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Disulfidptosis and ferroptosis related genes predict prognosis and 
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Background: Understanding the interplay between disulfidptosis, ferroptosis, and hepatocellular 
carcinoma (HCC) could provide valuable insights into the pathogenesis of HCC and potentially identify 
novel therapeutic targets for the treatment of this deadly disease. This study aimed to identify a prognostic 
signature for HCC by examining the differential expression of genes related to disulfidptosis and ferroptosis 
(DRG-FRG), and to assess its clinical applicability.
Methods: By integrating 23 disulfidptosis and 259 ferroptosis related genes with HCC messenger RNA 
(mRNA) expression data from The Cancer Genome Atlas (TCGA), differentially expressed DRG-FRG genes 
were identified. From these, 11 DRG-FRG genes were selected to construct a risk signature model using 
least absolute shrinkage and selection operator regression analyses. The prognostic performance of this model 
was evaluated by Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) 
analysis. Subsequently, a nomogram was built by combining the signature with clinical variables. To further 
delve into the underlying mechanisms, we performed bioinformatics analysis using a variety of databases.
Results: A prognostic signature based on 11 DRG-FRG genes effectively categorized HCC patients into 
high- and low-risk groups, showing a significant survival difference. Even after considering clinical variables, 
this signature remained an independent prognostic factor. Furthermore, the signature played a role in various 
critical biological processes and pathways that drive HCC progression. Potential therapeutic benefits could 
be derived from small molecule drugs targeting NQO1 and SLC7A11. Interestingly, the high-risk group 
exhibited resistance to several chemotherapeutic drugs, yet showed sensitivity to others when contrasted with 
the low-risk group. Lastly, the DRG-FRG genes signature had a strong correlation with the tumor immune 
microenvironment, marked by an elevated expression of immune checkpoint molecules in the high-risk group.
Conclusions: The signature based on 11 DRG-FRG genes stands out as a promising prognostic 
biomarker for HCC. Beyond its predictive value, it sheds light on the intricate crosstalk between DRG-
FRG genes and HCC. Importantly, these findings could pave the way for enhanced prognostic prediction, 
informed treatment decisions, and the advancement of immunotherapy for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is the most common 
type of liver cancer and a leading cause of illness and 
death around the world (1). The incidence of HCC varies 
depending on the geographic region, with the highest rates 
found in Asia and sub-Saharan Africa. The most important 
risk factors for developing HCC are chronic hepatitis 
B and C infections, as well as alcohol consumption and 
exposure to aflatoxin. Unfortunately, the mortality rate 
for HCC is also high, and patients with advanced HCC 
have a poor prognosis. While there have been notable 
strides in the treatment of HCC through immunotherapy, 
targeted therapy, and liquid biopsy, the survival rate for 
HCC patients is still comparatively low (2). This is largely 
due to factors such as the aggressiveness of the disease, late 
detection, and the presence of other medical conditions. In 
light of this, it is imperative that more effective treatments 
are developed and implemented to improve the survival 
rates of HCC patients. Multigene signatures are important 
in cancer research, they help evaluate the outcomes of 
treatments and identify high-risk patients for earlier 
intervention. With the potential to revolutionize cancer 
research and treatment, multigene signatures provide a 
promising avenue for medical practitioners and researchers. 
In this context, our research seeks to develop a signature 

that combines disulfidptosis and ferroptosis (DRG-FRG), 
aiming to forecast the overall survival and treatment options 
of HCC patients.

Disulfidptosis is a novel type of cell death that occurs 
when disulfides, such as cystine, accumulate in cancer 
cells during glucose starvation. This abnormal buildup of 
intracellular disulfides in SLC7A11 cells results in a type 
of cell death which is different from both apoptosis and 
ferroptosis (3). The consequence of this is the collapse 
of the actin cytoskeleton, leading to the loss of cell shape 
and integrity (4). This phenomenon may offer a potential 
target for metabolic cancer therapy, as it can be induced by 
glucose transporter inhibitors or other agents that deplete 
NADPH or increase disulfide stress (4,5). Additionally, 
other influential studies have suggested that disulfidptosis 
may have implications for tumor immunity, as the cell 
death signal may activate tumor-specific T cells and 
enhance the anti-tumor immune response (6,7). SLC7A11 
overexpression can promote tumor growth and suppress 
ferroptosis in some cancers, but may also increase cancer 
cell dependence on glucose and glutamine (8).

The process of ferroptosis involves the build-up of 
iron-dependent reactive oxygen species as well as lipid 
peroxidation, this programmed cell death differs from 
apoptosis and necrosis (9,10). Ferroptosis has been shown 
to have both tumor-suppressive and tumor-promoting 
effects in HCC, depending on the context and the 
signaling pathways involved (11). Understanding the role 
of ferroptosis in HCC development and progression is 
essential for developing effective therapies. Inhibition of 
ferroptosis has been shown to promote the growth of HCC, 
while induction of ferroptosis inhibits HCC cell growth 
and could enhance the efficacy of chemotherapy. Targeting 
ferroptosis could be a promising therapeutic strategy for 
HCC patients (12).

