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Identification and validation of mitophagy-related signatures as a 
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Background: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in the world. 
Mitophagy is associated with tumorigenesis and development of malignancy. However, the specific role of 
mitophagy has yet not been systematically explored in CRC.
Methods: The RNA-sequencing dataset of CRC from The Cancer Genome Atlas (TCGA) and microarray 
data of gene expression profiles of CRC from Gene Expression Omnibus (GEO) were downloaded. 
Mitophagy-related gene sets were obtained from the Pathway Unification database. The package “limma” 
was used for differential gene expression analysis. Kaplan-Meier (KM) survival analyses were utilized to 
evaluate the prognostic value of the mitophagy regulators. Single-sample gene set enrichment analysis 
(ssGSEA) was used to estimate the infiltrating immune cells and the activity of immune response. The 
ConsensusClusterPlus algorithm was used to determine mitophagy-related subtypes. Principal component 
analysis (PCA) was used to create composite measurement of mitophagy scores. The R packages “survminer” 
and “ReGlot” were used to plot the nomogram and calibration curves.
Results: Integrated analysis of the GEO and TCGA databases revealed some common differentially 
expressed genes (DEGs) in CRC. MFN2, UBB, PINK1, and PRKN were significantly downregulated in 
CRC samples as compared to normal samples, and other genes were significantly upregulated in CRC 
samples. KM survival analyses showed that high expression of ATG12 and MAP1LC3B predicted a poor 
prognosis, whereas high expression of TOMM22 and TOMM40 predicted a better prognosis. Mitophagy 
showed significant correlation with immune-related pathways in CRC samples. We identified 2 distinct 
CRC subtypes with different mitophagy accumulation, of which subtype B had better prognosis and immune 
activity. The mitophagy score may be employed as a new and efficient clinical predictor in conjunction with 
other clinical indicators to predict the prognosis of CRC patients.
Conclusions: We systematically investigated the CRC heterogeneity with reference to mitophagy based 
on bioinformatics analyses, and the findings of this study might provide some guidance for future research 
into potential biomarkers for diagnosis and prognosis prediction of CRC patients.
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Introduction

According to recent global cancer statistics, colorectal 
cancer (CRC) is the third most common malignancy of 
the digestive system in terms of incidence and mortality 
(1,2). CRC is frequently discovered at an advanced stage 
because patients at the early stage rarely experience 
obvious symptoms. Despite the major advancements in 
surgical treatment, chemotherapy, and biologic therapy in 
recent years, metastatic CRC has a poor prognosis, with a 
5-year survival rate of less than 20% (3,4). Therefore, the 
molecular mechanisms of CRC development need to be 
understood in order to find new biomarkers for CRC early 
detection and prognosis evaluation. 

Mitophagy is a conserved cellular process that plays 
an essential role in maintaining cellular homeostasis 
by precisely removing dysfunctional mitochondria. 
Mitochondria are major organelles in cells that play an 
important role in energy production, redox homeostasis, and 
apoptosis. It has now been well described that mitochondria 
sustain tumor growth and cancer progression (5). The 
biological relevance is further shown by the association 
of mitophagy deficit with a number of clinical diseases, 
including neurodegeneration, heart failure, aging, and 
cancer. Since accumulation of dysfunctional mitochondria is 
involved in tumorigenesis, its function has been associated 
with tumor suppression (6,7). The mitochondrially targeted 
PINK1/Parkin and BNIP3/NIX/FUNDC1 pathways are 
well-established synergistic mechanisms for the disposal of 

dysfunctional mitochondria, executing ubiquitin-dependent 
mitophagy (8,9). In hepatocellular carcinoma (HCC), 
PINK1 mutations or depletion are associated with poor 
clinical outcomes. PINK1 knockdown reduces the levels 
of oxidative stress, mitochondrial mass, and mitochondrial 
cristae and promotes the growth of HCC cells (10). In 
gastric cancer, the loss of PINK is correlated with the 
poorer overall survival (OS) in advanced stages. Under both 
normoxic and hypoxic environments, PINK1 loss promotes 
gastric cancer cell proliferation and migration by inhibiting 
mitophagy, producing mitochondrial reactive oxygen species 
(mtROS), stabilizing hypoxia inducible factor 1 (HIF-1), 
and facilitating the Warburg effect (11). 

