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Introduction

Uveal melanoma (UVM) is a common intraocular 
malignancy despite its low incidence (1). Although 
approximately 90% primary UVM could be controlled 
by radiotherapy, enucleation, or other modalities, distant 

metastases would ultimately occur in more than 40% of 
patients (2). The low tumor burden and unique molecular 
patterns of metastatic UVM have been shown to result in 
a low responsiveness to immune checkpoint therapy (3).  
The median overall survival (OS) of metastatic UVM 
is 10–13 months because of the limited therapies (2,4,5). 
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Tebentafusp is the only validated effective therapy in the 
management of metastatic UVM currently, yet only patients 
with the HLA-A*02:01 allele respond generally to the 
therapy (6). Moreover, the frequency of the HLA-A*02:01 
allele is approximately 30% in European and North 
American patients, 20–25% in Black and South Asians, 
and lower in South Asians (7). Hence there is an urgent 
need to explore the molecular mechanism underlying the 
development of UVM and identify novel predictors to 
improve the management of UVM.

The centrosome is an organelle normally localized 
around the nuclei, which consists of a pair of centrioles 
surrounded by a pericentriolar matrix (8). Centrosome 
homeostasis is an essential factor for regulating the cell 
cycle. Centrosome aberration (CA) is a common feature 
of human tumors which can initiate tumorigenesis and 
metastasis under pathophysiological conditions (9). For 
example, SKA1 overexpression can induce human prostate 
epithelial cells to undergo centrosome amplification to cause 
the formation of tumors in nude mice (10). Another typical 
example is that brain cells with centrosome amplification 
can form tumors in normal recipient flies (11). Targeting 
centrosome amplification has emerged as a promising 
specific anti-cancer treatment (12). More recently, CA has 
been reported for the first time in UVM. Sabat-Pośpiech  
et al. confirmed that CA existed in UVM primary tumors 
and cell lines (13). Moreover, a study showed that 
chromosome monosomy 3 (M3) and BAP1 mutant UVM 
had a higher level of CA, which was related to worse 
prognosis (13); however, this is the only study available on 

the role of CA in UVM and the mechanism needs further 
detailed study.

The role of CA in cancer is complex, involving 
various biological processes (BP) and signaling pathways. 
Transcription profile and bioinformatics tools have greatly 
improved the understanding of UVM molecular patterns 
(14,15). Our study aimed to explore the key genes and 
potential mechanisms related to CA in UVM by integrated 
bioinformatics on data from public datasets. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1486/rc).

Methods

Data source

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). We downloaded messenger 
ribonucleic acid expression data and clinical information of 
UVM patients from The Cancer Genome Atlas (TCGA)-
UVM containing 80 samples and Gene Expression Omnibus 
series (GSE) 22138 datasets containing 63 samples (15,16). 
A total of 726 centrosome-related genes were derived from 
MiCroKiTS (http://microkit.biocuckoo.org) (17).

Construction and evaluation of CA-related gene signature

Univariate Cox regression analysis was carried out to screen 
the survival-related genes. Subsequently, least absolute 
shrinkage and selection operator (LASSO) regression and 
multivariate Cox regression were conducted to construct a 
centrosome-related gene signature:

( ) ( )risk score coefficient of i expression of gene ii= ×∑     [1]

The Survminer package was used to determine optimal 
cut-off to divide patients into two groups. Kaplan-Meier 
(KM) survival curves were used to evaluate the survival 
differences between the two groups.

Differentially expressed genes and enrichment analyses

To avoid excessive false positive and false negative results, 
up-regulated differentially expressed genes (DEGs) between 
2 groups were identified with the criteria of P<0.05 and 
fold change (FC) >3/2, down-regulated DEGs between 
two groups were identified with the criteria of P<0.05 and 
FC <2/3 according to the previous criteria (18-21). The 
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ClusterProfiler package was used to conduct the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) enrichment analyses. 

Immune landscape and mutation analysis

The infiltration of the immune cells was evaluated by 
Cell-type Identification by Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT) platform. The stromal 
score, immune score, and estimate score were evaluated by 
the Estimation of Stromal and Immune cells in Malignant 
Tumor tissues using Expression data (ESTIMATE) 
algorithm. Mutation analysis was conducted by the 
maftools R package and P value was annotated after the 
gene.

