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Introduction

Radiomics, the use of quantitative image features to probe 
the tumor phenotype, can significantly improve our ability to 
stratify patients for true personalized cancer care. Radiomics 
is the logical next step for a research field that has spent 
years developing tools for medical image analysis, including 
computer-aided diagnosis for detecting breast cancer 
on mammograms and lung nodules on radiographs and 
computed tomography (CT) studies (1-5). We can combine 
the body of knowledge from these years of analyzing 
medical images with the increasing access to large amounts 
of imaging data and new, sophisticated analytic tools for 
quantitative analysis of biomarkers with the goal of refining 
clinical decision making and improving patient outcomes.

The advanced radiomics tools now available can help 
answer important clinical questions and provide necessary 
information for patient-specific personalized treatments 
(i.e., precision medicine). For example, conventional 
prognostic factors, such as tumor volume or patient age, are 
simply insufficient to help the clinician stratify patient risk 
or predict outcome. 

The purpose of this review article is to introduce the 

reader to the armory of software available for segmenting 
imaging data, extracting image features, and carrying out 
modeling/statistical analysis for such radiomics projects. 

Radiomics workflow

Radiomics project workflows comprise the following stages: 
(I)	 Identify a question and patient cohort;
(II)	 Segment the regions of interest (ROI) in the 

patient images;
(III)	 Extract the image features;
(IV)	 Statistical analysis/modeling;
This article briefly reviews the main issues involved in 

identifying a patient cohort and focuses on the software 
resources available for stages 2–4.

Identifying a patient cohort

Even in this era of big data, good patient datasets are 
surprisingly difficult to build. Although not the focus of this 
review, identifying a patient cohort is a critical part of any 
radiomics project. Below we have outlined strategies for 
building good datasets.
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Patient cohort homogeneity
Some heterogeneity in the patient cohort may be necessary 
to achieve sufficient patient numbers, but too much 
heterogeneity not only can dilute the potential impact of 
the findings but also can introduce too much variability 
into the dataset. An example of diluting the impact could 
be including patients whose overall staging varies widely 
because staging may already be a prognostic factor. An 
example of too much variability in the dataset could be 
including patients whose treatments vary significantly (i.e., 
widely divergent regimens comprising different surgery, 
chemotherapy, and radiotherapy approaches).

Region of interest size
Many radiomics image features do not make sense when 
tumors are too small. There are no consistent guidelines 
on the smallest ROI that can be assessed, although some 
authors have suggested 5 cm3 as a suitable cutoff. The 
cutoff value depends on the imaging modality [e.g., CT and 
positron emission tomography (PET) have different voxel 
sizes and may require different cutoffs] and may also vary 
depending on the site or tumor under investigation. Smaller 
ROIs can either give meaningless radiomics feature values 
because there are not enough pixels for a true evaluation or 
the smaller the ROI, the more related the results may be 
to tumor volume. This issue is discussed in more detail by 
Fave et al. later in this journal.

Imaging data homogeneity
Some datasets have significant heterogeneity in imaging 
parameters, such as pixel size (6). These variations could 
significantly affect the values of the calculated image 
features. The use of different reconstruction algorithms can 
change the values of the calculated features. Furthermore, 
data from different scanners can increase the uncertainties 
in the calculated features (7). Thus it is important to 
minimize the variability in the source of the images, 
although compromises are often necessary to ensure 
sufficient patient numbers. Important information about 
the images (such as pixel size and tube voltage) is listed 
in the digital imaging and communications in medicine 
(DICOM) header and can easily be extracted and viewed in 
any DICOM image viewer or in simple in-house software, 
e.g., MATLAB-based software.

Sample size
Small sample sizes increase both the type-I (incorrectly 
detecting a difference) and type-II (not detecting an actual 

difference) error rates. Chalkidou et al. suggested that linear 
models (e.g., multiple regression) require a minimum of 
10–15 observations per variable (8). Radiomics studies have 
been published with as few as 15 patients, but there is much 
risk of over fitting the data, and researchers should generally 
aim for much larger datasets.