The degradation of damaged mitochondria and the 
recycling of metabolic precursors by mitophagy could 
improve cell survival and prevent cell death in several 
cancer types. A study showed that melanoma development 
was inhibited in Parkin-KO mice through the maintenance 
of MFN2 levels and the suppression of Parkin’s ability 
to ubiquitinate, suggesting a pro-tumor role of Parkin-
dependent mitophagy (12). BNIP3 has been found to be 
downregulated in pancreatic cancers but upregulated in 
breast ductal carcinoma (13,14). A high level of FUNDC1 
expression is related with poor prognosis in cervical  
cancer (15). A growing number of studies suggest the 
regulatory role of mitophagy in tumorigenesis and drug 
resistance, and that it may be a promising anti-cancer 
strategy (16-18). These studies have also demonstrated 
the different roles of different mitophagy pathways in 
tumorigenesis. Therefore, we need to further clarify the 
unique involvement of distinct mitophagy pathways in 
human malignancies in order to propose effective mitotic 
modulators for anticancer therapies. 

To date, some studies have suggested that mitophagy 
is implicated in CRC tumorigenesis. Pharmacological 
inhibition of the AMPK signaling cascade stimulates 
mitophagy and abrogates colon cancer cell proliferation (19).  
Mitophagy protein PINK1 suppresses colon tumor growth 
by metabolic reprogramming and reducing acetyl-CoA 
production (20). DJ-1 inhibition is a promising therapeutic 
approach for the treatment of CRC, as DJ-1 induces 
mitophagy which promotes tumor progression (21).  
In addition, another study showed that mitochondria-
targeted drugs to stimulate mitophagy provide an attractive 
approach for therapeutic intervention in colon cancer (19). 
The majority of studies have focused on the stimulation 
of mitophagy by anti-cancer drugs and its relationship 
with drug resistance. However, the role of mitophagy in 
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CRC progression remains poorly understood. Therefore, 
a comprehensive analysis of key modulators of mitophagy 
involved in the progression and prognosis of CRC can 
potentially guide clinical judgment and provide patients 
with new therapeutic alternatives. 

In this study, we aimed to identify a mitophagy-related 
signature of CRC patients based on the gene expression 
profiles in The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) databases. A total of 27 
differentially expressed mitophagy-related genes were 
identified between tumor samples and normal tissues. 
A prognostic signature including ATG12, MAP1LC3B, 
TOMM22, and TOMM40 was constructed which showed 
moderate predictive ability for the OS of CRC patients. 
Moreover, we tried to explore the association between 
mitophagy regulators and immune microenvironment by 
gene and functional enrichment analysis. We developed 
and validated a mitophagy score (mtscore) model to predict 
prognosis and evaluate treatment sensitivity and therapeutic 
compounds. This mitophagy-related signature is not only 
a viable potential therapeutic target, but it may also be 
an indication of immune dysregulation within the tumor 
microenvironment and a reliable prognostic biomarker 
for CRC. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-785/rc).

Methods

Database search and data collection

The TCGA database (https://portal.gdc.cancer.gov/) 
was used to download the RNA sequencing and the 
corresponding clinical data of CRC patients. A total of 616 
CRC samples and 51 normal case samples were included in 
the study. The collected clinical data included age, gender, 
and survival prognosis. Somatic mutation data of CRC 
patients were downloaded and the process of visualizing 
somatic mutations was performed using maftools package 
of R (22). Copy number variation (CNV) data of CRC 
patients were also downloaded and visualized at UCSC 
Xena (https://xena.ucsc.edu/). In addition, RNA-seq data 
and clinical survival information of the GSE17536 (23) and 
GSE39582 (24) dataset for CRC samples were obtained 
from the GEO (https://www.ncbi.nlm.nih.gov/geo/). 
Excluded from this analysis were samples with incomplete 
data on gender, age, survival time, survival status, and 
pathological grading. The three datasets were normalized 

separately, combined and de-batch effected using the 
combat algorithm of the surrogate variable analysis (SVA) 
package. The final expression matrix was obtained for a total 
of 1,152 patients. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of mitophagy genes in CRC

A total of 27 genes associated with mitophagy were 
downloaded from the Pathway Unification database (https://
pathcards.genecards.org/), including ATG12, ATG5, 
CSNK2A1, CSNK2A2, CSNK2B, FUNDC1, MAP1LC3A, 
MAP1LC3B, MFN1, MFN2, MTERF3, PGAM5, PINK1, 
PRKN, RPS27A, SQSTM1, SRC, TOMM20, TOMM22, 
TOMM40, TOMM5, TOMM70, UBA52, UBB, UBC, 
ULK1, and VDAC1. All of these 27 genes were evaluated in 
TCGA-colon adenocarcinoma (COAD) data for expression 
and mutation information.