DRG-FRG are both forms of cell death that are thought 
to be involved in cancer progression and treatment. 
The DRG-FRG signature is expected to be a useful tool 
for medical practitioners and researchers in the field of 
oncology to evaluate the outcomes of treatments and 
identify high-risk HCC patients for earlier intervention. 
However, there have been few studies that systematically 
explore the relationship between DRG-FRG and HCC.

Our research focused intensively on the bioinformatics 
analyses to explore the expression spectrum and prognostic 
significance of DRG-FRG in HCC. We crafted and 
validated a predictive feature rooted in 11 DRG-FRGs, 
which showcased its prowess in predicting the prognosis 
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of HCC patients. Notably, a link was discerned between 
HCC’s prognostic indicators and the immune landscape, 
laying a foundational theory for the adoption of immune 
checkpoint therapies. On top of that, we pinpointed ten 
small molecule drugs that hold promise for patient benefits. 
We present this article in accordance with the STROBE 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1594/rc).

Methods

Collecting data and identifying differentially expressed 
DRG-FRG

In our study, we undertook a detailed analysis of 424 
hepatic tissue samples, which included 50 normal liver 
tissue samples and 374 HCC tissue samples. This analysis 
involved evaluating messenger RNA (mRNA) expression 
levels and incorporating pertinent clinical data sourced 
from The Cancer Genome Atlas (TCGA; https://portal.
gdc.cancer.gov). From earlier thematic studies, we retrieved 
23 disulfideptosis genes (3) and 79 immune checkpoint  
genes (13). Ferroptosis genes were obtained from the 
FerrDb V2 (http://www.zhounan.org/ferrdb/current/). After 
meticulously merging and refining three relevant dataset 
files, which were all sourced from the FerrDb V2 database 
(tables available at https://cdn.amegroups.cn/static/public/
tcr-23-1594-1.xlsx; https://cdn.amegroups.cn/static/public/
tcr-23-1594-2.xlsx; https://cdn.amegroups.cn/static/public/
tcr-23-1594-3.xlsx), we pinpointed a total of 259 ferroptosis 
genes. We extracted the mRNA expression patterns of 
both disulfideptosis and ferroptosis from the TCGA 
dataset. Subsequently, the limma package was employed 
to perform correlation analysis in order to identify 
ferroptosis-associated genes and their corresponding 
mRNA expression levels that exhibit significant associations 
with disulfideptosis. The selection criteria for these genes 
were as follows: the correlation coefficient should be 
>0.3 (indicating positive correlation) or <−0.3 (indicating 
negative correlation), and the P<0.05. Genes meeting these 
criteria were classified as DRG-FRG genes. The process to 
identify differentially expressed DRG-FRG genes between 
normal liver tissue and HCC tissue samples adhered to 
specific criteria: |logfold change (logFC)| of >1 and false 
discovery rate (FDR) of <0.05, once more utilizing the 
limma package in R software. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

To assess the prognostic value of DRG-FRG, we initiated 
a univariate Cox regression analysis. Building on this, 
least absolute shrinkage and selection operator (LASSO) 
penalized Cox regression analysis was utilized, with the aid 
of the glmnet R package, to craft the prognostic risk model. 
Risk scores were determined based on the formula outlined 
in the literature (14). This led to the stratification of the 
HCC group into low-risk and high-risk categories using 
median risk scores. For a deeper understanding of patient 
outcomes, the Kaplan-Meier curve was used to analyze the 
survival rates of these two distinct patient groups. To further 
gauge the predictive accuracy of the risk model, a time-
related receiver operating characteristic (ROC) analysis 
was executed, leveraging the survival ROC package in R 
software. Lastly, a validation set, comprising 70% of the 
initial model, was randomly chosen to evaluate the model’s 
prognostic efficacy.

A nomogram integrating the DRG-FRG risk score 
and clinical variables enabled individualized outcome 
prediction for HCC

Our analysis primarily delved into the relationship between 
the risk score of the DRG-FRG signature and clinical 
characteristics in HCC patients. Beyond this, univariate and 
multivariate Cox regressions were executed, incorporating 
various clinical covariates, to ascertain if the DRG-FRG 
risk score could stand as an independent prognostic marker 
for HCC. To provide a comprehensive predictive tool, a 
prognostic nomogram was formulated, integrating both 
clinical variables and the DRG-FRG signature risk score, 
aiming to forecast the 1-, 3-, and 5-year overall survival 
rates for HCC patients. To ensure its reliability, the 
nomogram’s predictive accuracy was assessed using the 
concordance index (C-index) and calibration analysis.

