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Background: Hepatitis B virus (HBV) is the dominant pathogenic factor of hepatocellular carcinoma 
(HCC) in Asia and Africa. Early identification and clinical diagnosis are crucial for HBV-related HCC. 
Random forest (RF) and artificial neural network (ANN) were an innovative and highly effective supervised 
machine learning (ML) algorithm for the early diagnosis and screening of HBV-related HCC. This study 
aims to identify significant biomarkers and develop a novel genetic model for the efficient diagnosis of HBV-
related HCC.
Methods: Gene Expression Omnibus (GEO) Series (GSE)19665, GSE55092, and GSE121248 were used 
to identify significant differentially expressed genes (DEGs). The enrichment analysis was performed on 
Metascape online tool. The RF algorithm and ANN were used to select the potential predictive gene panels 
and construct an HBV-related HCC diagnostic model. Subsequently, GSE17548, GSE104310, GSE44074, 
and GSE136247 were used to test the accuracy of the ANN model. Finally, the CIBERSORT algorithm was 
used to assess the abundance of immune infiltrates in all samples.
Results: First, 116 genes were identified as DEGs, and the DEGs were particularly enriched in cellular 
hormone metabolic process, monocarboxylic acid metabolic process, NABA extracellular matrix (ECM) 
AFFILIATED steroid metabolic process and metabolism of bile acid and bile salt. DNA topoisomerase 
II alpha (TOP2A), C-type lectin domain family 1 member B (CLEC1B), BUB1 mitotic checkpoint serine/
threonine kinase B (BUB1B), ficolin 2 (FCN2), C-X-C motif chemokine ligand 14 (CXCL14), cyclase 
associated actin cytoskeleton regulatory protein 2 (CAP2), ficolin 3 (FCN3), kynurenine 3-monooxygenase 
(KMO) and cadherin related family member 2 (CDHR2) were available to develop an HBV-related 
HCC diagnostic model. After validation, the diagnostic model showed high sensitivity (88.5%, 90%, 
88.5%, 76.5%) and specificity (100%, 81.8%, 89.5%, 72.2%), and the areas under the receiver operating 
characteristic (ROC) curves showed excellent efficiency (1, 0.927, 0.921, 0.833). Finally, the percentage 
of infiltrating immune cell types [B cells naïve, B cells memory, plasma cells, T cells CD8, T cells CD4 
memory resting, T cells regulatory (Tregs), T cells gamma delta, natural killer (NK) cells resting, NK cells 
activated, Macrophages M0, Dendritic cells activated, Mast cells activated] for hepatitis B-related HCC were 
significantly different from that of non-cancerous liver tissue with HBV.
Conclusions: A novel early diagnostic model of HBV-related HCC was established, and the model showed 
better efficiency in distinguishing HBV-related HCC from other non-cancerous with HBV individuals.
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Introduction

Hepatocellular carcinoma (HCC) is the most prevalent 
primary liver cancer (90%) and the fourth leading cause 
of cancer-related death worldwide (1). By 2025, it is 
estimated to threat the health of more than 0.8 million 
people annually, with Chinese patients accounting for 
more than half of the global HCC burden (2). Variations 
in the incidence rate for HCC globally are attributed to 
diversity in risk factors. The prevalence of hepatitis B and 
C virus infections, especially the hepatitis B virus (HBV), 
is responsible for the highest incidence of HCC in East 
Asia and sub-Saharan Africa, with HBV-induced HCCs 
accounting for ~60% of cases in Asia and Africa (1,3). 
Chronic HBV infection leads to persistent liver damage 
and impaired regeneration, a well-known driving force of 
liver fibrogenesis and carcinogenesis (4). Therefore, there 
is an urgent need to identify reliable diagnostic markers to 
distinguish HBV-related HCC from other non-cancerous 
individuals with HBV.

Conventionally, early clinical diagnosis of HCC is 
depended on clinical symptoms, serum alpha-fetoprotein 
(AFP) and imaging findings in patients with chronic 

hepatitis or cirrhosis. Despite significant improvement 
in the prevention, monitoring, early screening, diagnosis 
and therapy of HCC over the past decade, the prognosis 
for the vast majority of HCC patients is typically poor. 
In addition, most patients lack obvious clinical symptoms 
in the early stage of HCC, and tumor that located deep 
within the abdominal cavity makes early diagnosis even 
more challenging. This highlights the importance of 
cancer research in identifying effective biomarkers, 
which are an attractive alternative for surveillance and 
early diagnosis of HCC because of its objectivity and 
reproducibility. Previous studies have identified a few 
potential diagnostic markers for HBV-related HCC, 
including AFP, Des-Gamma Carboxy Prothrombin (DCP), 
Golgi Protein Complex 73 (GPC 73), Osteopontin (OPN), 
cell-free/circulating tumor DNA, tumor-associated 
microRNAs and extracellular vesicles (5-11).

Machine learning (ML), unlike traditional statistical 
methods, is not rule-based programming but rather 
learning from examples. ML is an emerging discipline 
based on the intersection of statistics and mathematical 
sciences. It builds a statistical model from learning from 
large massive datasets data to achieve accurate prediction 
and to guide future research efforts (12,13). The random 
forest (RF), an innovative and highly effective supervised 
ML algorithm, uses several different prediction features in 
the training samples to effectively classify unknown samples 
by constructing a series of decision trees (13). RF classifier 
is an integrated approach consisting of multiple decision 
trees that are independent of each other. Each decision tree 
processes samples and predicts output labels, and the final 
output of the model is determined by the class that receives 
the most votes from the individual trees (14). As RFs 
overcomes the common problem of over-fitting through the 
use of bootstrap aggregation, it appears to be more accurate 
in prediction than other algorithms (15). Another supervised 
ML algorithm is artificial neural network (ANN), which 
is based on the functioning of biological neural networks. 
A neural network is composed of a large number of nodes 
(or neurons) connected to each other. The connection 
between each two nodes represents a weighted value for the 
signal passing through the connection, which is called the  
weight (16). Usually, these neurons are grouped in layers and 
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Highlight box

Key findings
•	 A diagnostic model of  hepatit is  B virus (HBV)-related 

hepatocellular carcinoma (HCC) was established, and the model 
showed better efficiency in distinguishing HBV-related HCC from 
other non-cancerous with HBV individuals.

What is known and what is new? 
•	 In the previous studies, differentially expressed genes and the 

association pathways involved in HBV-induced HCCs were 
identified through integrated bioinformatics analysis using multiple 
datasets. Other types of diagnostic and predictive models for HBV-
related HCC have also been established previously.

•	 Based on Gene Expression Omnibus (GEO) expression data, a 
diagnostic model of early HBV-related HCC was established. 

What is the implication, and what should change now? 
•	 The findings give a deeper and more comprehensive understanding 

of the occurrence and progression of HCC and its association 
with HBV and a valuable reference for the early screening and 
directions for improving the clinical efficacy of HBV-related HCC.
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Figure 1 Schematic illustration of the research design. GSE, Gene Expression Omnibus Series; DEGs, differentially expressed genes; RF, 
random forest. 
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process data in each layer, which are then passed forward to 
the next layers. Finally, the last layer responsible for making 
decisions and outputting results. The ANN is used to build 
a model of the complex relationship between input and 
output data and thus revealing the patterns (17). Compared 
to conventional programming, neural networks are available 
to deal with problems that algorithms could not solve, or the 
available solutions are too complex (17). ANN models are 
widely used in disease diagnosis, classification, prediction, 
and survival analysis because of their ability to handle 
linear and nonlinear relationship of data (18). It is well 
acknowledged that carcinogenesis and progression of HCC 
are closely related to mutation of genes, overexpression of 
various oncogenes and inactivation of tumor suppressor 
genes (19). With the rapid development in sequencing 
technology, huge volumes of gene expression profiling data 
related to cancer are generated for the identification of novel 
differential genes and diagnostic and prognostic biomarkers. 
In the previous studies, differentially expressed genes (DEGs) 
and the association pathways involved in HBV-induced 
HCCs were identified through integrated bioinformatics 
analysis using multiple datasets. 

