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Introduction

Breast cancer (BC) is the most commonly diagnosed 
cancer in females worldwide and is classified into different 
molecular subtypes, including luminal A, luminal B, 

human epidermal growth factor receptor-2 (HER-2) 

overexpression and triple-negative breast cancer (TNBC) 

(1,2). TNBC is characterized by a lack of estrogen 

receptor (ER), progesterone receptor (PR), and HER2 

Original Article

A novel immune-related long noncoding RNA (lncRNA) pair model 
to predict the prognosis of triple-negative breast cancer

Jing-Ying Li1, Chen-Ji Hu1, Hui Peng1, En-Qiang Chen2

1Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China; 2Center of Infectious Diseases, West China Hospital, Sichuan 

University, Chengdu, China

Contributions: (I) Conception and design: JY Li, CJ Hu; (II) Administrative support: EQ Chen; (III) Provision of study materials or patients: JY Li; (IV) 

Collection and assembly of data: H Peng; (V) Data analysis and interpretation: JY Li, EQ Chen; (VI) Manuscript writing: All authors; (VII) Final 

approval of manuscript: All authors.

Correspondence to: En-Qiang Chen, PhD. Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou 

District, Chengdu 610041. Email: chenenqiang1983@hotmail.com.

Background: Breast cancer (BC) is the most prevalent cancer type and is the principal cause of cancer-
related death in women. Anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/ 
PD-L1) immunotherapy has shown promising effects in metastatic triple-negative breast cancer (TNBC), 
but the potential factors affecting its efficacy have not been elucidated. Immune-related long noncoding 
RNAs (irlncRNAs) have been reported to be involved in immune escape to influence the carcinogenic 
process through the PD-1/PD-L1 signaling pathway. Therefore, exploring the potential regulatory 
mechanism of irlncRNAs in PD-1/PD-L1 immunotherapy in TNBC is of great importance.
Methods: We retrieved transcriptome profiling data from The Cancer Genome Atlas (TCGA) and 
identified differentially expressed irlncRNA (DEirlncRNA) pairs. Least absolute shrinkage and selection 
operator (LASSO) regression analysis was performed to construct a risk assessment model.
Results: Receiver operating characteristic (ROC) curve analysis indicated that the risk model may serve as 
a potential prediction tool in TNBC patients. Clinical stage and risk score were proved to be independent 
prognostic predictors by univariate and multivariate Cox regression analyses. Subsequently, we investigated 
the correlation between the risk model and tumor-infiltrating immune cells and immune checkpoints. 
Finally, we identified USP30-AS1 through the StarBase and Multi Experiment Matrix (MEM) databases, 
predicted the potential target genes of USP30-AS1, and then discovered that these target genes were closely 
associated with immune responses.
Conclusions: Our study constructed a risk assessment model by irlncRNA pairs regardless of expression 
levels, which contributed to predicting the efficacy of immunotherapy in TNBC. Furthermore, the lncRNA 
USP30-AS1 in the model was positively correlated with the expression of PD-L1 and provided a potential 
therapeutic target for TNBC.

Keywords: Breast cancer (BC); immune-related long noncoding RNAs (irlncRNAs); The Cancer Genome Atlas 

(TCGA); triple-negative breast cancer (TNBC)

Submitted Oct 24, 2023. Accepted for publication Feb 08, 2024. Published online Mar 11, 2024. 

doi: 10.21037/tcr-23-1975

View this article at: https://dx.doi.org/10.21037/tcr-23-1975

1267

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr-23-1975


Translational Cancer Research, Vol 13, No 3 March 2024 1253

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1252-1267 | https://dx.doi.org/10.21037/tcr-23-1975

expression, representing approximately 15–20% of BC 
cases (3,4). At present, comprehensive mode therapy 
combining local therapy (surgery, radiotherapy) with 
systemic therapy (endocrine therapy, chemotherapy, etc.) 
is a relatively mature treatment method for BC (5,6). 
However, chemotherapy promotes cancer heterogeneity 
of tumor cells, which could result in chemoresistance and 
cancer development (4,5,7). TNBC is characterized by 
significant biological heterogeneity. Despite its advances 
in neoadjuvant and adjuvant therapies, overall TNBC 
is associated with a higher risk of relapse and disease 
progression and poorer outcomes (8).