Correlation analysis of mitophagy-related genes and 
immune characteristics

In order to estimate the number of specific infiltrating 
immune cells and the activity of specific immune response, 
single-sample gene set enrichment analysis (ssGSEA) (25) 
was conducted. Each sample was given an enrichment 
score to indicate the absolute enrichment of that set of 
genes. The list of genes in the infiltrating immune cell 
gene set was obtained from a previous study (26) and the 
immune response gene set was obtained from the ImmPort 
database (http://www.immport.org) (27). This enrichment 
score represented the absolute enrichment in immune cell 
abundance and immune response. Spearman correlation 
analysis was conducted to examine the relationship between 
mitochondrial autophagy-related genes and the proportion 
of immune cells and immune response activity.

Unsupervised clustering analysis of mitophagy modification 
patterns of CRC

Different mitochondrial autophagy modification patterns 
were identified based on the expression of 27 mitochondrial 
autophagy regulatory genes. Clustering was performed 
using the R package ConsensusClusterPlus (28) and 
the number of clusters and robustness were evaluated. 
Principal component analysis (PCA) further validated the 
expression patterns of mitochondrial autophagy regulators 
under different modification patterns. Kruskal test was 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-785/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-785/rc
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used to compare mitochondrial autophagy regulatory gene 
expression, immune infiltrating cell abundance scores, and 
immune response scores for different modification patterns.

Differentially expressed gene (DEG) screening

To analyze the effect of different mitochondrial autophagy 
subtypes on CRC, differential gene analysis was performed 
using the R package “limma” (29) to screen for significant 
DEGs in different mitochondrial autophagy subtypes. A 
Padj value <0.01 and log2-fold change (FC) >0.5 were used to 
screen DEGs. Genes with log2FC >0.5 and Padj <0.01 were 
up-regulated expression, whereas genes with log2FC <−0.5  
and Padj <0.01 were down-regulated expression.

Functional and pathway enrichment analysis of DEGs

A common method for conducting large-scale functional 
enrichment studies of genes, including biological process 
(BP), molecular function (MF), and cellular component 
(CC), is Gene Ontology (GO) functional annotation 
analysis. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a widely used database that contains information 
about genomes, biological pathways, diseases, and drugs. 
GO functional annotation analysis and KEGG pathway 
enrichment analysis of DEGs among mitochondrial 
autophagic subtypes were performed using the R package 
clusterProfiler (30), and a P value <0.05 was considered 
statistically significant.

Construction of a mtscore model

To quantify the mitochondrial autophagy modification 
patterns in individual CRC patients, we constructed a 
mitochondrial autophagy scoring scheme using PCA. 
First, DEGs among different mitochondrial autophagy 
modification clusters were analyzed by univariate Cox 
regression models, and the genes with significant prognostic 
impact were selected to cluster the samples to construct 
the mitochondrial autophagy score. A consensus clustering 
algorithm was used to determine the number and stability of 
gene clusters. Subsequently, we constructed a mitochondrial 
autophagy-related gene model using PCA, and extracted 
principal components 1 and 2 from the model. In 
addition, the PCA algorithm could effectively reduce data 
dimensionality and preserve the original data information 
to a large extent. We defined the mitochondrial autophagy 
score using a method similar to that previously reported in 

the literature (31): 

( )1 2i imtScore PC PC= +∑  [1] 

Where it is the expression of exogenous genes associated 
with the mitochondrial autophagy phenotype.

Validation of mtscores

To validate the reliability and clinical application of 
the mitochondrial autophagy score, a nomogram was 
constructed using gender, disease classification, and 
mitochondrial autophagy score to individually predict the 
1-, 3-, and 5-year survival rates of patients. Calibration 
curves were plotted to show the predictive performance of 
the nomogram. The R package Survminer and ReGlot were 
used to calculate and plot the graph.

Statistical analysis

All data processing and analysis in this study were conducted 
using R software (Version 4.2.0; The R Foundation for 
Statistical Computing, Vienna, Austria). Continuous 
variables were presented as mean ± standard deviation. The 
comparison between two groups was performed using the 
Wilcoxon rank-sum test. For comparisons involving three or 
more groups, we employed the Kruskal-Wallis test. Either 
the chi-square test or Fisher’s exact test was utilized to assess 
the statistical significance between two categorical variables. 
Spearman correlation analysis was conducted to calculate the 
correlation coefficients between different variables, with a P 
value <0.05 considered statistically significant.