Sometimes it is possible for authors to supplement 
their own datasets with images from The Cancer Imaging 
Archive (9), an open-access database that facilitates sharing 
image data. At the time of writing, The Cancer Imaging 
Archive had 63 image sets, covering a range of sites (lung, 
prostate, thyroid, etc.). Access to a few of the image sets is 
limited; the median number of subjects for the datasets that 
do not have restricted access is 46 subjects (range, 1–1,010 
subjects). The archive includes test-retest data, such as 
the RIDER dataset (10) used by several groups to test the 
reproducibility of different image features (11-14), as well 
as several datasets that have been collected specifically for 
radiomics studies (12,15). These image sets are an excellent 
source of data for testing algorithms or for validating 
models.

Segmentation

After collecting a dataset, the next step in the radiomics 
workflow is the segmentation of the ROI. Important 
considerations in the choice of software and technique 
include uncertainties in the contours and efficiency of 
workflow. Manually segmented ROIs can have high inter-
user variability, especially for some modalities (16,17), which 
may affect the radiomics image features. Many successful 
radiomics studies use manually-delineated contours (18), 
but inter-user variability should be minimized. Inter-user 
variability can be reduced by the use of semi- or fully-
automated segmentation tools (19), although the user 
is cautioned that these tools can fail, and we strongly 
recommend that the results always be visually checked. 
Importantly, these automated tools can significantly affect 
the time it takes to segment the ROI—a key consideration 
when data from hundreds of patients will be used. Another 
way to reduce the impact of inter-user variability is to 
use algorithms such as STAPLE [Simultaneous truth and 
performance level estimation (20)] to create consensus 
contours from segmentations generated by experts, or from 
different auto-segmentation algorithms.

Users also must decide whether the entire tumor (or other 
structure) or only portions of the ROI will be segmented. 
Some researchers have segmented the axial slice where the 
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tumor is largest (21). Segmenting a single slice or fixed-
size ROI significantly improves efficiency when manual 
segmentation is used. However, the extracted ROI may not 
represent the entire tumor. The effect of segmenting a single 
slice or fixed-size ROI on the extracted radiomics image 
features varies widely, depending on the image feature, but 
can be significant (22). Other approaches that can improve 
workflow and reduce inter-user variability are using a fixed-
size ROI [e.g., Bang et al. used a spherical ROI (23)] and 
including the maximal circle within manually segmented 
liver lesions (24). Researchers may also have to decide which 
phase of a four-dimensional CT to segment (22).

In this section we describe several software programs 
used for target segmentation in radiomics studies. The main 
points to consider when choosing software for delineation 
are as follows:

(I)	 Import options. Can the software import and work 
with your modality?

(II)	 Export options. What formats can the software use 
to export your delineated structures? Transferring 
segmentation results from the segmentation 
software to the feature extraction software can be 
challenging;

(III)	 Ease of use. How user-friendly is the software? 
This includes considerations such as time to open 
patient data files;

(IV)	 Delineation tools. What manual or semiautomatic 
tools does the software provide for delineation?

(V)	 Auto-contouring tools. What auto-contouring tools 
does the software provide? Do these tools work for 
your target (e.g., lung tumor vs. liver tumor)?

Treatment planning systems
Many radiomics research projects use ROIs delineated by 
radiation oncologists for treatment planning systems. Because 
accurate delineation of ROIs is crucial in radiation therapy, 
the tools for manual delineation used in radiation therapy 
treatment planning systems often are more sophisticated 
than software focused on radiology applications. Radiation 
oncologists are very experienced in using these systems.

Before using these treatment-planning contours for 
radiomics research, however, it is important to consider 
whether this is the appropriate choice. For example, because 
the original contours are used to determine which tissue/
tumor volumes will be treated with radiation, the physician 
may have included tissue with a reasonable likelihood 
of representing tumor tissue, and the contoured volume 
may be larger than the actual tumor. Including healthy 

tissue in the radiomics ROI could significantly affect the 
calculated image features. One approach to address this 
potential problem is to use the original gross tumor volume 
and manually modify contours to include only regions 
that have a high likelihood of representing tumor tissue. 
Thresholding can also be used to exclude healthy tissue, 
such as lung or bone (25). However, the choice of thresholds 
can affect the value of image features and reproducibility, so 
some experimentation may be needed (26).

Another issue is uncertainty in the delineated ROI, i.e., 
variation in the region contoured by different physicians. 
Some radiomics researchers address this issue by carrying 
out multi-user delineation studies and by ranking image 
features according to their sensitivity to uncertainties in 
delineation (12).