The development of immunotherapeutic drugs has 
revolutionized the field of clinical oncology. Immune 
checkpoint inhibitors (ICIs) are currently available to 
induce durable immune responses and potential long-
term benefits in different tumor types, including lung 
cancer, hepatocellular carcinoma, melanoma, and renal 
cell carcinoma (9-12). However, BC, as a “cold” cancer, is 
considered poorly immunogenic and immunotherapy is 
not a priority option (13). There is growing evidence that 
TNBC exhibits the strongest immunogenicity in BC (14). 
Compared to other subtypes, TNBC has been shown to 
have a higher proportion of tumor infiltrating lymphocytes 

(TILs) (15), a relatively high tumor mutational burden 
(TMB) (16) and PD-L1 expression (17). PD-L1 expression 
has been found in approximately 20% of TNBCs, and 
several clinical trials have shown that antibodies against 
the programmed cell death protein 1/programmed cell 
death ligand 1 (PD-1/PD-L1) pathway could induce 
immune responses and improve clinical outcomes in TNBC 
patients (2,18,19). Thus, immunotherapy has emerged as 
a promising option for the treatment of TNBC and has 
encouraged the development of additional immunologic 
agents for the treatment of TNBC patients. However, 
not all TNBC patients are sensitive to immunotherapy. 
Given the heterogeneity of TNBC, it is imperative to 
explore potential mechanisms for regulating the efficacy of 
immunotherapy in TNBC patients.

Long noncoding RNAs (lncRNAs) play a prominent role 
in carcinogenesis, such as regulating gene expression, cell 
differentiation, aggressiveness of cancer cells and their ability 
to metastasize (20-22). LncRNAs can be transcribed from 
both protein-coding and noncoding regions of DNA (23).  
Several lncRNAs have been reported to influence the 
carcinogenic process and have particular applications in the 
prediction and diagnosis of different cancers (24). Ma et al. 
observed that a metabolism-related lncRNA signature was 
identified that can predict the recurrence-free survival (RFS) 
of BC patients, and a prognostic nomogram was established 
that helps guide the individualized treatment of patients 
at different risks (25). Li et al. observed that four-lncRNA 
immune prognostic signatures were prognostic biomarkers 
and could be possible therapeutic targets in TNBC (26).

Immune system disorders play a critical role in the 
development of various types of cancers (27,28). LncRNAs 
play crucial roles in the regulation of the immune system. 
Over the past few years, lncRNAs have emerged as key 
players in epigenetic regulation in the inhibitory tumor 
microenvironment (TME) because of their potential role 
in regulating tumor immunity by directly regulating genes 
involved in immune activation or suppression (29,30). For 
example, lncRNA KCNQ1OT1 secreted by tumor cell-
derived exosomes regulates PD-L1 ubiquitination via miR-
30a-5p/USP22 to promote immune escape in colorectal 
cancer (31). However, the role of immune-related lncRNAs 
(irlncRNAs) in regulating malignant progression and 
the efficacy of immunotherapy in TNBC has rarely been 
investigated. Exploring the potential mechanism by which 
lncRNAs regulate PD-L1 expression in TNBC patients is 
of great significance to identify novel therapeutic targets  
for TNBC.

Highlight box

Key findings
• Our study constructed a risk assessment model by immune-

related long noncoding RNA (irlncRNA) pairs regardless of 
expression levels, which contributed to predicting the efficacy of 
immunotherapy in triple-negative breast cancer (TNBC). 

What is known and what is new? 
• Previous studies have revealed that TNBC is critically related to 

the expression of programmed cell death ligand 1 (PD-L1) in the 
tumor microenvironment. 

• We investigated the correlation between the risk model and tumor-
infiltrating immune cells and immune checkpoints. Finally, we 
identified USP30-AS1 through the StarBase and Multi Experiment 
Matrix databases, predicted the potential target genes of USP30-
AS1, and then discovered that these target genes were closely 
associated with immune responses.

What is the implication, and what should change now? 
• Our study constructed a risk assessment model by irlncRNA pairs 

regardless of expression levels, which contributed to predicting the 
efficacy of immunotherapy in TNBC. Furthermore, the lncRNA 
USP30-AS1 in the model was positively correlated with the 
expression of PD-L1 and provided a potential therapeutic target 
for TNBC.
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In the current study, we identified differentially 
expressed irlncRNAs (DEirlncRNAs) in TNBC samples 
according to public transcriptome profiling data and 
corresponding clinical data of TNBC patients. Then, 
we utilized a novel modelling method to construct a risk 
assessment model, which applied lncRNA pairs and did not 
require precise expression levels. We further investigated 
the correlation between the risk model and the tumor 
immune microenvironment. Finally, we predicted the target 
genes and performed functional annotation to explore the 
potential mechanisms. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-1975/rc).

Methods

Gene expression profiles and clinical data

The independent data included in this study were 
downloaded from a public database. The data of 146 
TNBC samples and corresponding clinical information 
were obtained from The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) database. In addition, the 
clinical characteristics of all TNBC patients are shown in 
Table 1. This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Identification of differentially expressed irlncRNAs 
(DEirlncRNAs)

Gene transfer format (GTF) files were retrieved from 
Ensembl (http://asia.ensembl.org) for annotation. A list 
of identified immune-related genes was obtained from 
the ImmPort database (http://www.immport.org) and was 
used to distinguish irlncRNAs by coexpression analysis. 
Correlation analysis was performed between immune-
related genes and lncRNAs. LncRNAs with immune gene 
correlation coefficients greater than 0.4 and P values less 
than 0.001 were selected as irlncRNAs. The “Limma” 
package was used for differentially expressed analysis among 
irlncRNAs to identify DEirlncRNAs. False discovery rate 
(FDR) <0.05 and |log2 fold change (FC)| >1 were set as the 
standard to select DEirlncRNAs for further analysis.