Results

Landscape of mitophagy regulators in CRC

We analyzed genomic mutations and messenger RNA 
(mRNA) to identify the expression of mitophagy regulators 
in CRC. First, we performed a comprehensive analysis of 
mitophagy regulators expression in CRC and normal tissues 
from TCGA data. We obtained 27 mitophagy regulators in 
this study. Among the 27 genes, only MFN2, UBB, PINK1, 
and PRKN were significantly downregulated in CRC 
samples compared to normal samples, whereas most of other 
genes were significantly upregulated (Figure 1A,1B). PRKN 
and PINK1 had a significantly higher proportion of CNV in 
the 27 genes when compared to normal samples (Figure 1C).  
Waterfall plots showed low frequency of mutations of 
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Figure 1 The expression level of the mitophagy regulators in normal and CRC samples. (A) In TCGA cohort, the boxplot of the expression 
levels of mitophagy regulators in normal and CRC samples. *, P<0.05; **, P<0.01; ***, P<0.001. (B) Heat map of mitophagy regulators 
expression in normal and CRC samples. (C) Lollipop plot of CNV variation frequency of mitophagy regulators in TCGA cohort. The 
height of the column represented the alteration frequency. Green dot: the deletion frequency; red dot: the amplification frequency. (D) The 
mutation frequency of mitophagy regulators from TCGA cohort. Each column represented individual patients. The upper bar plot showed 
TMB. The number on the right indicates the mutation frequency in each regulator. The right bar plot showed the proportion of each 
variant type. The stacked bar plot below showed fraction of conversions in each sample. (E) The location of CNV alteration of mitophagy 
regulators on chromosomes using TCGA cohort. Red and blue represent high and low gene expression, and shades of color indicate the 
level of expression. ns, not significant; CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; CNV, copy number variation; TMB, 
tumor mutational burden.
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mitophagy regulators, the frequency was 16.75%. ULK1 
exhibited the highest mutation frequency (Figure 1D). The 
localization of CNV alterations in mitophagy regulators on 
chromosomes are shown in Figure 1E. 

Expression correlation and prognostic analysis of 
mitophagy regulators

We used the COMBAT algorithm in the SVA package to 
merge the 3 data sets and remove the batch effect. The PCA 
plots before (Figure 2A) and after (Figure 2B) data merging 
showed that the batch effect was well removed.

We performed a correlation analysis of the expression 
of mitophagy regulating genes. We used the corrr package 
to plot the correlation results as a heat map (Figure 2C) 
and a network graph (Figure 2D). Almost all mitophagy-
related genes demonstrated strong positive correlations 
in CRC tissues. We analyzed the prognostic role of 
mitophagy-associated genes in CRC. The results showed 
that high expression of ATG12 (Figure 2E) and MAP1LC3B  
(Figure 2F) genes was associated with poor prognosis, 
whereas high expression of TOMM22 (Figure 2G) and 
TOMM40 (Figure 2H) genes predicted good prognosis. 

Correlation between mitophagy regulators and immune 
cells and immune processes in CRC

To investigate the correlation between mitophagy 
regulators and immune microenvironment, we performed 
a correlation analysis between mitophagy regulators 
and immune cell infiltration and immune response gene 
sets. The results revealed the correlation between the 
abundance of 23 immune microenvironment infiltrating 
cells and the expression of mitophagy-related genes 
in CRC. MAP1LC3B,  PINK1,  UBB,  and UBC were 
positively correlated with most of the immune cells, 
whereas CSNK2A2, FUNDC1, VDAC1, RPS27A, UBA52, 
and TOMM20 were negatively correlated with immune 
cells (Figure 3A). In immune process similar to immune 
microenvironment, MAP1LC3B, PINK1, UBB, and UBC 
were positively correlated with most of the immune process, 
whereas CSNK2A2, RPS27A, UBA52, and TOMM20 were 
negatively correlated with the immune process (Figure 3B). 
It is suggested that MAP1LC3B, PINK1, UBB, and UBC 
are positive regulators and CSNK2A2, RPS27A, UBA52, 
and TOMM20 are negative regulators of the immune 

microenvironment.