Biological enrichment studies and analyses of 
protein‑protein interaction (PPI)

Gene Ontology (GO) analysis, encompassing biological 
process (BP), cellular component (CC), molecular function 
(MF), as well as Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis, were performed using the ClusterProfiler 
software. A term was deemed significantly enriched when 
both its FDR and P<0.05. For further insights, differentially 
expressed DRG-FRG were inputted into the STRING 
database (version 11.0; https://cn.string-db.org/) to obtain 
PPI data. Only PPI pairs boasting a combined score above 
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0.4 were chosen, leading to the creation and visualization 
of the PPI network via Cytoscape software (version 3.9.1) 
(15). Utilizing CytoHubba, a plugin within Cytoscape, we 
gauged the significance of individual protein nodes (16). 
In our methodology, hub genes were pinpointed using the 
Maximal Clique Centrality (MCC) approach. They were 
then ranked by their MCC scores, and the top 10 hub genes 
were earmarked and presented.

Gene set enrichment analysis (GSEA)

We employed GSEA to pinpoint the biological pathways 
that differentiate high-risk from low-risk groups. GSEA 
facilitates the identification of genes that demonstrate 
coordinated up- or down-regulation within predefined 
sets, thereby spotlighting the crucial biological pathways in 
play. We set a significance threshold at P<0.05 to ascertain 
statistical relevance. Through the integration of GSEA in 
our study, our aim is to offer a comprehensive exploration 
of the biological processes and pathways pivotal to risk 
differentiation. This approach not only enhances our 
understanding of the molecular intricacies but also sets 
the stage for future specialized investigations and potential 
therapeutic interventions.

Screening for potential small molecule drugs

We uploaded the 11 differentially expressed DRG-FRG 
signatures into Enrichr (https://maayanlab.cloud/Enrichr/). 
Following this, we employed the Drug Signatures Database 
(DSigDB; http://tanlab.ucdenver.edu/DSigDB) to pinpoint 
potential small molecule drugs (17). Only compounds with 
an adjusted P<0.05 were deemed to have a statistically 
meaningful correlation with the uploaded genes.

The analysis of drug sensitivity

To delve into the differences in drug sensitivity between the 
high-risk and low-risk groups, we turned to the Genomics 
of Drug Sensitivity in Cancer (GDSC; https://www.
cancerrxgene.org/) database. Utilizing this resource, we 
conducted an analysis of the drug’s half-maximal inhibitory 
concentration (IC50) using the pRRophetic package, aiming 
to predict drug responsiveness. If the P<0.05, it is deemed 
to have statistical significance.

The analysis of immune cell infiltration base on DRG-
FRG genes

Recent studies have underscored that immune infiltration 
of tumor cells plays a pivotal role in cancer progression 
and outcomes (17,18). In light of this, leveraging the B-cell 
specific long non-coding RNA (lncRNA) signature, we 
employed a suite of algorithms, namely QUANTISEQ 
(http://icbi.at/quantiseq), CIBERSORT (https://cibersortx.
stanford.edu), XCELL (https://comphealth.ucsf.edu/app/
xcell), CIBERSORT abs.mode (https://cibersortx.stanford.
edu), EPIC (http://epic.gfellerlab.org), TIMER (https://
cistrome.shinyapps.io/timer), and MCP-counter (https://
github.com/ebecht/MCPcounter), to gauge the extent of 
immune cell infiltration across high- and low-risk groups. 
Additionally, we delved into the expression profiles of 
several immunological checkpoints pertinent to HCC, 
such as PDCD1, LAG3, HAVCR2, TIGIT, CTLA4, TIM-3,  
GITR, CD27, CD28, and OX40, aiming to forecast the 
efficacy of immune checkpoint blockade treatments. 
The TIMER2 database (http://timer.cistrome.org) was 
instrumental in shedding light on the interplay between 
immune cells and 11 specific DRG-FRG, thereby enriching 
our comprehension of the functional significance of DRG-
FRG in HCC.

Statistics analysis

We conducted all statistical analyses using the R software 
(version 4.2.3). A threshold of two-sided P<0.05 was set to 
determine statistical significance.

Results

Construction of a gene dataset for DRG-FRG

After merging the HCC-associated mRNA dataset from 
TCGA with the 23 disulfidptosis genes, it was evident that 
expression data were available for all these genes across 
both the normal and HCC groups (table available at https://
cdn.amegroups.cn/static/public/tcr-23-1594-4.xlsx). In a 
parallel manner, when integrating the ferroptosis genes 
with the HCC-associated mRNA dataset, 240 out of the 
259 ferroptosis genes showcased expression data for both 
groups (table available at https://cdn.amegroups.cn/static/
public/tcr-23-1594-5.xlsx). The correlation between DRG-
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FRG, grounded on our selection criteria, is detailed in table 
available at https://cdn.amegroups.cn/static/public/tcr-23-
1594-6.xlsx. Streamlining our datasets, we amalgamated the 
disulfidptosis-related gene expression data with that of the 
ferroptosis-related genes, resulting in the DRG-FRG genes 
expression matrix (table available at https://cdn.amegroups.
cn/static/public/tcr-23-1594-7.xlsx).