Pairing DEirlncRNAs

The matching process of DEirlncRNA pairs was as follows: 
one lncRNA pair included two genes (A and B); if the 

Table 1 Clinical baseline of all 146 triple-negative breast cancer 
patients from TCGA cohort

Variables
TCGA cohort (N=146)

N %

Status

Alive 125 85.62

Dead 21 14.38

Age (years)

≥55 73 50.00

<55 73 50.00

AJCC-T

T1 37 25.34

T2 92 63.01

T3 13 8.90

T4 4 2.74

AJCC-N

N0 96 65.75

N1 31 21.23

N2 11 7.53

N3 8 5.48

AJCC-M

M0 124 84.93

M1 1 0.68

MX 21 14.38

Stage

Stage I 26 17.81

Stage II 95 65.07

Stage III 21 14.38

Stage IV 1 0.68

Unknown 3 2.05

Postoperative adjuvant chemotherapy

Yes 24 16.44

No 1 0.68

NA 121 82.88

Neoadjuvant therapy

Yes 1 0.68

No 145 99.32

TCGA, The Cancer Genome Atlas; AJCC, American Joint 
Committee on Cancer.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1975/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1975/rc
https://portal.gdc.cancer.gov/
http://asia.ensembl.org
http://www.immport.org
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expression level of A was larger than that of B, the score was 
1; otherwise, the score was 0. Next, DEirlncRNA pairs with 
constant values (0 or 1) were removed from all individual 
datasets included in the meta-dataset, and the remaining 
DEirlncRNA pairs were considered candidate DEirlncRNA 
pairs. Additionally, only samples with a 0.2–0.8 pair ratio, 
defined as the total pair value, were included.

Construction of a prognostic risk model

Univariate Cox regression analysis was performed to 
identify prognostic irlncRNA pairs. Least absolute shrinkage 
and selection operator (LASSO) regression analysis was 
performed with 10-fold cross validation and a P value 
of 0.01. Then, multivariate Cox regression analysis was 
utilized to calculate the coefficients (βi) of selected lncRNA 
pairs. A risk assessment model was constructed using βi and 
lncRNA expression levels to calculate the risk score of each 
patient. The risk score was calculated as follows: risk score = 
∑βi * Expi. The TNBC patients in the TCGA cohort were 
stratified into two categories, namely low-risk and high-risk, 
based on the risk score calculated using the median value. 
The 2-, 3-, and 5-year ROC curves were plotted to estimate 
the predictive efficacy of the model. The R packages used in 
these steps included “survival”, “survminer”, “glmnet”, and 
“survivalROC”.

Evaluation of the constructed risk model

To verify the predictive value of the cut-off point, Kaplan-
Meier analysis was performed to compare the difference in 
survival in the high- or low-risk groups. The Chi-square 
test was conducted to investigate the association between 
the model and clinicopathologic characteristics, and a band 
diagram was plotted to show the results. Univariate and 
multivariate Cox regression analyses between the risk score 
and clinicopathological characteristics were performed 
to determine whether the ability of the model to predict 
overall survival (OS) was independent. Box diagrams show 
the differences in the risk score among different groups of 
these clinicopathological characteristics by the Wilcoxon 
signed-rank test. The R packages used in these steps are 
“survival”, “survminer”, “ggpubr”, and “ComplexHeatmap”.

Investigation of tumor-infiltrating immune cells and 
immune checkpoint molecules

We further investigated the association between the risk and 

immune status using XCELL, TIMER, QUANTISEQ, 
MCPCOUNTER, EPIC, CIBERSORT-ABS,  and 
CIBERSORT. The results were shown in a lollipop diagram 
generated by the R “ggplot2” package with P<0.05. The 
correlation between the risk score and the expression levels 
of immune checkpoint-related genes was exhibited in violin 
plots using the “ggpubr” package.

Correlation between the risk model and drug sensitivity

We calculated the half-maximal inhibitory concentration 
(IC50) of commonly administered chemotherapeutic drugs 
for TNBC in the TCGA database. The differences in 
the IC50 of imatinib, erlotinib, bexarotene, methotrexate 
and camptothecin between the high- and low-risk groups 
were compared using the R packages “pRRophetic” and 
“ggplot2”.

Target gene prediction and gene enrichment analysis

We utilized the StarBase and Multi Experiment Matrix 
(MEM) databases to identify potential lncRNAs in the three 
lncRNA pairs, and USP30-AS1 was selected. We performed 
coexpression analysis to predict the potential target genes 
of USP30-AS1 and calculated Spearman’s rank correlation 
coefficients. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses were 
performed for functional annotation. “Pathview” was used 
to pathway-based data integration and visualization (32,33).