In this study, three datasets were merged. The RF 
algorithm was then used to identify the key genes expressed 
in HBV-related HCC, and ANNs constructed a genetic 
diagnostic model of HBV-related HCC. Finally, immune 
cell infiltration between HBV-related HCC samples 
and non-cancerous samples with HBV was evaluated. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1197/rc).

Methods

Figure 1 shows the research framework of this study. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Gene expression data

Gene expression profiles of Gene Expression Omnibus 
(GEO) Series (GSE)19665 (https://www.ncbi.nlm.
nih.gov/geo/query/acc .cgi?acc=GSE19665)  (20) , 
GSE55092 (https://www.ncbi.nlm.nih.gov/geo/query/acc.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/rc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19665
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19665
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55092
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Table 1 Details of the GEO dataset

Dataset ID Sample Platform
Non-cancerous 

samples with HBV
HBV-related 

HCC
Classification Country Reference

GSE19665 HCC (HBV) GPL570 5 5 Training sets Japan Deng et al. 2010, (20)

GSE55092 HCC (HBV) GPL570 91 49 Training sets USA Melis et al. 2014, (21)

GSE121248 HCC (HBV) GPL570 37 70 Training sets Singapore Wang et al. 2007, (22)

GSE17548 HCC (HBV) GPL570 11 10 Test sets Turkey Yildiz et al. 2013, (23)

GSE104310 HCC (HBV) GPL16791 7 9 Test sets China Yun et al. 2021, not published

GSE44074 HCC (HBV) GPL13536 36 34 Test sets Japan Ueda et al. 2013, (24)

GSE136247 HCC (HBV) GPL17586 19 26 Test sets France Cerapio et al. 2021, (25)

GEO, Gene Expression Omnibus; HBV, hepatitis B virus; HCC, hepatocellular carcinoma. 

cgi?acc=GSE55092) (21), GSE121248 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248) (22), 
GSE17548 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE17548) (23), GSE104310 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104310), 
GSE44074 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE44074) (24), and GSE136247 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136247) (25)  
were obtained from the GEO database of the National 
Centre for Biotechnology Information (https://www.ncbi.
nlm.nih.gov/geo/) (raw data are available at https://cdn.
amegroups.cn/static/public/tcr-23-1197-1.xlsx, Table 1).  
The seven datasets were divided into two groups: the 
training set, which including GSE19665, GSE55092, and 
GSE121248, and the remaining datasets were classified 
into the test set to verify the performance of the model. 
As previously described, the process of converting gene 
probe IDs to gene symbols was done using A Perl language 
command. The normalisation between arrays function 
was used to normalise the gene expression data, and the 
gene expression data were averaged when multiple probes 
correspond to a gene. Subsequently, the expression data of 
the three datasets in training sets were merged and used for 
the following analysis, the batch effect from the different 
datasets was removed, and the common genes were finally 
obtained. The gene expression data with a larger value were 
subjected to log2 transformation in the limma R package.

Identification of DEGs and enrichment analyses

The limma R package v.3.5.2 in R software was used to 
identify DEGs. The DEGs were selected based on the 
cut-off criterion that adjusted P value <0.05 and |log2FC| 

>2. Metascape (http://metascape.org/gp/#/main/step1), a 
common integrated portal, contains functional enrichment, 
interactome analysis, gene annotation and membership 
search to provide a comprehensive gene list annotation 
and analysis resource for users to grasp biological  
characteristics (26). In present study, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses were executed 
using Metascape (https://metascape.org/gp/index.html#/
main/step1) online tool. P<0.05 was considered statistically 
significant.

RF screening for important genes

The RF software package (v.4.1.3) was used to filter 
out important variables and create an RF model that 
contributed most to the prediction of HBV-related HCC. 
First, the average model miscalculation rate of all genes 
based on out-of-band data was calculated. The best variable 
number for the binary tree at the node was set to 6, and 
2000 was chosen as the best number of trees contained in 
the RF (27). Based on the point with the smallest error, 
the best RF model was then built, and the candidate genes 
for HBV-related HCC diagnosis were determined using 
the mean decrease Gini. Finally, for the subsequent model 
construction, the genes with a significance score greater 
than 4 were chosen as disease-specific genes.

Subsequently, scores were assigned to the expression 
data of the selected DEGs using the following rules: If an 
upregulated gene’s log FC value for a sample was greater 
than the gene’s median expression value across all samples, 
its score was automatically assigned as 1; otherwise, it 
was set to 0. If the log FC of the downregulated gene 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55092
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17548
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17548
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44074
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44074
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136247
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136247
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/tcr-23-1197-1.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-1197-1.xlsx
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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was greater than the mean expression value, its score was 
automatically assigned as 0; otherwise, it was set to 1. The 
heatmap of the selected DEGs was drawn to show their 
expression in the merged dataset.

Neural network to build the disease classification model

The R software package neural net (v.1.44.2) were available 
to develop an ANN model of the important variables. The 
weight of each gene was obtained and five hidden layers 
were set as the model parameters to build a classification 
model of HBV-related HCC through the obtained gene 
score. The model accuracy results were obtained for 
HBV-related HCC samples and non-cancerous samples 
with HBV in the training set, and the receiver operating 
characteristic (ROC) software package was used to calculate 
the areas under the ROC curves (AUCs) classification 
performance verification results.

Validation of the predictive model

Four independent datasets (GSE17548, GSE104310, 
GSE44074, GSE136247) were used to verify the accuracy of 
the ANN model for classifying samples (HBV-related HCC 
or non-cancerous samples with HBV), and the ROC curves 
for each dataset were drawn using the pROC software 
package separately. At the same time, the optimal threshold 
in the ROC curve and the sensitivity and specificity in 
classifying cancer and normal samples under this threshold 
were calculated.

Evaluation of immune cell infiltration

The normalised gene expression data from the merged 
dataset was available to evaluate the abundance of immune 
infiltrates in all samples through the CIBERSORT 
algorithm. The percentages of 22 infiltrating immune cell 
types were calculated and output with the cutoff criterion 
that P value <0.05, and their correlations were displayed in 
a correlation heatmap drawn by the “corrplot” package (28). 
The ratios of infiltrating immune cells in non-cancerous 
liver tissues from HBV patients and HBV-related HCC 
tissues were visualised by a histogram, and the difference 
was shown by violin diagrams.

Statistical analysis

The limma R package v.3.5.2 in R software was used to 

identify DEGs. The DEGs were selected based on the cut-
off criterion that adjusted P value <0.05 and |log2FC| >2.  
The performance of ANN model was evaluated using 
ROCs, and the AUC, sensitivity, and specificity were 
determined. The correlation between 22 infiltrating 
immune cell types was assessed by calculating the Pearson 
correlation coefficient.

Results

Identification of DEGs in HCC

The samples in all datasets were strictly screened, and the 
samples without chronic HBV infection were excluded. 
GSE19665, GSE55092, and GSE121248 gene expression 
data were merged as a training dataset for subsequent 
analysis. A total of 133 non-cancerous liver tissues with 
HBV and 124 HBV-related HCC tissues were included in 
present analysis. As shown in the volcano graph (Figure 2A), 
116 genes were identified as DEGs according to the cut-off  
criterion that adjusted P value <0.05 and |log2FC| >2  
(Table S1, Figure S1). Figure 2B shows a heatmap of the top 
10 up- and downregulated genes.

Functional enrichment analysis of DEGs in the training 
dataset

To further investigate the biological functions of the 116 
DEGs, GO analysis and KEGG pathway enrichment 
analysis were performed using online database Metascape. 
As previously described (29), the GO analysis consisted 
of three functional groups, namely, the biological process 
(BP) group, the cellular component (CC) group and the 
molecular function (MF) group. The results of GO analysis 
exhibited that the DEGs were particularly enriched in 
the BP (Figure 3A, Table S2), including monocarboxylic 
acid metabolic process, response to bacterium, response 
to peptide, regulation of growth, and cellular response to 
xenobiotic stimulus. For the CC (Figure 3B), the DEGs 
were mainly enriched in collagen-containing extracellular 
matrix, spindle, external side of plasma membrane, blood 
microparticle, and basolateral plasma membrane. In the 
MF (Figure 3C), the DEGs were principally enriched in 
oxidoreductase activity, protein homodimerization activity, 
carbohydrate binding, amide binding, and lipid transporter 
activity. 