Mitophagy-related CRC modification patterns

To investigate mitophagy regulators’ modification pattern of 
CRC, we performed an unsupervised consensus clustering 
analysis based on the expression of 27 mitophagy regulators 
in tumor samples (Figure 4A-4C). The results showed that 
the clusters had good stability when K=2. PCA showed 
that the two mitophagy subtypes were well differentiated  
(Figure 4D). The gene expression pattern of mitophagy 
regulators was shown by using box line plot (Figure 4E) 
and heat map (Figure 4F). Next, we performed differential 
analysis of the two subtypes with GO and KEGG enrichment 
analyses for the differential genes. Figure S1A,S1B  
shows the results of DEG enrichment analysis between 
two mitophagy subtypes, which could mainly enrich to 
chromosomes and mitochondria and DNA pathway, 
indicating good clustering results. The differences in 
immune cell abundance and immune processes between the 
two subtypes are shown in Figure S1C,S1D. Cluster 2 had 
higher immune activity compared to cluster 1.

Construction of CRC subtypes with different mitophagy 
modification patterns

Although a consensus clustering algorithm based on 27 
mitochondrial autophagy regulators classified colon cancer 
patients into two subtypes, the potential genetic changes 
and prognostic relevance in these phenotypes are not well 
understood. Based on the univariate Cox regression analysis 
of 873 DEGs in identified mitophagy clusters, we identified 
305 survival-related genes as signature genes of mitophagy. 
An unsupervised consensus clustering analysis was then 
performed on colon cancer samples based on the expression 
of 305 mitophagy-related signature genes (Figure 5A-5C). 
The results showed that clustering had good stability when 
K=2. PCA analysis showed significant differences between 
the two mitophagy subtypes (Figure 5D), and the specificity 
of mitophagy-related signature gene expression between 
the two subtypes was shown by using boxplot (Figure 5E). 
Survival analysis showed better prognosis for subtype B 
(Figure 5F). The gene expression pattern of mitophagy 
regulators was shown using a heatmap of hierarchical 
clustering (Figure 5G). Figure S2 shows the variability in 
immune cell abundance and immune processes between the 

https://cdn.amegroups.cn/static/public/TCR-23-785-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-785-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-785-Supplementary.pdf
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Figure 2 Expression correlation and prognosis of mitophagy regulators. (A) PCA plot before sample integration. (B) PCA plot after sample 
integration and de-batching. (C) Heat map of expression correlation of mitophagy regulators. Red and blue circles represent positive 
and negative correlations. The different size of circle represents the degree of relevance. (D) Network plot of expression correlation of 
mitophagy regulators. (E) KM plot of ATG12. (F) KM plot of MAP1LC3B. (G) KM plot of TOMM22. (H) KM plot of TOMM40. PCA, 
principal component analysis; KM, Kaplan-Meier.
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Figure 3 Correlation between infiltrating immune cells, immune response genes and mitophagy regulators. (A) Heat map of the 
correlation between each immune process score and each mitophagy regulator. (B) Heat map of the correlation between each immune 
microenvironment abnormal infiltrating cell type and each mitophagy regulator. 