Statistical analysis

The Chi-square test was used to compare clinical variables. 
Kaplan-Meier analysis was performed to compare the 
difference in survival between different patient groups. 
The correlation was determined by Spearman correlation 
analysis. Survival status was analysed by Cox regression 
analysis. P<0.05 was considered statistically significant.

Results

Identification of DEirlncRNAs

We downloaded the transcriptome profiling data of 
146 cases of TNBC patients in the TCGA dataset. The 
expression matrix of immune-related mRNA was obtained 
from the ImmPort database and was used to identify 
irlncRNAs by coexpression analysis. The patients were 
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divided into a high-expression group and a low-expression 
group based on the median cut-off value of PD-L1 
expression. A total of 58 DEirlncRNAs were identified 
(Figure 1A), among which 52 irlncRNAs were upregulated 
in the high-PD-L1 group, and 6 irlncRNAs (AC007991.2, 
BCL2L1-AS1, DTNB-AS1, LINC00582, LINC01781, 
LINC02446) were upregulated in the low-PD-L1 group 
(|log2FC| >1, FDR <0.05) (Figure 1B). These results 
indicated that irlncRNAs may be potential regulators of 
PD-L1 expression in TNBC patients.

Construction of DEirlncRNA pairs and a risk  
assessment model

We established 1,145 DEirlncRNA pairs and performed 
univariate Cox regression analysis. Ten DEirlncRNA pairs 
with prognostic significance were identified (Figure 1C).  
LASSO and multivariate Cox regression analyses were 
applied to identify three lncRNA pairs (Table 2) and 
establish a risk assessment model based on the transcriptome 
profiling data of the above DEirlncRNAs (Figure 2A,2B). 
The optimal cut-off value of the 5-year ROC curve was 
identified as 1.058 (Figure 2C). Time-dependent ROC 
curve analysis was applied to illustrate the sensitivity and 
specificity of the prediction model, with the area under the 
curve (AUC) reaching 0.680 at 2 years, 0.795 at 3 years, 
and 0.795 at 5 years (Figure 2D). Figure 2E displayed three 
lncRNA pairs.

Evaluation of independent prognostic value and correlation 
between clinical factors and the risk model

To further verify the prognostic ability of the risk model, we 
calculated the risk scores of the 140 patients with TNBC in 
the TCGA cohort. The patients were divided into a high-
risk and a low-risk group based on the identified cut-off 
point, of which 55 cases were in the high-risk group, and 
91 cases were in the low-risk group. The Kaplan-Meier 
survival curve indicated that patients in the high-risk group 
were more likely to exhibit a worse prognosis than those in 
the low-risk group (P=0.029) (Figure 3A). Univariate and 
multivariate Cox regression analyses of the risk model were 
performed to determine whether the prognostic ability of 
the model was independent. The results of univariate Cox 
regression analysis showed that clinical stage [hazard ratio 
(HR) =11.268, 95% CI: 4.680–27.127, P<0.001], T stage 
(HR =3.413, 95% CI: 1.839–6.332, P<0.001), N stage (HR 
=3.249, 95% CI: 2.097–5.033, P<0.001), and risk score (HR 

=2.031, 95% CI: 1.255–3.287, P=0.004) were independent 
predictive factors (Figure 3B). In multivariate Cox 
regression analysis, clinical stage (HR =13.055, 95% CI: 
2.413–70.631, P=0.003) and risk score (HR =2.518, 95% CI: 
1.381–4.592, P=0.003) were still independent prognostic 
predictors (Figure 3C). A Chi-square test was performed to 
illustrate the relationship between the risk score of TNBC 
and clinicopathological characteristics (Figure 3D). We 
further investigated the correlation between age (Figure 3E),  
T stage (Figure 3F) and risk by the Wilcoxon signed-rank 
test. The risk score increased as age and T stage increased. 
These results showed that age and T stage were significantly 
related to the risk score.

The risk model is highly correlated with tumor-infiltrating 
immune cells and immune checkpoint molecules

Given that irlncRNAs were identified based on the 
coexpression of immune genes, we investigated whether 
the prediction model was related to the tumor immune 
microenvironment. We evaluated the immune infiltration 
status among the samples using XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT. A detailed Spearman correlation 
analysis was performed to study the relationship between 
the risk score and immune infiltrated cells. The correlation 
coefficients are shown in a lollipop diagram (Figure 4A) 
and listed in Table S1. The high-risk group was positively 
correlated with natural killer (NK) cells, regulatory T cells 
(Tregs), and M0 macrophages and negatively correlated 
with other immune infiltrating cells, which indicated 
that patients in the high-risk group may be insensitive to 
immunotherapy. Since checkpoint blockade therapy is 
extensively used in the clinical treatment of BC, we further 
investigated the relationship between the risk model and 
the expression levels of immune checkpoint molecules in 
the TCGA database. The results of violin plots revealed 
that high risk scores were positively associated with low 
expression of PD-1, PD-L1, PD-L2, CTLA4, TIM3, and 
IDO1 (P<0.05) (Figure 4B).