The results of KEGG pathway enrichment analysis 
revealed that the DEGs were particularly enriched in bile 

https://cdn.amegroups.cn/static/public/TCR-23-1197-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1197-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1197-Supplementary.pdf
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Figure 2 Identification of DEGs in HCC. (A) Volcano plot of differential expression analysis results. The abscissa is log2FC and the ordinate 
is −log10 adjust P value. The red dots represent the upregulated genes based on an adjusted P<0.05 and log2FC >2; the green dots represent 
the downregulated genes based on an adjusted P<0.05 and log2FC <2; the black dots represent the remaining stable genes. (B) Heatmap of 
the top 10 up- and downregulated genes. Colours on the graph from red to blue indicate high to low expression. On the upper part of the 
heatmap, the blue band indicates the non-cancerous HBV samples and the red band indicates HBV-related HCC samples. FC, fold change; 
DEGs, differentially expressed genes; HCC, hepatocellular carcinoma; HBV, hepatitis B virus. 
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secretion, cytokine-cytokine receptor interaction, caffeine 
metabolism, tryptophan metabolism, and steroid hormone 
biosynthesis (Figure 3D, Table S3).

RF screening for DEGs

All 116 DEGs were included in the RF classifier.  
Figure 4A shows the relationship between the model error 
and the number of decision trees. The final model showed 
a stable error when the number of decision trees was 2000. 
Therefore, the RF model was built with 2000 trees as the 
parameter of the final model. Genes with an importance 
score are shown in Figure 4B; genes with an importance 
score greater than 4 were selected as the candidate genes for 
subsequent analysis. Finally, nine genes were selected, DNA 
topoisomerase II alpha (TOP2A), C-type lectin domain 
family 1 member B (CLEC1B), BUB1 mitotic checkpoint 
serine/threonine kinase B (BUB1B), ficolin 2 (FCN2), 
C-X-C motif chemokine ligand 14 (CXCL14) and cyclase 
associated actin cytoskeleton regulatory protein 2 (CAP2) 
being the most important, followed by ficolin 3 (FCN3), 
kynurenine 3-monooxygenase (KMO) and cadherin related 
family member 2 (CDHR2). As shown in Figure 4C, CAP2, 
TOP2A, BUB1B were upregulated in HBV-related HCC 
samples, while KMO, CDHR2, CXCL14, FCN2, CLEC1B 

were upregulated in non-cancerous liver tissue with HBV.

Construction of the ANN model

Expression data for these nine genes in each sample were 
assigned a score of 1 or 0. Based on these nine important 
variables, an ANN model was constructed and used to 
distinguish HBV-related HCC tissues and non-cancerous 
liver tissue with HBV in 257 samples of the merge datasets 
(Figure 5A). As a result, the model could correctly predict 
132 cases in the HBV-related HCC group with 99.2% 
(132/133) accuracy and 120 cases in the non-cancerous with 
HBV group with 96.8% (120/124) accuracy. The AUC of 
the model in the training dataset were close to 1 (average 
AUC >0.99), showing the highly stable of the model in 
diagnosing HBV-related HCC (Figure 5B).

Validation of the ANN model

Four independent datasets (GSE17548, GSE104310, 
GSE44074,  GSE136247) were used to veri fy  the 
performance of the ANN model to classify samples (HBV-
related HCC tissues or non-cancerous liver tissues with 
HBV). As a result, the model could correctly predict 23 
cases in the HBV-related HCC group with 88.5% (23/26) 

https://cdn.amegroups.cn/static/public/TCR-23-1197-Supplementary.pdf
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Figure 3 GO analysis and KEGG pathway enrichment analysis of DEGs using the online database Metascape. (A) Biological processes of 
GO analysis. (B) Cellular components of GO analysis. (C) Molecular functions of GO analysis. (D) KEGG pathway enrichment analysis. 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes. 
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accuracy and 19 cases in the non-cancerous with HBV 
group with 100% (19/19) accuracy in GSE136247, 9 cases 
in the HBV-related HCC group with 90% (9/10) accuracy 
and 9 cases in the non-cancerous with HBV group with 
81.8% (9/11) accuracy in GSE17548, 23 cases in the HBV-
related HCC group with 88.5% (23/26) accuracy and 17 
cases in the non-cancerous with HBV group with 89.5% 
(17/19) accuracy in GSE104310, and 26 cases in the HBV-
related HCC group with 76.5% (26/34) accuracy and 26 
cases in the non-cancerous with HBV group with 72.2% 
(26/36) accuracy in GSE44074. The AUCs of the model in 
the test dataset were 1 [95% confidence interval (CI): 1–1], 
0.927 (95% CI: 0.791–1), 0.921 (95% CI: 0.738–1) and 
0.833 (95% CI: 0.725–0.918), respectively (Figure 6).

Immune cell infiltration results

A total of 133 cases of non-cancerous liver tissues from 

HBV patients and 124 cases of HBV-related HCC tissues 
were selected for the immune cell infiltration analysis. 
Based on the cut-off criterion that P<0.05, 38 cases of HBV-
related HCC tissues and 31 cases of non-cancerous liver 
tissues from HBV patients were selected for CIBERSORT 
analysis. First, the percentages of 22 kinds of immune cells 
in each sample were visualised in a histogram (Figure 7A). 
The correlations of 22 kinds of infiltrating immune cells 
between HBV-related HCC tissues and non-cancerous liver 
tissue with HBV were analysed (Figure 7B). For example, 
T follicular helper cells were positively correlated with T 
cells CD8+ and macrophages M1. Natural killer (NK) cells 
resting were positively associated with neutrophils and T 
cells CD4 naïve. The Wilcoxon test was used to detect 
significantly different immune cell infiltrates between HBV-
related HCC tissues and non-cancerous liver tissue with 
HBV. The results that presented 12 types (B cells naive, 
B cells memory, plasma cells, T cells CD8, T cells CD4 
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Figure 4 RF was used to screen differential genes, and nine genes were selected. (A) The influence of the number of decision trees on the 
error rate. The x-axis represents the number of decision trees, and the y-axis indicates the error rate. (B) The importance of the top 30 genes 
ranked by mean accuracy decreases. (C) Heatmap of the nine important genes generated by RF. The red colour indicates high expression 
genes in the samples, the blue colour indicates low expression genes in the samples, the red band on the upper side of the heatmap represents 
HBV-related HCC samples, and the blue band indicates non-cancerous liver tissue with HBV. RF, random forest; HBV, hepatitis B virus; 
HCC, hepatocellular carcinoma. 
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P<0.05 are shown in a violin diagram in Figure 7C.

Discussion

This study aimed to establish an effective diagnostic model 

for HBV-related HCC based on gene expression data from 
GEO. The three datasets in the training group were from 
different countries, using the same sequencing platform, 
which minimised the effect of confounding factors to some 
extent, 116 DEGs were identified in the merged dataset 
formed from three HBV-related HCC datasets. Nine 
important candidate DEGs were acquired through the RF 
classifier, and a neural network model was created. Four 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411707/figure/f3/
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Figure 5 ANN model was constructed in the merged datasets. (A) Construction of a neural network: the neural network topology of the 
dataset with five hidden layers. (B) The ROC curve of the predictive model of the training dataset. AUC, area under the ROC curve; ROC, 
receiver operating characteristic; CI, confidence interval; ANN, artificial neural network. 

independent datasets were used to verify the classification 
(HBV-related liver cancer or non-cancerous liver tissues 
with HBV) efficiency of the model, and the AUC (1, 0.927, 
0.921, 0.833) efficiency showed excellent. Four independent 
datasets from different countries and regions were used to 
assess the performance of this diagnostic model, increasing 
the stability, usefulness and credibility of this model. The 
immune cell infiltration result shows that the percentages 
of 12 types of immune cells were significantly different 
between HBV-related HCC tissues and non-cancerous liver 
tissue with HBV.