Identification and validation of differential expression 
DRG-FRG genes

In the differential expression analysis of the TCGA-
HCC dataset, 59 DRG-FRG genes exhibited differential 
expression when juxtaposed with normal liver tissues: 
four were downregulated, while 55 saw upregulation  
(Figure 1A,1B). To ascertain their prognostic relevance 
with HCC, we conducted a univariate Cox regression 
analysis on these altered DRG-FRG genes. This revealed 
that 24 genes held prognostic significance, with all being 
earmarked as genes indicating poor prognosis for HCC, 
each having a hazard ratio exceeding 1 (Figure 2A). 
Subsequently, a LASSO Cox regression was executed to 
craft a prognostic signature from the aforementioned 24 
DRG-FRG genes. This analysis pinpointed 11 DRG-
FRG genes (ABCC1, AURKA, DNAJB6, FANCD2, FTL, 
MYB, NCF2, NQO1, SLC38A1, SLC7A11, and YY1AP1) 
for the risk model (Figure 2B). The risk score was derived 
using the formula detailed in the methodology, factoring in 
the coefficients linked to the 11 DRG-FRG genes. HCC 
patients were then bifurcated into high-risk and low-risk 
factions based on median risk scores. Interestingly, the 
high-risk faction registered a markedly elevated mortality 
rate in contrast to the low-risk group (P=0.004) (Figure 3A).  
The time-dependent ROC analysis showcased the risk score 
model’s accuracy rates of 0.746, 0.645, and 0.655 for 1-, 
3-, and 5-year survival predictions respectively (Figure 3B).  
Heatmap representations further highlighted the 
pronounced expression of the 11 DRG-FRG genes within 
the high-risk group (Figure 3C). For validation purposes, we 
earmarked 70% of the original dataset as the test set, which 
mirrored the findings of the primary model (Figure 3D-3F).

The prognosis of HCC was determined independently 
by the signature based on the DRG-FRG.

To evaluate the signatures’ capability as standalone 
prognostic indicators, we undertook both univariable and 
multivariable Cox analyses, factoring in age, gender, tumor 
grade, pathologic stage, and risk score. The univariate 

analysis underscored a notable correlation between the 
risk score and pathologic stage in relation to HCC patient 
survival (P=0.007 and P<0.001, respectively) (Figure 4A).  
Furthermore, the multivariate analysis affirmed the 
significant impact of both the risk score and pathologic stage 
on prognosis (P=0.022 and P<0.001) (Figure 4B). These 
insights suggest that the DRG-FRG-based signature holds 
promise as a reliable prognostic tool for HCC patients.

The correlation between the DRG-FRG-based signature 
and clinical characteristics

We probed the potential involvement of the prognostic 
signature in patients’ development and progression using 
the chi-squared test. As illustrated in Figure 5A,5B, there 
were pronounced differences between the two groups 
concerning pathologic stage (P=0.013), T stage (P=0.016), 
and tumor grade (P<0.001). However, factors like age, 
M stage, gender, and N stage did not exhibit significant 
variations (P>0.05). Subsequently, we categorized the 
signature based on diverse subgroups to ascertain its 
prognostic merit (Figure 6). Our analysis revealed that the 
DRG-FRG-based signature possessed a robust predictive 
capacity for subgroups such as age ≤65 years (P=0.014), 
high tumor grade (P=0.044), M0 (P=0.002), T3–T4 stage 
(P=0.040), N0 (P=0.008), and male (P<0.001). On the flip 
side, its predictive efficacy was limited in subgroups like age 
>65 years, female, pathologic stage, high tumor grade, and 
T1–T2 stage (P>0.05).

Construction of a nomogram for evaluating prognosis

We visually assessed an individual’s survival probability 
using a nomogram that integrated various prognostic 
factors. This nomogram, designed to further predict the 
survival outcomes of HCC patients, incorporated elements 
like tumor grade, age, gender, pathologic stage, and risk 
score. As depicted in Figure 7A, the nomogram facilitated 
the precise estimation of the 1-, 3-, and 5-year survival rates 
for HCC patients. For instance, the prognostic outcome 
for the 20th patient was visually represented, showcasing a 
cumulative score of 64.4. This translated to survival rates 
of 91.1% at 1 year, 79.9% at 3 years, and 70.4% at 5 years. 
The calibration curve in Figure 7B highlighted that the 
actual patient survival closely mirrored the nomogram’s 
predictions. Moreover, with a C-index of 0.785, the 
nomogram’s predictive prowess was affirmed.
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Figure 1 Volcano plot and heatmap displaying the differentially expressed DRG-FRG genes in normal and HCC groups. (A) The volcano 
plot highlighted four down-regulated (blue) and 55 up-regulated (red) differentially expressed DRG-FRG genes. (B) Heatmap of the 
expression of 59 DRG-FRG genes that are differently expressed, with different hues denoting the expression trend in the normal and HCC 
groups. HCC, hepatocellular carcinoma; DRG-FRG, disulfidptosis and ferroptosis.
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Figure 2 Screening of DRG-FRG genes related to the prognosis of HCC patients. (A) The prognostic associations of differentially 
expressed DRG-FRG genes in univariate Cox regression, and all identified genes were associated with a higher risk for HCC prognosis. (B) 
Gene prognostic model was constructed using LASSO Cox regression and 11 genes were identified. CI, confidence interval; coef, coefficient; 
DRG-FRG, disulfidptosis and ferroptosis; HCC, hepatocellular carcinoma; LASSO, least absolute shrinkage and selection operator.