3DSlicer
3DSlicer (www.slicer.org) is a free, open-source software 
package for image analysis (27) that includes tools for 
image registration and segmentation and works with many 
medical imaging modalities, including CT, MRI, and PET. 
The 3DSlicer webpage has a series of tutorials and datasets 
for learning how to use the software. Many extensions are 
available, including one for tumor segmentation on PET 
images. 3DSlicer has been used in various radiomics projects, 
including the semiautomatic delineation of lung tumors on 
CT and PET (13,19). Some researchers use tools already 
available in 3DSlicer, whereas others add their own tools to 
the software platform. Parmar et al., for example, implemented 
a semiautomatic region-growing segmentation algorithm in 
the 3DSlicer platform and showed that this approach was 
much more reproducible than manually drawn regions (19).

MIM software 
MIM (www.mimsoftware.com) is a commercial software 
package with many useful tools for radiomics applications, 
such as manual contouring, auto-contouring, and image 
registration. The software works with CT, MR, and 
PET images. On phantom data, the MIM algorithm for 
semiautomatic contouring of tumors on PET images (PET 
Edge) was shown to be the most accurate and consistent 
technique for delineating lung cancer lesions (28), and the 
MIM algorithm has been used in radiomics studies for lung 
and esophageal cancers (29,30).

Other software
Because we do not have the space to list all software 
programs, we have focused on the most commonly used 
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software for segmentation. in radiomics research; however, 
many other software programs may be useful for radiomics 
studies, depending on the specific study. Examples include the 
itk-SNAP (www.itksnap.org), Definiens Lung Tumor Analysis 
(LuTA) tool (www.definiens.com) (14,31) and the Velocity 
ROI delineation tool (www.velocitymedical.com) (32).  
Also, as described below, most image feature extraction 
software programs include some manual or semiautomatic 
segmentation capabilities.

Image feature extraction

Several commercial and open-source software programs are 
available for extracting image features. Important points to 
consider when choosing feature calculation software are as 
follows:

(I)	 Transparency. Is it clear how the image features 
are being calculated? Transparency is important if 
you want to mimic features used in the literature. 
It is also important to know how the images are 
being processed—for example, several authors have 
shown the importance of knowing how many bit 
levels are used for the calculations (33,34);

(II)	 Features classes. There are many possible image 
features and image feature classes, including shape-
based features, histogram-based features, and 
wavelet-based features. The supporting data of 
Aerts et al. (12) and the references in Zhang et al. (35) 
provide in-depth descriptions of the various features 
found in the literature. Most feature extraction 
software includes many of these image features, but 
the selection is limitedin some software programs. 
Also, users should consider whether they want the 
capability to add their own image features;

(III)	 Import features. Can the software import your 
image format and ROIs?

(IV)	 Segmentation tools. In some cases, it may be 
possible to use segmentation tools built into the 
image feature extraction software. If this is the 
case, it may also be necessary to have the ability to 
export the ROIs (or contours) for comparison with 
other software;

(V)	 Image data summary availability. Some software 
programs will list important imaging parameters 
(e.g., pixel size) for each image. This feature can be 
useful when filtering data (given the effect of some 
parameters on the calculated image features);

(VI)	 Batch processing. Sometimes it can be useful to 

calculate features for many patients as a batch.
These software programs typically cannot be used 

interchangeably, as a feature with a specific name is probably 
unlikely to produce the same results when calculated using 
different software, not only because the names are not 
always standardized but also because of differences in the 
implementation of the feature calculation (e.g., bit depth) as 
well as in the details of how the ROI edges are interpreted. 
Even when using the same software, researchers should 
ensure that the algorithm settings are identical. 

TexRAD 
Much of the early radiomics research used TexRAD (www.
texrad.com), a commercial image feature software program 
developed by Brighton and Sussex Medical School and the 
University of Sussex (Brighton, UK). TexRAD is widely 
used (mostly with CT images, but also PET, MR and 
mammography) (11,21,36-52). TexRAD feature analysis uses 
Laplacian of Gaussian filtering, which allows calculation 
of various features corresponding to different scales and 
intensity variation. The creators of TexRAD designed it to 
fit into the clinical workflow, including Picture archiving 
and communication system (PACS) connectivity and several 
segmentation tools (semi-automated, automated manual). 
TexRAD also includes a data-miner to facilitate visualization 
and exploration of the data (including statistical analysis).