RF and ANN are different types of algorithms. RF is 
an ensemble decision tree approach in which each decision 
tree processes a sample and predicts an output label. 
Decision trees in an ensemble are independent. ANN is 
composed of many layers of nodes that carry the signal 
and process it to make the final decision (30). An ANN 
model for the diagnosis and screening of HBV-related 
HCC was constructed based on nine important genes 
from RFs. Of these nine genes, TOP2A and BUB1B have 
been extensively studied in HCC (31-35). KMO (36,37),  
CDHR2 (38), CLEC1B (39), CXCL14 (40) and FCN2 (41)  
were significantly decreased in HCC tissues (or) and cell 
lines, overexpression of these genes exhibited tumor-
inhibitory effects towards HCC (36,37), including inhibiting 
tumor formation and the growth of subcutaneous tumors, 
suppresseing proliferation, migration and invasion of 
HCC cells, epithelial-mesenchymal transition (EMT) and 

induced apoptosis. FCN3 expression was significantly lower 
in HCC tissues than in normal tissues (42). However, more  
in vitro and in vivo experiments are needed to further 
confirm its effect on HCC. KMO (37), CXCL14 (43), 
CAP2 (44) and FCN3 (45) were prognostic markers in 
HCC, and the combination of PD-L1high and CLEC1Blow 
expression has been shown to predict worse outcomes (46).

CAP2 was a valuable molecular marker in the histological 
diagnosis of early HCC (47), and its overexpression might 
be related to multistage hepatocarcinogenesis (48). In 
addition, CAP2 transcriptional levels were significantly 
suppressed in silibinin-treated HCC cells. Silibinin could be 
a potential therapeutic agent against HCC, particularly for 
HBV-related HCCs (49). These findings indicate that CAP2 
may play a critical role in the carcinogenesis or progression 
of HBV-related HCC. CXCL14 was markedly suppressed 
in HBV-related HCC tissues, and its polymorphisms were 
associated with advanced-stage chronic HBV infection (50). 
FCN2 is active in hepatitis B infection (51), and ficolin-2 
serum levels and FCN2 haplotypes contribute to the 
outcome of HBV infection in a Vietnamese cohort (51). 
FCN2 was implied, which was implied to play a crucial role 
in innate immunity against HBV infection.

Other types of diagnostic and predictive models for HBV-
related HCC have also been established previously. ATP 
binding cassette subfamily B member 6 (ABCB6), importin 
7 (IPO7), translocase of inner mitochondrial membrane 9 
(TIMM9), frizzled class receptor 7 (FZD7), and acetyl-CoA 
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Figure 6 The ROC curve of the ANN model in the validation dataset. (A) GSE136247. (B) GSE17548. (C) GSE104310. (D) GSE44074. 
GSE, Gene Expression Omnibus Series; AUC, area under the ROC curve; ROC, receiver operating characteristic; CI, confidence interval; 
ANN, artificial neural network.

acetyltransferase 1 (ACAT1), the five HBV-related genes 
were identified for constructing a prognostic model, which 
were capable of accurately differentiating HBV patients 
from non-HBV patients with HCC (52). Integrated analysis 
of the microbiome and host transcriptome revealed that 
six important microbial markers associated with the tumor 
immune microenvironment or bile acid metabolism showed 
good classification performance for discriminating 5-year 
survival and 2-year disease-free survival (53). LncRNA 
was also a potential diagnostic biomarker for HBV-related 
HCC, and AL356056.2, AL445524.1, TRIM52-AS1, 
AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, 
LINC00844 and LINC01018 were screened out by  

ML (54). Based on the data from the hospital authority 
data collaboration lab, 124,006 patients with chronic viral 
hepatitis (CVH) with complete data were included to build 
the models, and HCC ridge score (HCC-RS) from the 
ridge regression ML model accurately predicted HCC 
in patients with CVH (55). In addition, another study 
identified noninvasive biomarkers by applying a urinary 
proteomic strategy (56).

Infiltrating immune cells, a component of the tumor 
microenvironment, are involved in many processes, 
including tumor growth, invasion and metastasis. 
Accumulating evidence has shown that HCC tumors 
harbour a significant level of immune cell infiltration, and 
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Figure 7 Immune cell infiltration in HBV-related HCC tissues and non-cancerous liver tissue with HBV. (A) The compositions of 22 
immune cell types in each sample were shown in a histogram. (B) The correlations of 22 types of immune cells in HBV-related HCC tissues 
were evaluated. Red: positive correlation; blue: negative correlation. (C) Wilcoxon test was conducted to analyse the different immune cell 
infiltrates in HBV-related HCC and HBV non-cancerous liver tissues. NK, natural killer; HBV, hepatitis B virus; HCC, hepatocellular 
carcinoma. 

the status of immune cell infiltration and its characteristics 
are usually associated with different prognostic outcomes 
(57,58). The ratio of group 2 innate lymphoid cells (ILC2s) 
to ILC1s increased from non-tumor to tumor tissue in the 
majority of the HCC patients, and the high ILC2/ILC1 
ratio were correlated to better patient survival rates (59). 
In this study, the density of B cells memory, T cells CD8, 
Tregs, NK cells resting, macrophages M0, dendritic cells 
activated in tumor tissues significantly increased compared 
with non-cancerous liver tissues with HBV. In contrast, the 
density of B cells naïve, plasma cells, T cells CD4 memory 
resting, T cells gamma delta, NK cells activated, mast 

cells activated in HBV-related HCC tissues significantly 
decreased. T cells, B cells, NK cells, macrophages and 
mast cells have been previously reported to be present 
in immune cell infiltrates of HCC and play essential 
roles in the development, prognosis and immunotherapy 
treatment of HCC. High densities of naïve B cells and 
plasma cells were associated with superior survival (60). The 
antitumor or tumor-promoting effects of tumor-infiltrating 
lymphocytes depend on the proportion of the lymphocyte 
subsets constituent in the tumor microenvironment, and T 
lymphocytes are the primary tumor-infiltrating lymphocytes 
(TILs) cells in HCC (61). The mechanism of mast cell 

https://fanyi.so.com/?src=onebox#constituent
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activation in HCC is unclear, but its activation facilitates 
immune escape and resultant tumor growth (58). More 
importantly, HBV-specific CD8+ T cells, HBV-non-specific 
CD8+, CD4+ T, B and NK/NKT cells are all involved in the 
development of HBV-related HCC (62).

This study has some limitations. First, HCC exhibits 
high heterogeneity, which contains etiologic, geographic 
and molecular heterogeneity. Molecular heterogeneity 
can be further classified into interpatient, intertumor 
and intratumor heterogeneity (63). The HBV-related 
HCC diagnosis model using an ANN was solely based 
on gene expression data. Therefore, it is difficult to use 
a single model to accurately diagnose HCC at an early 
stage, although the model performed satisfactorily on the 
training and validation datasets. Second, the number of 
samples used for the construction and validation of this 
model was relatively small. Third, subsequent confirmatory 
experiments and clinical practice are needed to further 
monitor the accuracy and stability of the diagnostic model.

Conclusions

In conclusion, a combination of three datasets’ expression 
data was used to select important variables through RF. 
An ANN model was formulated for the early diagnosis 
and screening of HBV-related HCC. Finally, the ratio of 
infiltrating immune cells in non-cancerous liver tissues from 
HBV patients and HBV-related HCC tissues was assessed. 
The findings give a deeper and more comprehensive 
understanding of the occurrence and progression of HCC 
and its association with HBV and a valuable reference for 
the early screening and directions for improving the clinical 
efficacy of HBV-related HCC.

Acknowledgments

Funding:  This work was supported by the China 
Postdoctoral Science Foundation (No. 2022M713535), 
the Provincial Natural Science Foundation of Hunan (No. 
2023JJ41005), and the Health Research Project of Hunan 
Provincial Health Commission (No. B202309017571).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1197/rc

Peer Review File: Available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1197/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://tcr.amegroups.
com/article/view/10.21037/tcr-23-1197/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:7.
2.	 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer 

statistics 2018: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 2018;68:394-424.