AT
G12

AT
G12

Type 2 T helper cell 

Type 17 T helper cell 

Type 1 T helper cell 

T follicular helper cell 

Regulatory T cell 

Plasmacytoid dendritic cell 

Neutrophil 

Natural killer T cell 

Natural killer cell 

Monocyte 

Memory B cell 

MDSC 

Mast cell 

Macrophage 

Immature dendritic cell 

Immature B cell 

Gamma delta T cell 

Eosinophil

Effector memory CD8 T cell 

Effector memory CD4 T cell 

Central memory CD8 T cell 

Central memory CD4 T cell 

CD56dim natural killer cell 

CD56bright natural killer cell 

Activated dendritic cell 

Activated CD8 T cell 

Activated CD4 T cell 

Activated B cell

* P<0.05 

** P<0.01 

*** P<0.001

***

***

***

***

*

***

**

***

***

***

**

***

**

***

***

***

**

***

***

***

**

***

*

*

***

***

**

***

***

***

**

**

*

***

***

***

***

***

***

***

***

***

*

***

***

***

***

*

***

*

**

*

***

***

***

***

***

*

***

***

***

***

***

***

***

***

***

**

***

***

***

**

***

**

***

**

***

***

***

***

***

***

*

**

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

*

*

**

***

*

***

**

***

*

**

**

**

***

***

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

**

***

***

***

***

***

***

*

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

**

***

**

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

*

***

***

**

***

**

**

***

**

**

*

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

*

***

***

***

***

***

***

***

***

**

***

***

**

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

*

*

***

**

***

**

***

***

***

**

***

***

*

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

**

***

***

***

***

***

***

***

***

**

***

***

***

***

*

*

***

***

***

**

***

**

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

**

**

**

**

***

***

*

***

*

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

*

***

***

**

***

**

*

***

***

***

*

***

***

***

***

**

***

*

*

***

*

*

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

*

***

***

***

***

***

***

***

*

**

*

***

***

*

***

*

***

**

**

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

**

**

***

***

**

**

***

**

***

***

***

***

*

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

*

***

***

***

***

**

***

***

***

**

***

*

***

***

***

***

*

***

***

***

**

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

*

***

*

***

***

***

*

***

***

***

***

***

***

***

*

***

**

**

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

*

***

**

***

***

***

***

**

***

*

**

***

***

***

*

**

*

***

**

***

***

***

***

***

***

***

***

***

*

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*

***

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

*

***

***

***

***

*

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

**

***

***

*

***

**

**

***

***

***

*

***

***

*

***

***

***

***

***

**

***

***

***

*

***

***

***

**

***

***

**

***

***

*

***

***

***

***

**

***

*

***

**

***

***

***

***

***

***

***

***

*

***

**

**

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

**

*

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

***

***

Correlation

0.2

0.0

−0.2

−0.4

M
FN

1

M
FN

1

SRC

SRC

CSNK2B

CSNK2B

PIN
K1

PIN
K1

TO
M

M
5

TO
M

M
5

CSNK2A
1

CSNK2A
1

M
TE

RF3

M
TE

RF3

TO
M

M
22

TO
M

M
22

M
AP1L

C3A

M
AP1L

C3A

RPS27
A

RPS27
A

UBA52

UBA52

ULK
1

ULK
1

AT
G5

AT
G5

M
FN

2

M
FN

2

TO
M

M
20

TO
M

M
20

FU
NDC1

FU
NDC1

PRKN

PRKN

TO
M

M
70

TO
M

M
70

UBC

UBC

CSNK2A
2

CSNK2A
2

PGAM
5

PGAM
5

TO
M

M
40

TO
M

M
40

M
AP1L

C3B

M
AP1L

C3B

SQSTM
1

SQSTM
1

UBB

UBB

VDAC1

VDAC1

* P<0.05 

** P<0.01 

*** P<0.001

Correlation

TNF Family Members Receptors 

TNF Family Members 

TGFb Family Member Receptor 

TGFb Family Member 

TCR Signaling Pathway 

Natural Killer Cell Cytotoxicity 

Interleukins Receptor 

Interleukins 

Interferons 

Interferon Receptor 

Cytokines 

Cytokine Receptors 

Chemokines 

Chemokine Receptors 

BCR Signaling Pathway  

Antimicrobials 

Antigen Processing and Presentation

0.25

0.00

−0.25

−0.50

A

B



Ke et al. Mitophagy as a novel prognostic model for colorectal cancer790

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(2):782-797 | https://dx.doi.org/10.21037/tcr-23-785

Figure 4 Identification of mitophagy modification patterns in CRC. (A) Cumulative distribution function of consensus cluster at k=2–9. 
(B) Cumulative distribution curve at k=2–9. (C) Consensus matrices of the TCGA cohort for k=2. (D) Principal component analysis of the 
transcriptome profiles of two mitophagy subtypes. (E) Boxplot of the expression levels of 27 mitophagy regulators in different subtypes. 
(F) Unsupervised clustering of 27 mitophagy regulators to classify patients into different subtypes. Gender, stage and survival status were 
utilized as patient annotations. ns, not significant; *, P<0.05; ***, P<0.001. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas.
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Figure 5 Construction of CRC subtypes for differential genes with different mitophagy modification patterns. (A) CDF of consensus cluster 
at k=2–9. (B) Cumulative distribution curves at k=2–9. (C) Consensus matrices of the TCGA cohort for k=2. (D) PCA of transcriptome 
profiles of two differential gene subtypes. (E) Boxplot of the expression levels of 27 mitophagy regulators in different differential gene 
isoforms. (F) KM curves of 2 differential gene isoforms. (G) Clinical information of geneCluster A and geneCluster B, heat map of gene 
expression status. ns, not significant; *, P<0.05; **, P<0.01; ***, P<0.001. CDF, cumulative distribution function; CRC, colorectal cancer; 
TCGA, The Cancer Genome Atlas; PCA, principal component analysis; KM, Kaplan-Meier; mtcluster, mitochondrial cluster.
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two subtypes. Subtype B exhibited higher immune activity.