Biological enrichment analyses and PPI analyses

In the BP analysis, 59 DRG-FRG genes were prominently 
associated with cellular responses to chemical stress, 
oxidative stress, nutrient levels, and hypoxia. The CC 
analysis highlighted enrichment in areas such as the basal 
plasma membrane, basal part of the cell, melanosome, 
pigment granule, and caveola. The MF analysis revealed 
that these 59 DRG-FRG genes predominantly participated 
in functions like organic anion transmembrane transporter 
activity, antioxidant activity, oxidoreductase activity, and 
both neutral and L-amino acid transmembrane transporter 
activities (Figure 8A). KEGG analysis identified key 
signaling pathways in which these genes played a role, 
including VEGF, ferroptosis, mTOR, HCC, autophagy-
animal, MAPK, apoptosis, p53, PD-L1 expression, PD-1 
checkpoint pathway in cancer, and PI3K-Akt (Figure 8B).  
Utilizing the STRING database, a PPI network was 
constructed for the 35 differentially expressed DRG-FRG 
genes. All these genes exhibited high expression levels. This 
PPI network was further refined using R software. The top 
10 hub genes, identified through the MCC algorithm of the 
cytoHubba plugin, included SRC, MAPK3, ALB, PTGS2, 
HRAS, CAV1, NOX4, NCF2, CDKN2A, and DUOX1. 
These genes were ranked based on their scores and depicted 
with varying color intensities (Figure 8C).

GSEA for DRG‑FRG‑based signature

To delve deeper into the molecular mechanisms that 
underpin the DRG-FRG-based signature, we employed 
GSEA. The insights gleaned from GSEA highlighted 
several pivotal biological pathways. Specifically, pathways 
such as aminoacyl-tRNA biosynthesis, B cell receptor 
signaling pathway, cytosolic DNA-sensing pathway, hepatitis 
C, herpes simplex virus 1 infection, N-glycan biosynthesis, 
oocyte meiosis, taste transduction, and transcriptional mis-
regulation in cancer were found to be significantly enriched 
in the high-risk group (Figure 9A).

Screening of small molecule drugs based on 11 DRG-FRG 
genes

Utilizing the DsigDB database, we identified potential 
small molecule drugs associated with the 11 DRG-FRG 
genes. As depicted in Figure 9B, the genetic variations most 
pertinent to the top ten small molecule drugs are presented, 
ranked by the adjusted P value magnitude. Notably, our 
analysis underscored a pronounced association between the 
NQO1 and SLC7A11 genes with these ten small molecule 
drugs, followed by the FTL gene, which exhibited a distinct 
correlation with eight out of the ten small molecule 
drugs. Unfortunately, there is no evidence to suggest that 
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Figure 4 The signature exhibited independent prognostic significance for HCC within the TCGA dataset. (A) The univariate Cox 
regression analysis was conducted to examine the correlations between the risk score for OS and clinicopathological factors. (B) The 
multivariate Cox regression analysis was conducted to examine the correlations between the risk score for OS and clinicopathological 
factors. CI, confidence interval; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival.

Figure 3 The development of a prognostic 11 DRG-FRG-based signature in the TCGA dataset. (A) Kaplan-Meier survival analysis was 
conducted to compare the survival outcomes of HCC patients in the high- and low-risk groups. (B) Time-independent ROC analysis was 
performed to evaluate the predictive ability of the risk scores for overall survival in the TCGA dataset. (C) Heatmap was generated to 
visualize the disparities in the 11 DRG-FRG-based signature between high- and low-risk patients in the TCGA dataset. (D-F) The Kaplan-
Meier survival analysis, ROC analysis, and heatmap of the original model were validated by employing 70% of the dataset from the original 
model. AUC, area under the curve; DRG-FRG, disulfidptosis and ferroptosis; TCGA, The Cancer Genome Atlas; HCC, hepatocellular 
carcinoma; ROC, receiver operating characteristic.
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Figure 5 The risk scores derived from the 11 DRG-FRG genes risk signature and various clinical-pathological characteristics. (A) Heatmap 
showing the association between the risk scores and clinicopathological features based on the 11 DRG-FRG genes risk signature. (B) 
Boxplot was used to demonstrate the correlation between the risk scores and clinicopathological factors. *, indicate subgroups are associated 
with risk score. DRG-FRG, disulfidptosis and ferroptosis.
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Figure 6 The Kaplan-Meier curves were used to analyze the differences in overall survival between high- and low-risk groups, stratified by 
age, M stage, N stage, T stage, gender, pathologic stage, and tumor grade. Red labels indicate clinical covariates that have prognostic merit 
for overall survival along with their corresponding P values.