3.	 El-Serag HB. Epidemiology of viral hepatitis 
and hepatocellular carcinoma. Gastroenterology 
2012;142:1264-1273.e1.

4.	 Li J, Cheng L, Jia H, et al. IFN-γ facilitates liver 
fibrogenesis by CD161+CD4+ T cells through a 
regenerative IL-23/IL-17 axis in chronic hepatitis B virus 
infection. Clin Transl Immunology 2021;10:e1353.

5.	 Pandyarajan V, Govalan R, Yang JD. Risk Factors 
and Biomarkers for Chronic Hepatitis B Associated 
Hepatocellular Carcinoma. Int J Mol Sci 2021;22:479.

6.	 European Association for the Study of the Liver. 
Electronic address: easloffice@easloffice; . EASL Clinical 
Practice Guidelines on haemochromatosis. J Hepatol 
2022;77:479-502.

7.	 Bertino G, Neri S, Bruno CM, et al. Diagnostic and 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/prf
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/coif
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1197/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Jiang et al. Construction and validation of a model for HCC1080

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(2):1068-1082 | https://dx.doi.org/10.21037/tcr-23-1197

prognostic value of alpha-fetoprotein, des-γ-carboxy 
prothrombin and squamous cell carcinoma antigen 
immunoglobulin M complexes in hepatocellular 
carcinoma. Minerva Med 2011;102:363-71.

8.	 Dai M, Chen X, Liu X, et al. Diagnostic Value of the 
Combination of Golgi Protein 73 and Alpha-Fetoprotein 
in Hepatocellular Carcinoma: A Meta-Analysis. PLoS One 
2015;10:e0140067.

9.	 Shang S, Plymoth A, Ge S, et al. Identification of 
osteopontin as a novel marker for early hepatocellular 
carcinoma. Hepatology 2012;55:483-90.

10.	 Ahn JC, Teng PC, Chen PJ, et al. Detection of 
Circulating Tumor Cells and Their Implications as 
a Biomarker for Diagnosis, Prognostication, and 
Therapeutic Monitoring in Hepatocellular Carcinoma. 
Hepatology 2021;73:422-36.

11.	 Beudeker BJB, Boonstra A. Circulating biomarkers for 
early detection of hepatocellular carcinoma. Therap Adv 
Gastroenterol 2020;13:1756284820931734.

12.	 Greener JG, Kandathil SM, Moffat L, et al. A guide to 
machine learning for biologists. Nat Rev Mol Cell Biol 
2022;23:40-55.

13.	 Van Calster B, Wynants L. Machine Learning in Medicine. 
N Engl J Med 2019;380:2588.

14.	 Inturi AR, Manikandan VM, Kumar MN, et al. Synergistic 
Integration of Skeletal Kinematic Features for Vision-
Based Fall Detection. Sensors (Basel) 2023;23:6283.

15.	 Zhao N, Charland K, Carabali M, et al. Machine learning 
and dengue forecasting: Comparing random forests and 
artificial neural networks for predicting dengue burden at 
national and sub-national scales in Colombia. PLoS Negl 
Trop Dis 2020;14:e0008056.

16.	 Sampa MB, Hossain MN, Hoque MR, et al. Blood 
Uric Acid Prediction With Machine Learning: Model 
Development and Performance Comparison. JMIR Med 
Inform 2020;8:e18331.

17.	 Azimi P, Mohammadi HR, Benzel EC, et al. Artificial 
neural networks in neurosurgery. J Neurol Neurosurg 
Psychiatry 2015;86:251-6.

18.	 Renganathan V. Overview of artificial neural network 
models in the biomedical domain. Bratisl Lek Listy 
2019;120:536-40.

19.	 Nakonieczna S, Grabarska A, Kukula-Koch W. The 
Potential Anticancer Activity of Phytoconstituents against 
Gastric Cancer-A Review on In Vitro, In Vivo, and 
Clinical Studies. Int J Mol Sci 2020;21:8307.

20.	 Deng YB, Nagae G, Midorikawa Y, et al. Identification of 
genes preferentially methylated in hepatitis C virus-related 

hepatocellular carcinoma. Cancer Sci 2010;101:1501-10.
21.	 Melis M, Diaz G, Kleiner DE, et al. Viral expression and 

molecular profiling in liver tissue versus microdissected 
hepatocytes in hepatitis B virus-associated hepatocellular 
carcinoma. J Transl Med 2014;12:230.

22.	 Wang SM, Ooi LL, Hui KM. Identification and validation 
of a novel gene signature associated with the recurrence 
of human hepatocellular carcinoma. Clin Cancer Res 
2007;13:6275-83.

23.	 Yildiz G, Arslan-Ergul A, Bagislar S, et al. Genome-wide 
transcriptional reorganization associated with senescence-
to-immortality switch during human hepatocellular 
carcinogenesis. PLoS One 2013;8:e64016.

24.	 Ueda T, Honda M, Horimoto K, et al. Gene expression 
profiling of hepatitis B- and hepatitis C-related 
hepatocellular carcinoma using graphical Gaussian 
modeling. Genomics 2013;101:238-48.

25.	 Cerapio JP, Marchio A, Cano L, et al. Global DNA 
hypermethylation pattern and unique gene expression 
signature in liver cancer from patients with Indigenous 
American ancestry. Oncotarget 2021;12:475-92.

26.	 Zhou Y, Zhou B, Pache L, et al. Metascape provides a 
biologist-oriented resource for the analysis of systems-
level datasets. Nat Commun 2019;10:1523.

27.	 Tian Y, Yang J, Lan M, et al. Construction and analysis 
of a joint diagnosis model of random forest and artificial 
neural network for heart failure. Aging (Albany NY) 
2020;12:26221-35.

28.	 Friendly M. Corrgrams: Exploratory Displays for 
Correlation Matrices. The American Statistician 
2002;56:316-24.

29.	 Xie S, Jiang X, Zhang J, et al. Identification of significant 
gene and pathways involved in HBV-related hepatocellular 
carcinoma by bioinformatics analysis. PeerJ 2019;7:e7408.

30.	 Dey P. Artificial neural network in diagnostic cytology. 
Cytojournal 2022;19:27.

31.	 Sha M, Cao J, Zong ZP, et al. Identification of genes 
predicting unfavorable prognosis in hepatitis B virus-
associated hepatocellular carcinoma. Ann Transl Med 
2021;9:975.

32.	 Liao X, Yu T, Yang C, et al. Comprehensive investigation 
of key biomarkers and pathways in hepatitis B virus-related 
hepatocellular carcinoma. J Cancer 2019;10:5689-704.

33.	 Chen X, Liao L, Li Y, et al. Screening and Functional 
Prediction of Key Candidate Genes in Hepatitis B Virus-
Associated Hepatocellular Carcinoma. Biomed Res Int 
2020;2020:7653506.

34.	 Qiang R, Zhao Z, Tang L, et al. Identification of 5 



Translational Cancer Research, Vol 13, No 2 February 2024 1081

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(2):1068-1082 | https://dx.doi.org/10.21037/tcr-23-1197

Hub Genes Related to the Early Diagnosis, Tumour 
Stage, and Poor Outcomes of Hepatitis B Virus-Related 
Hepatocellular Carcinoma by Bioinformatics Analysis. 
Comput Math Methods Med 2021;2021:9991255.

35.	 Yu M, Xu W, Jie Y, et al. Identification and validation of 
three core genes in p53 signaling pathway in hepatitis 
B virus-related hepatocellular carcinoma. World J Surg 
Oncol 2021;19:66.

36.	 Shi Z, Gan G, Gao X, et al. Kynurenine catabolic 
enzyme KMO regulates HCC growth. Clin Transl Med 
2022;12:e697.

37.	 Jin H, Zhang Y, You H, et al. Prognostic significance of 
kynurenine 3-monooxygenase and effects on proliferation, 
migration, and invasion of human hepatocellular 
carcinoma. Sci Rep 2015;5:10466.