MaZda
MaZda (http://eletel.eu/mazda) (53,54) is a two-dimensional 
and three-dimensional image texture analysis software 
program that is widely used for radiomics and other image 
analysis tasks. MaZda was first developed in the 1990s for 
texture analysis of mammograms and has been extended 
for use with three-dimensional images; tools for ROI 
definition, normalization, statistical analysis of features, and 
classification have been added. The MaZda website provides 
good documentation and tutorials. MaZda software is widely 
used (the original article has been cited 148 times) and is a 
well-tested tool. Over the past several decades, applications 
of this software include detection of osteoporotic changes 
in bones (55), assessment of cellular necrosis in optical 
microscopic images (56), diagnosis of acute ischemic stroke 
in CT images (57), as well as the evaluation of the quality 
of cold meats (58). Radiomics applications of this software 
include the use of pretreatment PET texture to predict 
treatment response of locally advanced rectal cancer (23).

MaZda includes many tools that may be useful, including 
simple contouring tools and some tools for feature 
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reduction and analysis (supervised/unsupervised clustering, 
etc.). As with other feature extraction software, the ROI can 
be delineated in another software program and imported 
into MaZda for analysis. Then, after calculating the image 
features in MaZda, they can be exported to a statistical 
analysis software program, such as R or SPSS.

Chang-Gung Image Texture Analysis (CGITA)
CGITA (http://code.google.com/p/cgita) (59), an open-
source texture analysis software program based on 
MATLAB, was developed at the Chang-Gung Memorial 
Hospital (Taoyuan City, Taiwan) for the analysis of 
molecular images. Although focused on molecular images, 
CGITA can import any DICOM image and has been tested 
with CT and MR images. Several groups have used CGITA 
for feature extraction in PET studies (60,61). 

ROIs either can be delineated in other software programs 
and imported into CGITA using several formats (including 
DICOM-radiotherapy) or can be delineated using CGITA’s 
semiautomatic segmentation function. A different software 
program must be used for statistical analysis.

Executable and source versions are available free of 
charge for academic research. The executable version is 
useful for researchers who do not have a MATLAB license 
and are not interested in implementing their own features. 
The source code is useful for researchers who wish to 
implement new features.

IBEX
IBEX (Stand-aloneIBEX: http://bit.ly/IBEX_MDAnderson; 
Source-code version: http://bit.ly/IBEXSrc_MDAnderson), 
an open-source platform for radiomics image feature 
extraction, is based on MATLAB and C/C++ programming 
languages and includes tools for importing various image 
and contour formats, some contouring tools, and image 
feature extraction tools (35). Developed at The University 
of Texas MD Anderson Cancer Center (Houston, TX, USA), 
IBEX has been used in several MD Anderson radiomics 
studies, including CT and PET studies (7,25,29,30,62). 
As with other software, such as MaZda, IBEX allows 
the user to vary the preprocessing and feature algorithm 
parameters (e.g., bit depth). This flexibility allows the user 
to optimize the settings for each modality and site. These 
settings can have a dramatic effect on the image feature 
values, and failure to adjust these settings can result in 
feature calculations that are, at best, not optimized and, 
at worst, meaningless (9). Importantly, IBEX also displays 
the processed patient images, which can be very useful for 
determining whether the processing makes sense (e.g., to 

ensure that the images have not been smoothed excessively). 
Also, IBEX allows users to export the actual co-occurrence 
matrix or intensity histogram—a useful capability when 
investigating different preprocessing approaches. Other 
features of IBEX include the ability to export entire feature 
sets, so users at other institutions can easily apply the same 
features, and the ability to anonymize patient data.

Computational environment for radiotherapy research 
(CERR)
CERR (www.cerr.info) is an open-source MATLAB-based 
software platform for importing, displaying, and analyzing 
radiation therapy treatment plans (63). CERR includes 
functions to import various imaging modalities, image 
fusion, and contouring. CERR is widely used in radiotherapy 
research (cited almost 300 times), and work is underway to 
add a radiomics toolbox to the software platform (64,65). 
Other researchers have used the CERR platform for 
importing and managing their medical images and have 
added their own in-house image feature toolbox (18).