FANCD2, MYB, and YY1AP1 genes have any association 
with the top ten small molecule drugs, and these three 
genes are not even listed in Figure 9B.

Correlational analysis of 11 DRG-FRG genes and drug 
sensitivity

Based on the data sourced from the GDSC database, the 
IC50 values for AKT inhibitor VIII, axitinib, dasatinib, 
erlotinib, gefitinib, and metformin were observed to be 
significantly elevated in the high-risk group compared to 
the low-risk group. This trend underscores a heightened 
drug resistance in high-risk patients (refer to Figure 10A). 
Conversely, the IC50 values for bicalutamide, bleomycin, 
cisplatin, doxorubicin, etoposide, and gemcitabine were 
markedly increased in the low-risk group, indicating 
a greater drug sensitivity in the high-risk cohort  

(Figure 10B).

Examination of immune infiltration levels using the 
DRG-FRG-based signature

The heatmap depicted in Figure 11A elucidates the interplay 
between immune infiltration and the DRG-FRG‑based 
signature. Notably, variations in the expression of immune-
infiltrating cells were discerned between the high- and low-
risk score groups. Recognizing the pivotal role of checkpoint 
inhibitor treatments, we honed in on the correlation 
between HCC-associated risk scores and key immune 
checkpoints, namely TIM-3, LAG3, PDCD1, TIGIT, 
HAVCR2, and CTLA4. Our findings highlight distinct 
expression differences of these immune checkpoints across 
the patient cohort, with the high-risk group manifesting 
markedly elevated levels, as showcased in Figure 11B.
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Figure 7 Construction and verification of a nomogram for evaluating prognosis. (A) The nomogram for predicting proportion of patients 
with 1-, 3-, or 5-year OS. (B) The calibration plots for predicting patient 1-, 3-, or 5-year OS. *, indicators are associated with OS. Pr, 
proportion; OS, overall survival.

Analysis of correlation between DRG‑FRG genes and 
immune cells from the TIMER database

Utilizing the TIMER database, we probed the relationship 
between immune cells and the 11 prognostic DRG-FRG 
genes. Our analysis revealed that several genes, specifically 
ABCC1, DNAJB6, MYB, NCF2, NQO1, SLC7A11, and 
SLC38A1, exhibited a negative correlation with purity. 
Simultaneously, these genes manifested a positive association 
with B cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells. In contrast, AURKA, 
FANCD2, and YY1AP1 displayed a positive correlation with 
both purity and the aforementioned immune cells. FTL, on 
the other hand, was negatively correlated with purity and all 
the previously mentioned immune cells, with the exception 
of B cells (refer to Figures S1,S2).

Discussion

Apoptos i s ,  au tophagy,  necroptos i s ,  f e r roptos i s , 
and copperptosis represent prominent instances of 
programmed cell death, alongside the recently discovered 
disulfidptosis (4). This discovery provides new perspectives 
and avenues for in-depth research on the formation and 
progression of cancer, while also holding critical potential 
for advancing cancer treatment.

The present study aimed to develop a gene signature 

model utilizing disulfideptosis and ferroptosis related genes 
for the purpose of prognostic prediction and treatment 
selection in HCC. The collaborative examination of 
multiple genes offers researchers novel insights and 
methodologies to investigate the causation, progression, 
and therapeutic interventions of diseases.

For example, Wang et al. performed an examination of 
gene expression data acquired from the Gene Expression 
Omnibus. The primary aim of their investigation was 
to ascertain hub genes that are associated with the 
development and prognosis of HCC. Significantly, the 
researchers identified FCN3 and FOXO1 as pivotal 
genes that demonstrate promise as biomarkers for the 
early detection of HCC and as prognostic indicators for 
overall patient survival (19). Similarly, the recent genomic 
profiling of HCC tumors has unveiled a high occurrence 
of mutations in genes such as TERT, TP53, and CTNNB1. 
These mutations play a crucial role in identifying core 
deregulated pathways, defining molecular subtypes, and 
presenting potential therapeutic targets and prognostic 
biomarkers (20).

