. In addition, 
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nomograms and immuno-related analysis can assist 
clinicians in formulating accurate treatment plans. The 
LASSO regression as well as cross-validation provided eight 
MRGMS (ATP1A1, IGFBP3, LIPA, PLG, IFI16, TUBB6, 
PSAT1, NOX4). The multiomics data analysis showed 
that the MRGMS plays an important role in renal clear 
cell carcinoma. The results of the single-cell data analysis 
showed that the MRGMS was expressed differently between 
tumor and normal tissues in malignancy lineage cells such 
as immune cells, malignant cells, and stromal cells.

ATP1A1 can inhibit apoptosis and promote growth by 
encoding the α1 subunit of NKA (35). ATP1A1 is closely 
related to urinary diseases, such as the formation of kidney 
stones, a mutation leading to the worsening of aldosterone 
adenomas, and provides a prognostic predictive value in 
RCC (36-38). In addition, ATP1A1 can promote the growth 
of glioma stem cells (39). IFI16 can mediate the growth and 
metastasis of breast cancer and is also a modulator of breast 
cancer immunotherapy (40,41). IFI16 also plays a role in the 
treatment of gliomas (42). Similar to the results of this study, 
IGFBP3 can be used as a biomarker for prognosis prediction 
and guidance of treatment of various tumors (43-45). LIPA 
can be used as a viable therapeutic target for triple-negative 
breast cancer (46). Earlier bioinformatics studies found that 
NOX4 can be used as a tumor marker for predicting the 

prognosis of pancreatic and colon cancers (47,48). PLG 
has the potential to be a therapeutic target for patients with 
ccRCC (49). In addition, PLG plays an irreplaceable role in 
other tumors such as gastric, pancreatic, and liver cancers 
(50-52). Proteomic data have shown that TUBB6 expression 
in bladder cancer can predict a high risk of invasion as well 
as a poor prognosis (53). Similar conclusions were reached 
in our study of ccRCC. PSAT1 exhibits suppressive effects 
in a variety of tumors (54-57). In addition, ccRCC is one 
of the most immunoinvasive tumors (58). The activation 
of specific metabolic pathways plays an important role in 
regulating angiogenesis and inflammatory signalling (59). 
The characteristic microenvironment of tumors heavily 
influences disease biology and may influence response to 
systemic therapy (60-63). In addition, mitophagy plays a 
significant role in regulating immune cell infiltration and 
microbiota.

In this study, we verified the predictive ability of the 
model using the E-MTAB-1980 and ICGC cohorts as 
external data. In addition, we verified the expression patterns 
of model-related genes from the gene and protein expression 
levels using relevant databases. The validation results showed 
the reliability of the conclusions. However, this study 
was limited by the local patient cohort and experimental 
validation, which would make our conclusions more reliable.
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Conclusions

Mitophagy-related genes are important for predicting 
the prognosis of clear cell carcinoma of the kidney and 
are conducive to the development of more personalised 
treatment plans for patients.
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