38.	 Xia Z, Huang M, Zhu Q, et al. Cadherin Related Family 
Member 2 Acts As A Tumor Suppressor By Inactivating 
AKT In Human Hepatocellular Carcinoma. J Cancer 
2019;10:864-73.

39.	 Zhang G, Su L, Lv X, et al. A novel tumor doubling time-
related immune gene signature for prognosis prediction in 
hepatocellular carcinoma. Cancer Cell Int 2021;21:522.

40.	 Wang W, Huang P, Zhang L, et al. Antitumor 
efficacy of C-X-C motif chemokine ligand 14 in 
hepatocellular carcinoma in vitro and in vivo. Cancer 
Sci 2013;104:1523-31.

41.	 Yang G, Liang Y, Zheng T, et al. FCN2 inhibits 
epithelial-mesenchymal transition-induced metastasis 
of hepatocellular carcinoma via TGF-β/Smad signaling. 
Cancer Lett 2016;378:80-6.

42.	 Wang S, Song Z, Tan B, et al. Identification and Validation 
of Hub Genes Associated With Hepatocellular Carcinoma 
Via Integrated Bioinformatics Analysis. Front Oncol 
2021;11:614531.

43.	 Lin T, Zhang E, Mai PP, et al. CXCL2/10/12/14 are 
prognostic biomarkers and correlated with immune 
infiltration in hepatocellular carcinoma. Biosci Rep 
2021;41:BSR20204312.

44.	 Fu J, Li M, Wu DC, et al. Increased Expression of CAP2 
Indicates Poor Prognosis in Hepatocellular Carcinoma. 
Transl Oncol 2015;8:400-6.

45.	 Lai X, Wu YK, Hong GQ, et al. A Novel Gene Signature 
Based on CDC20 and FCN3 for Prediction of Prognosis 
and Immune Features in Patients with Hepatocellular 
Carcinoma. J Immunol Res 2022;2022:9117205.

46.	 Hu K, Wang ZM, Li JN, et al. CLEC1B Expression 
and PD-L1 Expression Predict Clinical Outcome in 
Hepatocellular Carcinoma with Tumor Hemorrhage. 

Transl Oncol 2018;11:552-8.
47.	 Sakamoto M, Mori T, Masugi Y, et al. Candidate molecular 

markers for histological diagnosis of early hepatocellular 
carcinoma. Intervirology 2008;51 Suppl 1:42-5.

48.	 Shibata R, Mori T, Du W, et al. Overexpression of cyclase-
associated protein 2 in multistage hepatocarcinogenesis. 
Clin Cancer Res 2006;12:5363-8.

49.	 Ghasemi R, Ghaffari SH, Momeny M, et al. 
Multitargeting and antimetastatic potentials of silibinin 
in human HepG-2 and PLC/PRF/5 hepatoma cells. Nutr 
Cancer 2013;65:590-9.

50.	 Lin Y, Chen BM, Yu XL, et al. Suppressed Expression 
of CXCL14 in Hepatocellular Carcinoma Tissues and 
Its Reduction in the Advanced Stage of Chronic HBV 
Infection. Cancer Manag Res 2019;11:10435-43.

51.	 Hoang TV, Toan NL, Song le H, et al. Ficolin-2 levels and 
FCN2 haplotypes influence hepatitis B infection outcome 
in Vietnamese patients. PLoS One 2011;6:e28113.

52.	 Ma K, Wu H, Ji L. Construction of HBV gene-related 
prognostic and diagnostic models for hepatocellular 
carcinoma. Front Genet 2023;13:1065644.

53.	 Huang H, Ren Z, Gao X, et al. Integrated analysis of 
microbiome and host transcriptome reveals correlations 
between gut microbiota and clinical outcomes in 
HBV-related hepatocellular carcinoma. Genome Med 
2020;12:102.

54.	 Nong S, Chen X, Wang Z, et al. Potential lncRNA 
Biomarkers for HBV-Related Hepatocellular Carcinoma 
Diagnosis Revealed by Analysis on Coexpression Network. 
Biomed Res Int 2021;2021:9972011.

55.	 Wong GL, Hui VW, Tan Q, et al. Novel machine learning 
models outperform risk scores in predicting hepatocellular 
carcinoma in patients with chronic viral hepatitis. JHEP 
Rep 2022;4:100441.

56.	 Zhao Y, Li Y, Liu W, et al. Identification of noninvasive 
diagnostic biomarkers for hepatocellular carcinoma by 
urinary proteomics. J Proteomics 2020;225:103780.

57.	 Zheng C, Zheng L, Yoo JK, et al. Landscape of Infiltrating 
T Cells in Liver Cancer Revealed by Single-Cell 
Sequencing. Cell 2017;169:1342-1356.e16.

58.	 Rohr-Udilova N, Klinglmüller F, Schulte-Hermann R, 
et al. Deviations of the immune cell landscape between 
healthy liver and hepatocellular carcinoma. Sci Rep 
2018;8:6220.

59.	 Heinrich B, Gertz EM, Schäffer AA, et al. The tumour 
microenvironment shapes innate lymphoid cells in patients 
with hepatocellular carcinoma. Gut 2022;71:1161-75.

60.	 Zhang Z, Ma L, Goswami S, et al. Landscape of 



Jiang et al. Construction and validation of a model for HCC1082

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(2):1068-1082 | https://dx.doi.org/10.21037/tcr-23-1197

infiltrating B cells and their clinical significance in 
human hepatocellular carcinoma. Oncoimmunology 
2019;8:e1571388.

61.	 Zheng X, Jin W, Wang S, et al. Progression on the Roles 
and Mechanisms of Tumor-Infiltrating T Lymphocytes in 
Patients With Hepatocellular Carcinoma. Front Immunol 

2021;12:729705.
62.	 Chen Y, Tian Z. HBV-Induced Immune Imbalance in the 

Development of HCC. Front Immunol 2019;10:2048.
63.	 Dhanasekaran R. Deciphering Tumor Heterogeneity 

in Hepatocellular Carcinoma (HCC)-Multi-Omic and 
Singulomic Approaches. Semin Liver Dis 2021;41:9-18.

Cite this article as: Jiang X, Hu J, Xie S. Construction and 
validation of a joint diagnosis model based on random forest 
and artificial intelligence network for hepatitis B-related 
hepatocellular carcinoma. Transl Cancer Res 2024;13(2): 
1068-1082. doi: 10.21037/tcr-23-1197



© Translational Cancer Research. All rights reserved.  https://dx.doi.org/10.21037/tcr-23-1197

Figure S1 PPI network of differentially expressed genes. Circles represent genes (the red represents log FC >0, the green represents log  
FC <0), lines represent interactions between gene encoded proteins and line colors represent evidence of interactions between proteins. PPI, 
protein-protein interaction; FC, fold change. 
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Table S1 DEGs were identified in the dataset merged by GSE19665, GSE55092, and GSE121248