The risk model may act as a potential predictor of 
chemotherapeutics

To evaluate the risk model in the clinic for TNBC treatment, 
we identified the relationship between the risk and the 
efficacy of commonly administered chemotherapeutic drugs 
in the TCGA database. The inhibitory concentration (IC50) 

https://cdn.amegroups.cn/static/public/TCR-23-1975-Supplementary.pdf
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Figure 1 Identification of DEirlncRNAs in TCGA dataset. (A) Gene expression levels of DEirlncRNAs in the TCGA dataset; (B) volcano 
plot of DEirlncRNAs. The red dots represent up-regulated DEirlncRNAs, the green dots represent down-regulated DEirlncRNAs and the 
black dots represent irlncRNAs whose FDR >0.05 or |log2FC| <1; (C) forest map of ten DEirlncRNA pairs identified by univariate Cox 
regression analysis. FDR, false discovery rate; FC, fold change; CI, confidence interval; DEirlncRNAs, differentially expressed immune-
related long noncoding RNAs; TCGA, The Cancer Genome Atlas.
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Figure 2 Construction of a risk assessment model based on DEirlncRNA pairs. (A,B) Three lncRNA pairs for establishing the risk model 
were identified by the least absolute shrinkage and selection operator Cox regression; (C) the optimal cut-off value was identified according 
to the maximum inflection point; (D) the 2-, 3-, and 5-year receiver operating characteristic curves for evaluating the sensitivity and 
specificity of the prediction model; (E) a 3-pair risk assessment model was established by multivariate Cox regression analysis. AUC, area 
under the curve; CI, confidence interval; DEirlncRNAs, differentially expressed immune-related long noncoding RNAs.

Table 2 Three lncRNA pairs for the establishment of the risk assessment model

DEirlncRNAs Coef HR HR.95 L HR.95 H P value

USP30-AS1|SERPINB9P1 −0.91874 0.399023 0.150387 1.058732 0.064989

AL731567.1|AC004585.1 1.145169 3.142973 1.265462 7.806065 0.013617

AC110995.1|AC007991.2 1.436283 4.205038 1.383095 12.78462 0.011354

LncRNA, long noncoding RNA; DEirlncRNAs, differentially expressed immune-related lncRNAs; Coef, coefficient; HR, hazard ratio; 95L, 
95% lower; 95 H, 95% higher. 
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Figure 3 Prognosis prediction and clinical evaluation of the risk assessment model. (A) Kaplan-Meier survival curve showed that patients 
in the low-risk group experienced a longer overall survival than patients in the high-risk group; (B) univariate Cox regression analysis of 
the model; (C) multivariate Cox regression analysis of the model; (D) the strip chart shows the relationship between the risk score and 
clinicopathological characteristics; (E) age was significantly associated with the risk score; (F) T stage was significantly associated with the 
risk score. CI, confidence interval; TMB, tumor mutational burden; PD-L1, programmed cell death ligand 1.

of chemotherapeutic drugs, including imatinib, erlotinib, 
bexarotene, methotrexate, and camptothecin, was calculated. 
The results showed that a high-risk score was related to 
a lower IC50 of imatinib (P=0.043), erlotinib (P=0.04), 

and bexarotene (P=0.095) (Figure 5A) and a higher IC50 
of methotrexate (P=0.0073) and camptothecin (P=0.039)  
(Figure 5B), indicating that the risk model may act as a 
potential predictor of chemotherapeutic drug sensitivity.
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Figure 4 Estimation of tumor-infiltrating immune cells and immune checkpoint molecules. (A) The correlation coefficients are shown in a 
lollipop diagram. The high-risk group was more positively associated with NK cells, Tregs, and M0 macrophages and negatively correlated 
with other immune infiltrating cells. (B) Violin plots showing the expression levels of immune checkpoint inhibitor-related genes in the low- 
and high-risk groups. **, P<0.01; ***, P<0.001. NK, natural killer; Tregs, T regulatory cells.
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Target gene prediction and functional analysis of  
USP30-AS1

Among the selected DEirlncRNAs, USP30-AS1 was 
identified through StarBase, the MEM database and the 
expression matrix of irlncRNAs. We predicted the potential 
target genes of USP30-AS1 in the risk model and identified 
941 target genes (correlation coefficients ≥0.4, P<0.05), the 
top 100 of which are shown in Table S2. The genes encoding 
PD-1 (PDCD1) and PD-L1 (CD274) were included. 
Spearman’s rank correlation coefficient revealed that the 
expression of PD-L1 (Figure 6A) and PD-1 (Figure 6B)  
had a significant positive correlation with the expression 
of USP30-AS1 (P<0.001). To identify the potential 
biological functions and pathways of target genes of 
USP30-AS1, we further performed GO analysis (Figure 6C)  
and KEGG pathway analysis (Figure 6D). Based on GO 
analysis, the target genes were significantly correlated with 
cytokine binding, receptor binding, cytokine activity, and 
several immune-related biological processes. The results of 
the KEGG pathway analysis revealed that the most relevant 
pathway for target genes was the cytokine-cytokine receptor 
interaction. We further generated a KEGG view of the 

cytokine-cytokine receptor interaction (Figure 7) and found 
that most genes in this pathway were positively regulated by 
USP30-AS1. It can be assumed that USP30-AS1 may play 
an important role in the immune responses of TNBC.