Statistical analysis

Statistical analysis was performed using R (version 4.0.0; 
The R Foundation for Statistical Computing, Vienna, 
Austria) and associated packages. The Survminer package 
was used to determine the high- and low-risk group. Gene 
enrichment analyses were conducted by the ClusterProfiler 
package. The CIBERSORT platform and ESTIMATE 

algorithm were used to visualize the immune landscape. 
Maftools R package was used to perform mutation analysis. 
A significant difference was indicated when P<0.05.

Results

Construction of centrosome-related gene signature

A total of 204 genes were screened out as associated 
with OS by univariate Cox regression analysis (P<0.05). 
Subsequently, LASSO regression selected 16 genes under 
the lambda (1,000 iterations), including MYH14, VIM, 
ARPC1B ,  PRKCD ,  NAXE ,  THPO ,  MCM2 ,  CTCFL , 
CCND3, KIF14, CDKN2C, PNP, IGFBP4, CCDC40, MAP6, 
RAB6C (Figure 1). Finally, 6 genes were screened out by 
multivariate Cox regression to construct the signature: Risk 
score =−3.27071 × MAP6 −5 .03735 × CCDC40 − 2.68459 ×  
PRKCD + 1.826349 × IGFBP4 + 11.66582 × RAB6C − 
4.86899 × CCND3.

Risk score as an indicator of UVM prognosis

Patients in the TCGA-UVM cohort (80 samples) and 
GSE22138 cohort (63 samples) were divided into two 
groups by Survminer package. In the TCGA-UVM 

Figure 1 Sixteen genes were defined by LASSO regression. LASSO, least absolute shrinkage and selection operator.
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cohort, the high-risk group included 24 samples and the 
low-risk group included 56 samples (Figure 2A). The high-
risk group had worse survival compared to that of the low-
risk group, with a hazard ratio (HR) of 4,942,441,957.67 
(Figure 2B). In the GSE22138 cohort, the high-risk group 
included 23 samples and the low-risk group included  
40 samples (Figure 3A). The KM curve of GSE22138 was 
consistent with the TCGA-UVM cohort and the HR was 
2.42 (Figure 3B).

Identification of DEGs and functional enrichment 
associated with centrosome-related gene signature

To elucidate the relationship between gene expression 
profiles and CA, 1,385 up-regulated genes and 766 down-
regulated genes were identified by KEGG and GO 
enrichment using ClusterProfiler package in the TCGA-
UVM cohort (Figure 4). For KEGG, DEGs were mainly 
enriched in human papillomavirus infection, Epstein-

Figure 2 Establishment of centrosome-related gene signature. (A) Risk score, survival status, and prognostic genes’ expression. (B) Kaplan-
Meier survival curves according to the risk score, P=2.9e−19. HR, hazard ratio; CI, confidence interval.

Figure 3 Validation of centrosome-related gene signature. (A) Risk score, survival status and prognostic genes’ expression. (B) Kaplan-Meier 
survival curves according to the risk score, P=8.1e−3. HR, hazard tatio; CI, confidence interval.
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Figure 4 A total of 1,385 up-regulated genes and 766 down-
regulated genes were identified. (A) Volcano plot of DEGs. (B) 
Heatmap of DEGs. DEGs, differentially expressed genes.

Barr virus infection, and phagosome (Figure 5A). For 
BP, DEGs were mainly enriched in leukocyte migration, 
T cell activation, and regulation of leukocyte activation  
(Figure 5B). For cellular component (CC), DEGs were 
mainly enriched in extracellular matrix (ECM), collagen-
containing ECM, and plasma membrane protein complex 
(Figure 5C). For molecular function (MF), DEGs were 
mainly enriched in cell adhesion molecule binding, actin 
binding, and amide binding (Figure 5D).

Comparison of immune infiltration 

The results of CIBERSORT showed that CD4 memory 
resting T cells, CD4 memory activated T cells, and 
monocytes were highly infiltrated in the high-risk group 
and CD8 T cells, M0 macrophages, and M1 macrophages 
were highly infiltrated in the low-risk group (Figure 6A). 
The ESTIMATE analysis showed that the high-risk 
group had higher immune score and estimate score 
(Figure 6B). Furthermore, programmed cell death 1 (PD-1) 
and cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) 
were highly expressed in the high-risk group (Figure 6C).

Assessment of mutation frequency and patterns

The top 15 frequent gene mutation frequencies and patterns 
were identified by the Maftools R package and are shown 
in Figure 7. We identified two mutation sites as significantly 
different between the two groups: BAP1 was associated with 
high risk and SF3B1 was associated with low risk. Moreover, 
EIF1AX only existed in the low-risk group, though the P 
value was 0.06.