ID logFC AveExpr t P value adj. P value B

CXCL14 −2.544576 6.34945308 −27.423644 1.90E−78 2.59E−74 168.068268

CLEC1B −3.4329001 7.42679483 −27.390276 2.40E−78 2.59E−74 167.836565

FCN2 −2.2206992 6.39988521 −26.530286 1.05E−75 7.59E−72 161.815421

OIT3 −3.5715519 7.36700563 −24.658246 8.19E−70 4.43E−66 148.382336

LINC01093 −4.0451304 7.76034823 −23.768316 6.01E−67 1.86E−63 141.842915

CLEC4G −3.2462654 6.74354921 −23.709637 9.32E−67 2.52E−63 141.408335

FCN3 −3.4437076 8.8527026 −23.430768 7.52E−66 1.63E−62 139.337366

CAP2 2.39426019 8.04539907 22.7784117 1.03E−63 1.86E−60 134.456812

GPR128 −2.9182295 6.68192639 −22.546616 6.01E−63 9.99E−60 132.710751

RSPO3 −2.1847306 6.30050748 −22.391964 1.95E−62 3.01E−59 131.542389

CLEC4M −2.8142277 6.64806351 −22.266048 5.10E−62 7.35E−59 130.589135

CRHBP −3.156771 6.81679025 −22.228427 6.80E−62 9.19E−59 130.30398

CDHR2 −2.1015227 8.03715736 −22.019731 3.36E−61 4.27E−58 128.719267

HAMP −4.3980972 9.36791144 −21.232471 1.45E−58 1.49E−55 122.698906

SLC25A47 −2.6340965 8.7318427 −21.135064 3.09E−58 2.90E−55 121.94949

TTC36 −2.8921356 8.35113777 −21.033574 6.78E−58 6.11E−55 121.167633

RACGAP1 2.16183945 7.03931053 20.7021333 8.95E−57 6.92E−54 118.607137

TOP2A 2.14988566 5.27272419 20.4023272 9.32E−56 6.50E−53 116.281836

CYP26A1 −2.8416724 7.09686776 −20.303384 2.02E−55 1.37E−52 115.512569

HMMR 2.12203833 6.27459095 20.27307 2.57E−55 1.68E−52 115.276705

PLAC8 −2.4756285 7.01370729 −20.040852 1.59E−54 1.01E−51 113.467093

CNDP1 −3.3412824 7.86986649 −19.605404 4.91E−53 2.95E−50 110.060993

IL1RAP −2.0942222 8.89466727 −19.481031 1.31E−52 7.66E−50 109.085212

IDO2 −2.8412497 7.18719372 −19.45993 1.55E−52 8.82E−50 108.919536

KCNN2 −3.2047402 6.40628195 −19.29655 5.65E−52 2.91E−49 107.635561

CYP1A2 −3.018836 9.90220702 −19.230363 9.54E−52 4.69E−49 107.114809

CXCL12 −2.9655968 9.16289723 −18.719083 5.54E−50 2.35E−47 103.081168

NDC80 2.14393493 5.78888634 18.5945591 1.49E−49 6.22E−47 102.095982

CETP −2.0759883 6.90653043 −18.39339 7.44E−49 2.87E−46 100.502276

CD5L −2.2727505 7.70742354 −18.379736 8.30E−49 3.15E−46 100.394011

KMO −2.4672064 8.69821451 −18.311186 1.43E−48 5.35E−46 99.8503035

PRC1 2.12772385 6.72268565 17.9403021 2.79E−47 9.42E−45 96.9039011

CCNB1 2.11571785 5.74060892 17.9170064 3.36E−47 1.08E−44 96.7185817

FAM83D 2.05580848 6.8791897 17.8029773 8.37E−47 2.66E−44 95.8110672

TMEM27 −2.7061758 7.40032287 −17.792946 9.08E−47 2.84E−44 95.7312007

MARCO −2.5606435 7.67943728 −17.711678 1.74E−46 5.16E−44 95.0839883

ZG16 −2.2926421 7.94482155 −17.628254 3.40E−46 9.81E−44 94.4192761

RRM2 2.2228061 7.73375779 17.5456553 6.60E−46 1.83E−43 93.7608261

GPR158 2.04736143 5.3607137 17.4914294 1.02E−45 2.79E−43 93.3283943

NPY1R −2.1036549 5.88291012 −17.483499 1.09E−45 2.94E−43 93.2651382

HAO2 −2.8246959 8.80197804 −17.480559 1.11E−45 2.97E−43 93.2416906

NAT2 −2.4261428 9.04103488 −17.44686 1.46E−45 3.85E−43 92.9728729

PBK 2.21313299 5.36001211 17.4019865 2.09E−45 5.45E−43 92.6148493

ROBO1 2.4804005 9.2531166 17.3987845 2.15E−45 5.53E−43 92.5892988

MELK 2.04803433 7.29807767 17.3634664 2.85E−45 7.17E−43 92.3074491

OLFML3 −2.1026019 7.52988506 −17.168831 1.36E−44 3.14E−42 90.7533463

KIF20A 2.00793763 5.72635009 17.1368028 1.76E−44 4.02E−42 90.4974816

BUB1B 2.15908291 6.9202473 17.1126416 2.14E−44 4.78E−42 90.3044404

RBM24 2.4794942 6.2873214 16.8344272 2.01E−43 4.19E−41 88.0802986

HGFAC −2.3563959 7.65007814 −16.697045 6.08E−43 1.17E−40 86.981248

APOF −2.7303888 9.09444321 −16.680151 6.97E−43 1.31E−40 86.8460663

FBP1 −2.5565585 10.9963788 −16.438405 4.89E−42 8.46E−40 84.9110724

FOS −2.7657023 8.91756115 −16.385063 7.51E−42 1.26E−39 84.4839885

BCO2 −2.3159779 8.21043643 −16.326855 1.20E−41 1.97E−39 84.0178905

FREM2 −2.7410914 5.7221795 −16.241833 2.38E−41 3.79E−39 83.3370196

MT1F −2.396978 11.0882789 −16.20254 3.27E−41 5.09E−39 83.0223371

C8orf4 −2.0608662 9.57693862 −15.982202 1.93E−40 2.79E−38 81.2575406

SRPX −2.7167506 7.13361498 −15.6451 2.93E−39 3.64E−37 78.5575769

CYP39A1 −2.1837453 7.46419048 −15.622612 3.51E−39 4.29E−37 78.3774957

NUF2 2.05738451 4.52875921 15.6027624 4.12E−39 4.96E−37 78.2185389

LPA −2.4902639 8.38327464 −15.329274 3.74E−38 3.91E−36 76.0290637

ZIC2 2.62567386 4.69785113 15.1071722 2.24E−37 2.16E−35 74.2521216

GPC3 2.47710687 6.43662826 15.0515581 3.50E−37 3.25E−35 73.8073865

GHR −2.5465291 10.322801 −15.04758 3.61E−37 3.34E−35 73.7755768

GRAMD1C −2.1008286 8.06686749 −15.033167 4.06E−37 3.72E−35 73.6603369

FOSB −2.6044033 8.196666 −14.987522 5.86E−37 5.31E−35 73.2954236

MT1M −3.1518953 7.84322898 −14.836298 1.98E−36 1.71E−34 72.0869752

LOC344887 2.64539651 5.44903398 14.8151245 2.35E−36 2.00E−34 71.91784

ID1 −2.1167992 8.30653243 −14.579245 1.56E−35 1.22E−33 70.0349784

SPP2 −2.7502875 10.270496 −14.545955 2.04E−35 1.56E−33 69.7694576

SRD5A2 −2.0287757 8.02767535 −14.483538 3.37E−35 2.51E−33 69.2717771

AKR1D1 −3.2961038 10.1091412 −14.458953 4.11E−35 3.03E−33 69.0758127

C7 −2.5741731 8.09244358 −14.45236 4.33E−35 3.16E−33 69.023258

COL15A1 2.18513587 5.95514173 14.3498401 9.85E−35 6.87E−33 68.2064634

ANXA10 −2.1660479 9.13134905 −14.295249 1.53E−34 1.05E−32 67.7717762

SLC22A1 −3.3089567 10.0527123 −14.277241 1.76E−34 1.19E−32 67.6284219

CA2 −2.2707491 9.53539549 −14.276749 1.77E−34 1.19E−32 67.6245102

CR936796 2.11220051 5.93023271 14.1771121 3.93E−34 2.58E−32 66.8317385

PGLYRP2 −2.5835523 9.09962977 −14.078964 8.63E−34 5.38E−32 66.0514629

CYP2C18 −2.0125866 9.28734037 −13.983148 1.86E−33 1.10E−31 65.2903835

PRG4 −2.1506923 6.586506 −13.962553 2.19E−33 1.29E−31 65.1268907

GBA3 −2.2881345 9.43008856 −13.817351 6.99E−33 3.91E−31 63.9751069

RDH16 −2.0574012 10.7701176 −13.596486 4.07E−32 2.11E−30 62.2265497

IL13RA2 −2.225249 6.13242995 −13.582648 4.54E−32 2.33E−30 62.1171389

IGJ −3.2619562 7.8710689 −13.548463 5.96E−32 2.98E−30 61.846938

TRIM16 2.11603793 6.69760625 13.5108216 8.04E−32 3.98E−30 61.5495497

CRNDE 2.17311722 5.71512974 13.3359465 3.23E−31 1.49E−29 60.1697846

CLRN3 −2.5289685 8.46410842 −13.332428 3.32E−31 1.53E−29 60.1420575