Discussion

Key findings, comparison with similar researches and 
explanations of findings

Previous studies have revealed that TNBC is critically 
related to the expression of PD-L1 in the TME (15,17). 
Furthermore, accumulating data have shown that PD-1/PD-
L1 inhibitors are able to induce durable clinical responses 
in some TNBC patients (34). The KEYNOTE-355 trial 
suggested that pembrolizumab (an anti-PD-1 antibody)-
chemotherapy showed a significant and clinically 
meaningful improvement in progression-free survival 
(PFS) versus placebo-chemotherapy among patients with 
metastatic TNBC (mTNBC) (35). The IMpassion130 trial 
revealed that atezolizumab (an anti-PD-L1 antibody) plus 
nab-paclitaxel significantly improved PFS and median OS 
in patients with mTNBC, especially for PD-L1-positive 

Figure 5 The risk model may act as a potential predictor of chemotherapeutic drug sensitivity. (A) A high-risk score was associated with a 
lower IC50 of imatinib, erlotinib, and bexarotene; (B) a high-risk score was associated with a higher IC50 of methotrexate and camptothecin. 
IC50, half-maximal inhibitory concentration.
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Figure 6 Target gene prediction and functional annotation of USP30-AS1. CD274 (A) and PDCD1 (B) were identified as target genes of 
USP30-AS1; results of GO (C) and KEGG (D) analyses in The Cancer Genome Atlas dataset. Cor, correlation; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes. CCR, CC chemokine receptor; MHC, major histocompatibility complex; NF, nuclear factor.

patients (36). However, the IMpassion 131 trial revealed 
that the combination of atezolizumab and paclitaxel did 
not improve PFS nor OS compared with paclitaxel alone, 
suggesting that the specific mechanisms of anti-PD-1/PD-
L1 immunotherapies for mTNBC still need to be further 
explored (36,37).

In the present study, we used the cyclic single pairing 
method (38) and 0 or 1 matrix to verify the signatures 
of lncRNA pairs to predict the prognosis of TNBC. 
Therefore, only pairs with high or low expression need 
to be detected without examining the specific expression 
value of each lncRNA. Ten pairs with prognostic values 

were identified by univariate Cox regression analysis. Some 
lncRNAs of the ten pairs have been reported to be critically 
involved in tumorigenesis, such as USP30-AS1 (39-41), 
HLA-DQB1-AS1 (42,43), and MIR155HG (44-46). Based 
on the LASSO regression analysis, we constructed a risk 
assessment model composed of three DEirlncRNA pairs 
(USP30-AS1|SERPINB9P1, AL731567.1|AC004585.1, 
AC110995.1|AC007991.2). We further plotted ROC curves 
for 2, 3 and 5 years, and the model exhibited remarkable 
prognostic validity. The patients were divided into a high-
risk and a low-risk group according to the identified cut-off 
point. The results of the survival analysis showed that the 
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survival probability of the high-risk group was lower than 
that of the low-risk group. The results of univariate and 
multivariate Cox proportional hazard regression analyses 
showed that clinical stage and risk score were independent 
predictive factors for TNBC. In addition, age and T stage 
were significantly related to the risk score. The risk score 
increased as age and T stage increased. The highest increase 
in the risk score was found in patients with the T4 stage, 
which was much higher compared to patients with the T1-
T3 stage. The results of the T1, T2 and T3 stages exhibited 
no significant difference, which may result from the limited 
samples of patients with low stages.

Immune checkpoint molecules have been identified 
as key modulators of the immune response, and their 
expression is closely related to the level of tumor-infiltrating 
immune cells, response to immunotherapy, and survival of 
patients (47). We evaluated the immune infiltration status 
among the samples using XCELL, TIMER, QUANTISEQ, 
MCPCOUNTER, EPIC, CIBERSORT-ABS,  and 
CIBERSORT. We further investigated the relationship 
between the risk score and ICI-related biomarkers in the 
TCGA database. The results revealed that low risk scores 
were positively related to high expression of PD-1, PD-
L1, PD-L2, CTLA4, TIM3, and IDO1 (P<0.05). Despite 
progress in understanding the underlying tumor biology, 
clinical outcomes for TNBC unfortunately remain poor, 
and chemotherapy is still the mainstay of treatment for 
TNBC (48-51). Thus, we evaluated the association of risk 
values with the IC50 of some commonly used chemotherapy 
agents. We further found that this risk model may be 
beneficial in helping physicians choose more effective 
chemotherapy agents.