This study utilized LASSO regression analysis to 
screen genes with high prognostic value established 
a risk score model base on these genes. This model 
demonstrated significant efficacy in predicting overall 
survival among HCC patients, while also serving as an 
independent predictor, apart from other clinical variables, 

https://cdn.amegroups.cn/static/public/TCR-23-1594-Supplementary.pdf
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Figure 8 Enrichment analyses of differentially expressed 59 DRG-FRG genes. (A) GO analysis. (B) KEGG analysis. (C) PPI analysis. BP, 
biological process; CC, cellular component; MF, molecular function; FC, fold change; MCC, Maximal Clique Centrality; DRG-FRG, 
disulfidptosis and ferroptosis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein‑protein interaction.
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Figure 9 GSEA and screening of small molecule drugs based on DRG-FRG genes. (A) GSEA for DRG-FRG-based signature. (B) 
Correlational analysis of 11 DRG-FRG genes and the top ten small molecule drugs, red color indicates a significant association between 
genes and small molecule drugs, no statistically significant correlation was observed between the FANCD2, MYB, and YY1AP1 genes and the 
top ten small molecule drugs. GSEA, gene set enrichment analysis; DRG-FRG, disulfidptosis and ferroptosis.

such as pathological stage. Ye et al. carried out an in-
depth analysis of the autophagy-associated genes in HCC 
and developed a prognostic model centered on these 
genes. Their study highlighted the crucial role played by 
autophagy in the progression and prognosis of HCC (21). 
Wang et al. conducted a study in which they identified 
pivotal immune-related genes in patients diagnosed with 
HCC and subsequently employed these genes to develop 
a prognostic model. The efficacy of this model, capable of 
autonomously predicting patient outcomes and reflecting 

the immune status of the tumor, was further verified using 
an independent database (22). The aforementioned studies, 
along with the ongoing research, significantly contribute 
to the advancement of understanding prognosis in HCC. 
Consequently, the incorporation of the 11-gene DRG-
FRG signature as a means to extract dependable prognostic 
biomarkers from cancer omics data offers an additional 
approach. This has the potential to facilitate personalized 
risk assessment and inform clinical decision-making in the 
context of HCC.
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MYB is a gene associated with poor prognosis in HCC 
patients, its’ HR (derived from univariate Cox regression 
analysis) and coefficient (derived from LASSO Cox 
regression analysis) are significantly higher than all others, 
which suggests that MYB has a more significant impact on 
the prognosis of HCC patients compared to other genes. 
The findings from our study are in line with previous 
literature (23). Furthermore, the survival curves for low- and 
high-risk groups intersected and reversed after about 7 years 
according to Figure 3A,3D. A possible explanation for this 
result is that the number of survivors and the survival rate 
for both groups become very low after 7 years. However, 
the 5-year survival rate for HCC is only around 10% 
worldwide (1), and the rate is 10.96% (40 out of 365) in our 
study. Therefore, the 5-year survival rate of HCC patients 
remains a crucial research topic. From Figure 3A,3D,  
we can see that in the first 5 years, the survival rate of the 
low-risk group patients (blue curve) is significantly higher 
than that of the high-risk group patients (red curve). 
Therefore, our conclusion is reliable.

This study has successfully identified a distinct DRG-
FRG signature consisting of 11 genes that can effectively 
forecast the prognosis and chemotherapy responsiveness in 
patients with HCC. Notably, recent mechanistic and clinical 
investigations have established the involvement of several 
genes within this signature, such as ABCC1, SLC7A11, 
AURKA, and NQO1, in the progression of HCC and the 
development of resistance to treatment. The overexpression 
of ABCC1 actively removes drug conjugates from cellular 
compartments, fostering the progression of chemotherapy 
resistance in HCC, leading to poor prognosis in patients  
(24-26). The downregulation or inhibition of ABCC1 
renders resistant HCC cells more susceptible to the cytotoxic 
effects of doxorubicin and other chemotherapeutic agents, 
highlighting its potential as both a prognostic indicator and 
a therapeutic target (27,28). SLC7A11 serves as a crucial 
transporter involved in the synthesis of glutathione, thereby 
playing a pivotal role in maintaining redox homeostasis 
to counteract ferroptosis. The upregulation of SLC7A11 
in HCC is closely linked to venous infiltration, advanced 
tumor stage, and unfavorable survival outcomes (29,30). 
SOCS2 interacts with and promotes ubiquitination-mediated 
degradation of SLC7A11, thereby inducing iron-dependent 
ferroptosis cell death and increasing radiosensitivity of 
HCC (31). In preclinical studies, the inhibition of SLC7A11 
resulted in the induction of fatal oxidative stress through 
the impairment of glutathione synthesis and antioxidant 
mechanisms in HCC models, it exerted a substantial 