In-house software
Many groups have written in-house software to extract 
features using MATLAB (14,66). In many cases, this 
in-house software builds on other software programs, 
such as CERR (18,67). Of particular note is the Insight 
Segmentation and Registration Toolkit, (ITK, itk.org). ITK 
is an open-source set of software tools for image analysis, 
including image pre-processing, segmentation, registration 
and texture calculation, which can be incorporated into 
researchers’ own software.

Several groups are currently building in-house software 
to create radiomics platforms that can be used at other 
institutions.

Modeling/statistical analysis

Radiomics image features are used for many different 
analyses. Perhaps the most common is to incorporate 
radiomics image features into models to improve patient 
risk stratification (overall survival, freedom from metastasis, 
etc.). In this case, the question is whether image features 
add value to clinical data. Other questions include whether 
image features are linked to tumor histology (40), tumor 
grade (38), or gene signatures (12,68-70). 

Model development is an important component of the 
radiomics process and has many potential pitfalls. In spite of 
the increasing number of publications with positive results, 
Chalkidou et al. reviewed 15 radiomics studies published 



345Translational Cancer Research, Vol 5, No 4 August 2016

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2016;5(4):340-348 tcr.amegroups.com

between 2000 and 2013 and estimated that the average 
type-I error probability was 76% (range, 34–99%), and 
most studies’ results did not reach statistical significance (8).  
Inexperienced users cannot simply copy a published 
approach; modeling and statistical analysis must be carefully 
considered, preferably with the involvement of a colleague 
experienced in this type of analysis. Chalkidou et al. 
provide the following best practices to develop statistically 
and clinically significant models while reducing false 
discoveries: (I) assess feature reproducibility; (II) perform 
cross-correlation analysis; (III) include clinically important 
variables (volume should be included); (IV) ensure datasets 
have adequate observation rates (more than 10–15 per 
feature); (V) include an external validation cohort (using the 
same feature calculations and cutoff values). Finally, care 
should be taken when using image features for which there 
is no physical (or biological) interpretation.

Below is a partial list of software packages available for 
modeling/statistical analysis.

(I)	 R (www.r-project.org/). R is a free software 
environment for statistical computing and includes 
many statistical techniques that are used in radiomics 
research, such as linear and nonlinear modeling, 
classification, and clustering. R has been used 
extensively by the radiomics research community 
(29,36). Parmar et al. investigated the many machine-
learning algorithms available in R to determine which 
methods are optimal for radiomics applications (67);

(II)	 SPSS (www.ibm.com/software/analytics/spss). 
SPSS is a widely used commercial software 
program for statistical analysis and has been used in 
many radiomics publications (4,21,23,24);

(III)	 Stata (www.stata.com). Stata is another commercial 
statistics package that has been used for radiomics 
research (14);

(IV)	 MedCalc (www.medcalc.org). MedCalc has been 
used by Desseroit et al. (13) for their radiomics 
research and by others for many image analysis-
related projects (71,72);

(V)	 B i o c o n d u c t o r  ( w w w. b i o c o n d u c t o r. o r g ) . 
Bioconductor is an open-source software for 
computational biology and bioinformatics (73) and 
has been used by radiomics researchers such as 
Coroller et al. (18);

(VI)	 Weka (www.cs.waikato.ac.nz/ml/weka/). Weka 
is a free software program for data visualization, 
analysis,  and predictive modeling that was 
developed at the University of Waikato (Hamilton, 
New Zealand) in 1993. Weka has been used 

for several radiomics projects (31,74) and other 
closely related projects using image features (75). 
For example, Hawkins et al. used Weka classifiers 
and CT-based features to predict overall survival 
duration for patients with lung cancer (74).

Several of the radiomics feature extraction software 
programs described earlier (e.g., MaZda and TexRAD) also 
include some statistical analysis/modeling features.

Summary

Many software programs are available for use in radiomics 
research. This review describes the most popular choices 
for segmentation, feature extraction, and statistical 
modeling or analysis and includes examples from the 
literature. Researchers should carefully weigh the benefits 
and drawbacks of each software program before selecting 
one for their analysis. To increase feature reproducibility 
between studies, furthermore, it is important for researchers 
to detail any specific segmentation, image processing, or 
feature parameters used during their study.
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