We identified the lncRNA USP30-AS1 based on 
the StarBase and MEM databases. USP30-AS1 is an 
antisense lncRNA that plays a critical role in regulating 
gene expression at the replication, transcription, and 
translation levels (52). The function of antisense lncRNAs 
is not related to the position of encoding genes but to the 
coexpressed protein-encoding genes. We further predicted 
potential target genes of USP30-AS1 and discovered that 
genes encoding PD-1 (PDCD1) and PD-L1 (CD274) were 
also included, and the expression levels of PD-1 and PD-
L1 were positively correlated with USP30-AS1 expression. 
The results indicated that USP30-AS1 may be involved 
in the regulation of PD-1 expression. Furthermore, the 
predicted target genes were used to perform GO analysis 
and KEGG pathway analysis. A KEGG pathway, cytokine-
cytokine receptor interaction, was significantly enriched 

by the predicted target genes. In addition, most genes in 
this pathway were positively regulated by USP30-AS1, 
suggesting that USP30-AS1 was closely associated with 
the tumor immune response. Therefore, we speculate that 
USP30-AS1 may serve as a potential target molecule to 
affect the efficacy of immunotherapy, and the potential 
mechanism is that it activates the transcription and 
upregulates the expression of PD-L1 to promote the 
immune escape of patients with TNBC.

Limitations

However, our study has some limitations. First, our 
immune-related prognostic features of lncRNA pairs were 
developed through retrospective studies. Thus, prospective 
cohort studies are needed to further validate our results. 
Second, although functional annotation has revealed that 
lncRNA USP30-AS1 can regulate the expression of PD-
L1, in vivo and in vitro experiments are further needed to 
explore the specific mechanisms.

Conclusions

In conclusion, our study constructed a risk assessment 
model by immune-related lncRNA pairs regardless of 
expression levels, which contributed to predicting the 
efficacy of immunotherapy in TNBC. Furthermore, the 
lncRNA USP30-AS1 in the model was positively correlated 
with the expression of PD-L1 and provided a potential 
therapeutic target for TNBC.
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Table S1 Correlation coefficients between the risk score and infiltrating immune cells

Immune cells Cor P value

T-cell CD8+_TIMER −0.39914 6.60E−07

Neutrophil_TIMER −0.28174 0.000597

Myeloid dendritic cell_TIMER −0.22273 0.007087

T-cell CD8+_CIBERSORT −0.28095 0.000619

T-cell CD4+ memory activated_CIBERSORT −0.42847 7.60E−08

T-cell regulatory (Tregs)_CIBERSORT 0.186963 0.024339

Macrophage M0_CIBERSORT 0.202361 0.014648

Macrophage M1_CIBERSORT −0.371 4.35E−06

Myeloid dendritic cell resting_CIBERSORT −0.25605 0.00188

B-cell naive_CIBERSORT-ABS −0.20917 0.011574

T-cell CD8+_CIBERSORT-ABS −0.31351 0.000123

T-cell CD4+ memory resting_CIBERSORT-ABS −0.1815 0.028901

T-cell CD4+ memory activated_CIBERSORT-ABS −0.41914 1.55E−07

T-cell follicular helper_CIBERSORT-ABS −0.27094 0.00098

Macrophage M1_CIBERSORT-ABS −0.32518 6.58E−05

Macrophage M2_CIBERSORT-ABS −0.22657 0.006137

Myeloid dendritic cell resting_CIBERSORT-ABS −0.28225 0.000583

Macrophage M1_QUANTISEQ −0.29362 0.000338

NK cell_QUANTISEQ 0.168425 0.042864

T-cell CD8+_QUANTISEQ −0.36219 7.59E−06

T-cell regulatory (Tregs)_QUANTISEQ −0.25115 0.002311

Uncharacterized cell_QUANTISEQ 0.218745 0.008209

T-cell_MCPCOUNTER −0.23548 0.004354

T-cell CD8+_MCPCOUNTER −0.2817 0.000598

Cytotoxicity score_MCPCOUNTER −0.40233 5.26E−07

NK cell_MCPCOUNTER −0.31932 9.05E−05

Monocyte_MCPCOUNTER −0.16454 0.04796

Macrophage/Monocyte_MCPCOUNTER −0.16454 0.04796

Myeloid dendritic cell_MCPCOUNTER −0.24475 0.003008

Myeloid dendritic cell activated_XCELL −0.23957 0.003705

B-cell_XCELL −0.20232 0.014669

T-cell CD4+ memory_XCELL −0.33775 3.26E−05

T-cell CD8+ naive_XCELL −0.30493 0.000192

T-cell CD8+_XCELL −0.30167 0.000227

T-cell CD8+ central memory_XCELL −0.38538 1.70E−06

T-cell CD8+ effector memory_XCELL −0.16542 0.046771

Common lymphoid progenitor_XCELL −0.22163 0.007383

Myeloid dendritic cell_XCELL −0.25166 0.002263

Macrophage_XCELL −0.17866 0.031555

Plasmacytoid dendritic cell_XCELL −0.31592 0.000108

T-cell CD4+ Th2_XCELL −0.35784 9.92E−06

Immune score_XCELL −0.2406 0.003556

T-cell CD4+_EPIC −0.19828 0.016814

T-cell CD8+_EPIC −0.2376 0.004007

NK cell_EPIC −0.1891 0.022729

Cor, correlation.
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Table S2 Potential target genes (top 100) of USP30-AS1 were 
identified by coexpression analysis 