Discussion

CA is a biomarker of solid malignancies that is related to 
the aberrant tumor karyotypes and poor survival (22). As 
the most common intraocular solid malignancy, UVM is a 
complex heterogeneous tumor. Therefore, the study of CA 
in UVM may help to improve the understanding of UVM 
molecular characteristics. Some current advances have been 
made in a recent study that focused on the role of CA in 
UVM (13). Sabat-Pośpiech et al. found that primary UVM 
with M3 had higher levels of CA and M3 is one of the most 
important predictors of poor prognosis in UVM by many 
studies (3,13,15,23,24). Moreover, MP46, an UVM cell line 
with BAP1 mutation, showed the highest level of CA in 
the primary UVM cell lines and BAP1 mutation has been 
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identified as another important predictor of poor prognosis 
in UVM (13,15,25). Furthermore, high levels of CA in the 
aggressive subtypes present a high degree of centrosome 
clustering to promote UVM mitosis, suggesting the 
potential of targeting CA in UVM therapy (13). Therefore, 
utilizing bioinformatics and ribonucleic acid sequencing 

data will provide novel insights for the role of CA in  
UVM (26,27).

The present study first constructed a centrosome-related 
gene signature and identified 6 prognostic genes: RAB6C 
and IGFBP4 related to high-risk, MAP6, CCDC40, CCND3, 
and PRKCD related to low-risk. RAB6C is involved in 

Figure 5 Functional enrichment of DEGs. (A) Top 20 KEGG pathways. (B) Top 20 BP pathways. (C) Top 20 CC pathways. (D) Top 20 MF 
pathways. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular 
component; MF, molecular function.
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mitotic cell cycle and regulates centrosome duplication 
under normal circumstances. RAB6C has been shown to 
have a promoting effect on the malignant behavior of 
bladder cancer cells (28). However, overexpression of Rab6C 
results in G1 arrest and greatly hinders the proliferation of 
cells, which seems to be harmful to cancer development. 
Interestingly, the phenomenon of G1 arrest was observed 
in BAP1 deficient or BAP1 knockdown UVM cells (29,30). 
Moreover, the UVM cell lines with BAP1 mutation 
require far more time for doubling and more selective 
culture conditions. In our signature, BAP1 mutation was 
more frequent in the high-risk group. Therefore, we 
inferred that the high-risk effect of RAB6C in UVM may 
be related to BAP1 mutation. IGFBP4 plays an oncogenic 
role in glioblastoma and renal cell carcinoma (31-33). The 
oncogenic role of IGFBP4 is induced by the Wnt/beta-
catenin pathway in renal cell carcinoma (32). Another study 
showed that IGFBP4 promoted the epithelial-mesenchymal 
transition and invasion of glioblastoma (31). MAP6, also 
known as STOP, encodes a microtubule-associated protein 

that is crucial to the assembly of spindles during cell 
division and its low expression may cause abnormal cell 
division to induce cancer development (34). A higher level 
of MAP6 expression has been observed in normal tissues 
compared with tumors and served as a biomarker for better 
prognosis in lung cancer (34). Moreover, a study found that 
MAP6 was aberrantly methylated in some oral squamous 
cell carcinoma cell lines, suggesting its tumor suppressor 
role (35). CCDC40 encodes a protein affecting motile cilia 
that participates in cell division; only 1 study has explored 
the role of CCDC40 in cancer. Ma et al. reported that 
CCDC40 plays a tumor suppressor role through regulating 
the deubiquitination process to promote the degradation of 
EGFR (36). Our study also supported that CCDC40 serves 
as a tumor suppressor, but the effect of CCDC40 in UVM 
remained unexplored. CCND3 is a member of cyclin family 
and is essential for cell cycle G1/S transition. CCND3 
is related to poor prognosis in most cancers because of 
its promotion on the cell cycle. However, UVM is slow 
growing compared to other cancers and the molecular 

Figure 6 Integrated immune analyses. (A) Abundance of 22 infiltrated immune cells by CIBERSORT. (B) Immune score, stromal score 
and estimate score by ESTIMATE. (C) Expression of immune checkpoints. *, P<0.05; **, P<0.01; ***, P<0.0001; -, no significant difference. 
NK, natural killer; PD-1, programmed cell death 1; PD-L1/2, programmed death-ligand 1/2; CTLA-4, cytotoxic t-lymphocyte-associated 
protein 4.
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Figure 7 Mutation plot of TCGA-UVM. BAP1 was related to high-risk, SF3B1 was related to low-risk and EIF1AX was only existed in the 
low-risk group though the P value was 0.06. TCGA, The Cancer Genome Atlas; UVM, uveal melanoma; Mutcount, mutation count; Del, 
deletion; Ins, insertion.

mechanism inducing cancerous transformation of normal 
uveal melanocytes is unique; there is even a reverse trend in 
the expression of many cell cycle-related proteins compared 
with most cancers (37-41). The prognostic value of CCND3 
in UVM is quite different from other cancers and that may 
be attributed to the unique UVM cell cycle regulation. 