influence on the emergence of resistance to sorafenib 
in HCC cells (32). The oncogenic kinase AURKA is of 
significant importance in the control and coordination of 
the process of mitosis, as well as the proper segregation of 
chromosomes (33). In HCC, AURKA is frequently amplified 
and hyperactivated, leading to aberrant proliferation and 
survival signaling (34). Inactivation of AURKA has shown 
significant antitumor efficacy in HCC models, either as 
a monotherapy or in combination with sorafenib (35,36). 
NQO1 is a cytoprotective enzyme against oxidative stress 
and causes chemotherapy resistance through antioxidant 
mechanisms (37). In the context of liver cancer, previous 
study has documented a significant 18-fold increase in NQO1 
expression in HCC compared to healthy liver tissue (38).  
The upregulation of NQO1 has been identified as a robust 
and autonomous biomarker for prognostic assessment 
in HCC, as well as a facilitator of enhanced inhibition of 
apoptosis in HCC cells through the SIRT6/AKT/XIAP 
signaling pathway (39). Elevated levels of NRF2/NQO1 in 
primary HCC are linked to the size of the tumor, elevated 
α-fetoprotein, and increased levels of des-γ-carboxy-
prothrombin. Additionally, the excessive expression of 
NRF2/NQO1 is linked to numerous instances of intrahepatic 
recurrences and served as a separate risk factor for 
unfavorable prognosis. According to the research, focusing 
on the activity of NQO1 might be a viable approach (38).

In order to enhance our comprehension of the underlying 
biological functions and pathways associated with HCC, 
we conducted GO and GSEA analyses to explore the 
interactions among the 59 DRG-FRG genes. Using 
GO analysis, it was found that the 59 DRG-FRG genes 
are linked to various biological functions and signaling 
pathways. These have a significant impact on cancer 
development and progression, especially in HCC (40,41). 
Furthermore, GSEA revealed that the 59 DRG-FRG genes 
are predominantly associated with pathways closely linked 
to cancer and metabolism. One of the pathways significantly 
impacted by this signature is aminoacyl-tRNA biosynthesis, 
which plays a crucial role in protein synthesis and  
translation (42). This finding suggests that the DRG-
FRG-based signature may influence the regulation of 
aminoacyl-tRNA formation, which is essential for the 
proper functioning of cellular processes. Additionally, the 
B cell receptor signaling pathway is identified as a key 
pathway influenced by the DRG-FRG-based signature, 
highlighting its involvement in controlling immune 
responses and promoting the activation and proliferation 
of B cells (43). This suggests that the signature may have a 
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role in modulating immune-related functions, potentially 
affecting the immune response against cancerous cells. 
Another noteworthy pathway affected by the DRG-FRG-
based signature is the cytosolic DNA-sensing pathway, 
which plays a pivotal role in innate immune responses by 
recognizing and responding to foreign DNA (44). The 
involvement of the signature in this pathway implies its 
potential role in regulating the cellular response to DNA 
damage, infection, and potentially cancer development. 
This underscores the importance of GO and GSEA analysis 
in identifying disease-relevant biological functions and 
signaling pathways, providing a foundation for researchers 
to explore the mechanisms of HCC formation and 
progression.

HCC is a prototypical tumor that arises due to 
inflammation, resulting in an immunosuppressive 
microenvironment. Consequently, the utilization of 
immunotherapy emerges as a promising approach. 
A comprehensive investigation conducted by Sangro 
et al. delved into the immunobiology of liver cancer, 
highlighting the promising prospects of immunotherapeutic 
interventions (45). In their study, Donisi and colleagues 
explore the significance of immune checkpoint inhibitors 
in the treatment of HCC, they also highlight the potential 
of synergistic combinations involving immune checkpoint 
blockade and tyrosine kinase inhibitors, anti-angiogenics, 
or other immunotherapies as promising and emerging 
therapeutic approaches for HCC (46).

Limitations of this study include lack of independent 
validation and functional investigation of the identified 
genes and pathways. The prognostic model requires further 
confirmation in large HCC cohorts. Additionally, the 
detailed molecular mechanisms connecting these biomarkers 
with HCC biology need to be determined. Despite these 
limitations, the study has significant implications for the 
understanding and treatment of HCC. The identification 
of the 11 genes and the construction of the risk score model 
provide valuable tools for the prognosis and stratification 
of HCC patients. These tools could potentially be used to 
guide the selection of therapeutic strategies and to monitor 
disease progression. Moreover, the identified genes provide 
potential targets for therapeutic intervention in HCC. 
The development of drugs targeting these genes could 
potentially improve the efficacy of HCC treatment and 
overcome drug resistance, which is a major challenge in the 
treatment of HCC.

Conclusions

In summary, this study offers significant contributions to 
the understanding of the molecular mechanisms involved 
in HCC and identifies promising targets for therapeutic 
intervention. The results emphasize the significance of 
integrating bioinformatics analysis with experimental and 
clinical research endeavors to enhance the prognosis and 
treatment of HCC. To confirm these results and explore 
their potential clinical applications, further experimental 
studies are required.
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Supplementary

Figure S1 Analysis of the association between immune cells infiltration and 11 DRG-FRG genes using the TIMER database. TPM, 
transcripts per million; DRG-FRG, disulfidptosis and ferroptosis.
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Figure S2 Analysis of the association between immune cells infiltration and 11 DRG-FRG genes using the TIMER database. TPM, 
transcripts per million; DRG-FRG, disulfidptosis and ferroptosis.