Calculation of mtscore

Although the above results confirm the role of mitophagy 
in regulating immune cell infiltration and prognosis, these 
analyses do not accurately predict the pattern of mitophagy 
modifications in individual cancer patients. To obtain a 
quantitative index of mitophagy modifications in CRC 
patients, we extracted the scores of principal components 
1 and 2 to calculate the final mtscore. We plotted the 
Sankey diagram to demonstrate the process of mtscore 
construction (Figure 6A). The results showed that patients 
with high mtscore have a worse prognosis than those with 
low mtscore (Figure 6B). We compared the difference of 
mtscore in different outcome events, different mtclusters, 
and different geneclusters. The results showed that the 
patients in the group of dead, mtcluster 2, and genecluster 
B had a higher mtscore (Figure 6C-6E). There is a strong 
correlation between mtscore and immune cell abundance 
and immune process score, indicating that mtscore has 
a predictive effect on immune cell infiltration of tumor 
(Figure 6F,6G).

The clinical predictive role of mtscore

A nomogram could be a useful tool for quantitatively 
assessing individual risk in a cl inical  setting. We 
constructed a nomogram and evaluated its predictive 
effect on the prognosis of CRC patients (Figure 7). The 
nomogram was built with age, tumor stage, and mtscore 
incorporated estimating 1-, 3-, and 5-year OS for CRC 
patients (Figure 7A,7C). A calibration curve was used 
to validate the predictive accuracy of the nomogram  
(Figure 7B,7D). The results indicated that mtscore could 
be used as a novel effective clinical predictor and combined 
with other clinical characteristics to predict the prognosis 
of CRC patients.

Discussion

Early detection and treatment of CRC have long been a 
great concern because it is one of the primary causes of 
cancer death. In the past decades, traditional treatments and 
combination chemotherapy had been proven ineffective in 
treating patients with recurrent and refractory CRC (32). 
Therefore, we need to further explore biomarkers associated 
with CRC, and provide a research base for clinical diagnosis 

and treatment. 
There have been some CRC hub gene studies based 

on bioinformatics analyses, but very few studies targeting 
mitophagy (33,34). The role of mitophagy in inflammation, 
immunity, and tumor progression has gained widespread 
attention from researchers. The interactions among 
mitophagy regulators are complex; many previous studies 
have focused on individual regulators, leaving open 
questions about the overall characteristics of integrated 
roles of different mitophagy regulators. Therefore, the 
study of distinct mitophagy alteration patterns in CRC will 
help us to gain a better understanding of tumorigenesis and 
progression, as well as shed light on the development of 
novel therapeutic and prognostic strategies for CRC (35).

Previous studies had revealed that mitophagy has a role 
in tumor growth in some malignancies, such as HCC and 
breast cancer (36,37). Mitophagy is essential for maintaining 
cellular homeostasis by selectively removing dysfunctional 
mitochondria. However, at present the functions and 
immune implications of mitophagy in CRC have not 
been elucidated. In this study, we integratedly analyzed 
2 microarray datasets from GEO and RNA sequencing 
data from TCGA. The results showed that almost all 
mitochondrial autophagy-related genes are abnormally 
expressed in CRC. We identified 21 upregulated genes and 
5 downregulated genes between CRC tissues and normal 
tissues by bioinformatics method. Compared to normal 
tissues, PRKN and PINK1 with the high frequency of copy 
number losses showed significantly lower expression in 
CRC. This result is consistent with previous knowledge 
that the expression level of PINK1 was decreased in CRC 
compared to normal colorectal tissue and was regulated 
by reducing acetyl-CoA production (20). The functional 
enrichment analysis showed that DEGs were enriched in 
some BPs such as chromosome segregation, chromosome 
region, and DNA replication.