Interestingly, our signature identified PRKCD as a low-
risk-related gene, whereas some previous studies had 
supported that PRKCD was a potential therapeutic target 
in UVM (42-44). PRKCD is a member of Protein kinase C, 
playing various cellular functions, including proliferation, 
migration, apoptosis, and autography. Berardi et al. 
confirmed that PRKCD could decrease the proliferative 
capacity of breast cancer (45). Furthermore, PRKCD also 
has been known as a tumor suppressor due to its importance 
in apoptotic pathways (46). Interestingly, some studies have 
asserted that PRKCD served as an oncogene, including 
a UVM study (47); however, that study used UVM cell 
lines with SF3B1 or EIF1AX mutation without BAP1 
mutation and SF3B1 or EIF1AX was related to low risk. 
Furthermore, although great efforts have been devoted 
to PKC inhibitors therapy in UVM, limited effects have 
been achieved to date, only 3% and 9% of metastatic UVM 
cases achieved a partial response in 2 PKC inhibitor clinical 
trials, respectively (42-44,48). More importantly, most 
available studies supporting PKC inhibitors as a promising 
treatment for UVM have been based on cell lines without 
BAP1 mutation. A recent study showed that PKC inhibitors 
were not sufficient to induce robust cell death and only have 

limited inhibitive effects because UVM cells, particularly 
MP38, a BAP1 mutation cell line, showed strong regulative 
capacity and resistance to the inhibitor (49). The BAP1 
mutation UVM may have less dependence on the PKC-
MAPK pathway compared with SF3B1 or EIF1AX mutation 
and have a lower expression of PRKCD because of its better 
regulative capacity. The study indicated that PRKCD was 
related to low-risk and the reasons may be various. It may 
be attributed to the fact that UVM with SF3B1 or EIF1AX 
mutation is more reliant on PRKCD expression to activate 
the MAPK pathway to develop and UVM with BAP1 
mutation is relatively less reliant, so high expression of 
PRKCD suggests an SF3B1 or EIF1AX mutation, which are 
related to low-risk. Another hypothesis is that PRKCD not 
only acts as a mediator of MAPK activation, but also has 
some tumor suppressive functions, including promoting 
apoptosis via tyrosine phosphorylation or decreasing 
proliferative capacity via increasing autophagy flux and cell 
cycle arrest, as previously reported (45,50). The inhibition 
of PRKCD not only suppresses its oncogenic role, but also 
limits its tumor suppressive functions. Considering that 
limited benefit had been achieved by PKC inhibitors and 
the role of PRKCD had mainly been explored in SF3B1 
or EIF1AX mutation UVM previously, it is necessary to 
evaluate the role of PRKCD in BAP1 mutation UVM.

We assessed the DEGs between 2 groups and found 
that DEGs were mainly implicated in cancer progression, 
such as ECM and cell adhesion molecule binding. These 
pathways are closely concerned with tumor migration, 
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invasion, and spread (51). Moreover, DEGs were also 
implicated in inflammation, including virus infection, 
leukocyte migration, and T cell activation. In fact, 
inflammation is also a hallmark of disease progression and 
poor prognosis in UVM (52,53). Furthermore, according to 
immune infiltration analysis, the high-risk group had higher 
immune score and more immune infiltration. Unexpectedly, 
CD8+ T cells were more infiltrated in the low-risk group 
and CD8+ T cells usually suggest a poor outcome. However, 
the high-risk group showed a higher level of immune 
resistance, including higher abundance of CD4+ memory 
resting T cells, higher expression of PD-1 and CTLA-4. 
Thus, the immune resistance might limit the CD8+ T cells 
infiltration in the high-risk group.

Conclusions

In summary, our research first studied the association of 
centrosome-related genes with UVM OS. Moreover, we 
constructed a centrosome-related gene signature for UVM. 
The signature provides new insights into the role of CA in 
UVM progression and identifies novel centrosome-related 
biomarkers for UVM.
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