BBOX1 −2.5907476 8.12384816 −13.048445 3.15E−30 1.32E−28 57.9085754

THRSP −2.279467 8.37565341 −12.933737 7.80E−30 3.09E−28 57.0091035

SMPX 2.017613 5.41069708 12.910697 9.36E−30 3.65E−28 56.8286399

SLCO1B3 −3.0558913 9.40973033 −12.891284 1.09E−29 4.19E−28 56.6766329

CYP2A6 −2.4142187 10.2796799 −12.870158 1.29E−29 4.86E−28 56.5112771

CNTN3 −2.6745936 6.62062451 −12.683901 5.58E−29 1.98E−27 55.0559304

GYS2 −2.4771606 9.22389918 −12.569326 1.37E−28 4.53E−27 54.1630753

VNN1 −2.5145344 9.53649745 −12.384047 5.86E−28 1.81E−26 52.7233548

GNMT −2.3020348 9.38614604 −12.321662 9.54E−28 2.87E−26 52.2397798

C9 −3.6280301 10.7365082 −12.142858 3.84E−27 1.07E−25 50.857302

ACOT12 −2.1425298 9.4699936 −12.044998 8.23E−27 2.22E−25 50.102961

SPINK1 3.50352604 8.1481923 11.8345504 4.20E−26 1.06E−24 48.4865586

FAM110C −2.1205849 8.59651321 −11.501186 5.46E−25 1.21E−23 45.9434806

PCK1 −2.407529 11.7446286 −11.496659 5.65E−25 1.25E−23 45.909104

COX7B2 2.11849345 4.84578431 11.4824161 6.30E−25 1.39E−23 45.8009686

SDS −2.0349595 8.58071055 −11.384891 1.33E−24 2.82E−23 45.0617115

LCN2 2.31229931 7.70959633 11.2987206 2.56E−24 5.30E−23 44.4102426

C6 −2.0718186 11.5259624 −11.19729 5.54E−24 1.10E−22 43.6455413

MAGEA1 2.07293912 5.77535978 11.1558954 7.59E−24 1.47E−22 43.3341359

AFM −2.0500275 10.6946934 −11.15097 7.88E−24 1.52E−22 43.297106

CYP2B7P −2.5012243 8.32072183 −11.035516 1.89E−23 3.51E−22 42.4308315

SLC10A1 −2.0012838 11.0153519 −10.999316 2.48E−23 4.54E−22 42.1598712

LINC01419 2.12198445 4.02663356 10.9909537 2.64E−23 4.82E−22 42.097327

AKR1B10 3.14085593 9.32353039 10.917218 4.61E−23 8.17E−22 41.5465557

SLC51A −2.0259855 9.58535298 −10.239472 7.15E−21 1.01E−19 36.5512572

MAGEA6 2.51197733 5.06016824 9.78109646 2.01E−19 2.44E−18 33.2490772

DKK1 2.50349755 5.58884284 9.3967322 3.14E−18 3.35E−17 30.5337099

EPCAM −2.151953 7.91948837 −8.3883066 3.26E−15 2.54E−14 23.6767844

DEGs, differentially expressed genes; GSE, Gene Expression Omnibus Series. 
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Table S2 Top GO enrichment terms of differentially expressed genes associated with hepatitis B-related hepatocellular carcinoma 

Category Term Count % P value

BP GO:0032787: monocarboxylic acid metabolic process 13 11.3 6.76083E−08

BP GO:0009617: response to bacterium 12 10.43 3.38844E−05

BP GO:1901652: response to peptide 11 9.57 1.28825E−06

BP GO:0040008: regulation of growth 10 8.7 0.000141254

BP GO:0071466: cellular response to xenobiotic stimulus 9 7.83 3.71535E−08

BP GO:0034754: cellular hormone metabolic process 8 6.96 3.80189E−08

BP GO:0000819: sister chromatid segregation 7 6.09 1.65959E−06

BP GO:0002697: regulation of immune effector process 7 6.09 0.000645654

BP GO:0015850: organic hydroxy compound transport 6 5.22 3.63078E−05

BP GO:0045861: negative regulation of proteolysis 6 5.22 0.002344229

BP GO:0044262: cellular carbohydrate metabolic process 5 4.35 0.000446684

BP GO:0071902: positive regulation of protein serine/threonine kinase activity 5 4.35 0.001862087

BP GO:0044070: regulation of anion transport 4 3.48 0.000446684

BP GO:0051701: biological process involved in interaction with host 4 3.48 0.002951209

BP GO:2000096: positive regulation of Wnt signaling pathway, planar cell polarity pathway 3 2.61 4.46684E−06

BP GO:0019835: cytolysis 3 2.61 6.76083E−05

BP GO:0042537: benzene-containing compound metabolic process 3 2.61 0.000147911

BP GO:0009595: detection of biotic stimulus 3 2.61 0.000446684

BP GO:0043277: apoptotic cell clearance 3 2.61 0.000630957

BP GO:0040014: regulation of multicellular organism growth 3 2.61 0.001995262

CC GO:0062023: collagen-containing extracellular matrix 10 8.7 6.45654E−06

CC GO:0005819: spindle 8 6.96 0.000234423

CC GO:0009897: external side of plasma membrane 7 6.09 0.001995262

CC GO:0072562: blood microparticle 6 5.22 2.04174E−05

CC GO:0016323: basolateral plasma membrane 5 4.35 0.001862087

CC GO:0005579: membrane attack complex 3 2.61 1.86209E−06

CC GO:0000940: outer kinetochore 3 2.61 1.14815E−05

CC GO:0034358: plasma lipoprotein particle 3 2.61 0.000354813

MF GO:0016491: oxidoreductase activity 16 13.91 2.0893E−08

MF GO:0042803: protein homodimerization activity 9 7.83 0.00134896

MF GO:0030246: carbohydrate binding 8 6.96 1.0965E−05

MF GO:0033218: amide binding 8 6.96 0.00017378

MF GO:0005319: lipid transporter activity 6 5.22 3.6308E−05

MF GO:0016614: oxidoreductase activity, acting on CH-OH group of donors 5 4.35 0.00019055

MF GO:1901618: organic hydroxy compound transmembrane transporter activity 4 3.48 5.1286E−05

MF GO:0038024: cargo receptor activity 4 3.48 0.00028184

MF GO:0031406: carboxylic acid binding 4 3.48 0.0042658

MF GO:0005201: extracellular matrix structural constituent 4 3.48 0.00436516

MF GO:0030414: peptidase inhibitor activity 4 3.48 0.0057544

MF GO:0016829: lyase activity 4 3.48 0.00724436

MF GO:0042834: peptidoglycan binding 3 2.61 4.2658E−05

MF GO:0016709: oxidoreductase activity, acting on paired donors, with incorporation or 
reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of 
oxygen

3 2.61 0.00047863

MF GO:0051213: dioxygenase activity 3 2.61 0.00549541

MF GO:0004896: cytokine receptor activity 3 2.61 0.00616595

GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function. 
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Table S3 KEGG pathway analysis of differentially expressed genes associated with hepatitis B-related hepatocellular carcinoma 

Term Count % P value

hsa04976: Bile secretion 6 5.22 1.20226E−06

hsa04060: Cytokine-cytokine receptor interaction 5 4.35 0.005495409

hsa00232: Caffeine metabolism 3 2.61 1.07152E−06

hsa00380: Tryptophan metabolism 3 2.61 0.000549541

hsa00140: Steroid hormone biosynthesis 3 2.61 0.001659587

hsa04610: Complement and coagulation cascades 3 2.61 0.004265795

hsa04657: IL-17 signaling pathway 3 2.61 0.005623413

hsa04922: Glucagon signaling pathway 3 2.61 0.007943282

hsa01200: Carbon metabolism 3 2.61 0.009772372

KEGG, Kyoto Encyclopedia of Genes and Genomes. 