Genes Cor P value

IL12RB1 0.859 1.16E−43

PDCD1 0.856 4.5E−43

LAG3 0.853 1.86E−42

CXCR6 0.837 1.67E−39

TBX21 0.829 3.61E−38

IRF1 0.824 2.03E−37

IL18BP 0.818 2.09E−36

SIRPG 0.81 3.9E−35

APOBEC3G 0.807 8.03E−35

SLA2 0.807 1.07E−34

ZBP1 0.805 2E−34

PTPN7 0.804 2.99E−34

APOL3 0.803 3.8E−34

CXCR3 0.802 5.27E−34

TBC1D10C 0.801 7.23E−34

PSMB9 0.798 1.53E−33

MYO1G 0.797 2.74E−33

ACAP1 0.796 3.69E−33

APOBEC3H 0.795 5.23E−33

GNLY 0.794 5.59E−33

ARHGAP9 0.79 1.94E−32

CD7 0.789 2.71E−32

CTLA4 0.789 2.87E−32

PSMB10 0.789 2.91E−32

CD3D 0.788 4.21E−32

PRF1 0.785 1.05E−31

RASAL3 0.783 1.61E−31

IL21R 0.782 2.65E−31

NKG7 0.781 2.97E−31

CIITA 0.781 3.05E−31

GZMA 0.781 3.28E−31

IL18RAP 0.778 7E−31

GZMB 0.777 8.46E−31

PSTPIP1 0.777 1.04E−30

SP140 0.776 1.2E−30

SIT1 0.776 1.22E−30

WAS 0.775 1.53E−30

GZMH 0.775 1.54E−30

IFNG 0.773 3.14E−30

UBASH3A 0.771 4.84E−30

VAV1 0.771 5.58E−30

CD2 0.771 5.79E−30

HLA-DMB 0.77 7.14E−30

GNGT2 0.768 1.18E−29

HCST 0.768 1.33E−29

CD247 0.765 2.54E−29

CD38 0.765 2.55E−29

C1QA 0.765 2.79E−29

GBP5 0.765 2.98E−29

FASLG 0.764 3.9E−29

Table S2 (continued)

Table S2 (continued)

Genes Cor P value

HLA-DMA 0.763 3.97E−29

NCF4 0.762 5.32E−29

CD27 0.758 1.59E−28

NLRC5 0.756 3.01E−28

IL2RG 0.755 3.27E−28

ZAP70 0.755 3.59E−28

ZNF683 0.755 3.88E−28

HSH2D 0.754 4.47E−28

CCL5 0.754 4.62E−28

GBP4 0.753 5.43E−28

SASH3 0.753 5.6E−28

GZMM 0.752 6.72E−28

STAC3 0.752 8.49E−28

ICOS 0.75 1.12E−27

SNX20 0.75 1.13E−27

C2 0.75 1.18E−27

CD3E 0.749 1.71E−27

NCF1 0.749 1.73E−27

HLA-DPB1 0.748 1.94E−27

FERMT3 0.748 2.24E−27

CD74 0.747 2.48E−27

CCL4 0.746 2.95E−27

C1QB 0.745 4.66E−27

MYO1F 0.744 5.31E−27

BATF2 0.744 5.81E−27

S1PR4 0.743 6.93E−27

LST1 0.743 7.75E−27

CYTIP 0.742 8.33E−27

TMEM150B 0.739 1.76E−26

CCR5 0.739 1.97E−26

SLAMF1 0.738 2.08E−26

CD72 0.738 2.2E−26

CYTH4 0.738 2.35E−26

XCL2 0.737 2.74E−26

DOK2 0.735 4.18E−26

FLT3LG 0.735 4.41E−26

CD8A 0.735 4.44E−26

FUT7 0.734 5.34E−26

CD48 0.733 6.94E−26

FAM78A 0.733 7.14E−26

CORO1A 0.733 7.42E−26

CRTAM 0.732 8.18E−26

LCK 0.73 1.3E−25

ZBED2 0.73 1.34E−25

TMC8 0.73 1.48E−25

CD37 0.729 1.8E−25

ITGAL 0.729 1.93E−25

HLA-DRB1 0.728 2.02E−25

ITGB7 0.728 2.22E−25

RAC2 0.728 2.23E−25

Cor, correlation.
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