We analyzed the prognostic role of mitophagy-related 
genes in CRC. The results indicated that high expression of 
ATG12 and MAP1LC3B is associated with poor prognosis 
of CRC, whereas high expression of TOMM22 and 
TOMM40 predicted a better prognosis. ATG12 expression 
was increased in radioresistant CRC specimens, indicating 
that it might serve as a potential therapeutic target in CRC 
treatment (38). The omega-3 fatty acid docosahexaenoic 
acid (DHA) is known for having anti-cancer properties. 
The basal level of autophagy and MAP1LC3B protein are 
possible indicators for DHA sensitivity in CRC cells (39). 
However, the importance of TOMM22 and TOMM40 in 
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Figure 6 Construction of mitophagy score. (A) Sankey diagram of the construction process of mtscore. (B) Survival curves of high and low 
groups of mtscore. (C) Difference of mtscore in different outcome events. (D) Difference of mtscore in different mtcluster patients. (E) 
Difference of mtscore in different geneclusters. (F) Correlation of mtscore with immune cell abundance. (G) Correlation plot of mtscore 
with immune process score. *, P<0.05 is considered a significant difference. The different size of circle represents the degree of relevance. 
mtcluster, mitochondrial cluster; mtscore, mitophagy score.
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Figure 7 Clinical predictive role of mtscore. (A) Nomogram to predict overall survival at 1, 3 and 5 years in the integrated dataset. (B) 
Calibration curves to evaluate the predictive performance of nomogram in the integrated dataset. (C) Nomogram to predict overall survival 
at 1, 3 and 5 years in TCGA-CRC dataset. (D) Calibration curves to evaluate the predictive performance of nomogram in TCGA-CRC 
dataset. **, P<0.01; ***, P<0.001. mtscore, mitophagy score; OS, overall survival; TCGA, The Cancer Genome Atlas; CRC, colorectal 
cancer. 
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CRC remains unknown. Our findings may shed new light 
on the mitophagy that underpins CRC, as well as identify 
some critical genes.

A mtscore model was constructed based on 27 mitophagy 
regulators to estimate mitophagy accumulation, which was 
found to be a reliable prognostic indicator of CRC. The 
prognostic predictive ability of the mtscore was stable across 
subgroups stratified by gender, stage, and age. Nomograms 
based on independent factors were established to provide 
clinicians with more intuitive and easy-to-use prognostic 
models. The prognostic nomogram was developed as a 
feasible tool for predicting the probability of survival at 1-, 

3-, and 5-years in patients with CRC. 
I m m u n e  c e l l  i n f i l t r a t e s  i n  t u m o r  i m m u n e 

microenvironment (TIME) are widely accepted to play 
an important role in cancer biology. Previous studies have 
shown that the degree of immune cell infiltration has a 
significant impact on CRC survival (40,41). Therefore, we 
investigated the association between mitophagy regulators 
and immune microenvironment by bioinformatics method. 
The results suggested that mitophagy regulators might 
interact with the TIME components and participate in 
various immune-related pathways, thus playing a crucial 
role in CRC progression.
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There are several limitations in this study. Firstly, our 
study was mainly conducted by bioinformatics methods, 
lacking the validation of solid clinical specimens. Therefore, 
additional experiments are required to validate the results 
based on tumor samples and clinical data. Secondly, we 
explored the immune implications of mitophagy in CRC, 
however, the mechanism between mitophagy and the 
immune system is still not well understood. Thirdly, we just 
focused on the comparison of CRC tissues with matched 
normal tissue from the same patient; we will endeavor to 
include normal colorectal tissues from non-cancer patient 
samples to better reveal abnormalities of gene expression 
during tumorigenesis in further studies. In addition, a 
retrospective design was used for the study as opposed 
to a prospective one. Therefore, to validate the current 
conclusion, more investigations involving prospective 
clinical trials and mechanistic exploration are required.

Conclusions

We developed and validated mitophagy-related signatures 
that could not only predict the survival outcomes of 
CRC patients but also reflect the immune status of CRC. 
Additionally, we constructed and validated a mitophagy-
associated risk score system, which might provide some 
useful insights to predict the prognosis of CRC patients and 
even assist their treatment in clinical practice. 
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Supplementary

Figure S1 Functional enrichment analysis of different mitophagy subtypes. (A) GO enrichment analysis of differential genes of different 
mitophagy subtypes. (B) KEGG enrichment analysis of differential genes of different mitophagy subtypes. (C) Differences in immune 
processes between different mitophagy subtypes. (D) Differences in immune cells between different mitophagy subtypes. (***, P<0.001; ** 
P<0.01; * P<0.05). ns, not significant; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure S2 Differences in immune processes and cell abundance between 2 subtypes. (A) Differences in immune processes between 2 
subtypes. (B) Differences in immune cells between 2 subtypes. (***, P<0.001; ** P<0.01; * P<0.05). ns, not significant.


