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The prognostic biomarker TPGS2 is correlated with immune
infiltrates in pan-cancer: a bioinformatics analysis
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Background: Tubulin polyglutamylase complex subunit 2 (TPGS2) is an element of the neuronal
polyglutamylase complex that plays a role in the post-translational addition of glutamate residues to
C-terminal tubulin tails. Recent research has shown that TPGS2 is associated with some tumors, but the
roles of TPGS2 in tumor immunity remain unclear.

Methods: The research data were mainly sourced from The Cancer Genome Atlas. The data were analyzed
to identify potential correlations between TPGS2 expression and survival, gene alterations, the tumor
mutational burden (TMB), microsatellite instability (MSI), immune infiltration, and various immune-related
genes across various cancers. The Wilcoxon rank-sum test was used to identify the significance. A log-
rank test and univariate Cox regression analysis were performed to assess the survival state of the patients.
Spearman’s correlation coefficients were used to show the correlations.

Results: TPGS2 exhibited abnormal expression patterns in most types of cancers, and has promising
prognostic potential in adrenocortical carcinoma and liver hepatocellular carcinoma. Further, TPGS2
expression was significantly correlated with molecular and immune subtypes. Moreover, the single-cell
analyses showed that the expression of TPGS2 was associated with the cell cycle, metastasis, invasion,
inflammation, and DNA damage. In addition, the immune cell infiltration analysis and gene-set enrichment
analysis demonstrated that a variety of immune cells and immune processes were associated with TPGS2
expression in various cancers. Further, immune regulators, including immunoinhibitors, immunostimulators,
the major histocompatibility complex, chemokines, and chemokine receptors, were correlated with 7PGS2
expression in different cancer types. Finally, the TMB and MSI, which have been identified as powerful
predictors of immunotherapy, were shown to be correlated with the expression of TPGS2 across human
cancers.

Conclusions: TPGS?2 is aberrantly expressed in most cancer tissues and might be associated with immune
cell infiltration in the tumor microenvironment. 7PGS2 could serve not only as a biomarker for predicting
clinical outcomes, but also as a promising biomarker for evaluating and developing new approaches to

immunotherapy in many types of cancers, especially colon adenocarcinoma and stomach adenocarcinoma.
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Introduction

At present, cancer is a leading cause of disease morbidity
and mortality worldwide. Unfortunately, the number of
newly diagnosed cases continues to grow (1,2). Current
mainstream treatment modalities, including surgery,
chemotherapy, radiotherapy, targeted therapy, and
immunotherapy, still do not provide a satisfactory prognosis
for cancer patients (3). This pan-cancer study sought to
apply diagnostic and therapeutic applications in gastric
cancer to a broad range of tumors with characteristics of
similarity. The identification of common key genes between
different types of cancers can help in cancer diagnosis and
treatment (4,5).

The application of immunotherapy has opened up a new
era in tumor treatment, and it has achieved encouraging
results in the treatment of several tumors (including lung
cancer, melanoma, and liver cancer), greatly improving
the prognosis of patients (6,7). Many immune checkpoint
inhibitors (ICIs), such as programmed cell death protein
1 (PD-1), programmed cell death ligand 1 (PD-L1), and
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
inhibitors, have been established as routine treatments for
many types malignancies; however, their clinical efficacy
is limited (8,9). Given the complexities in the efficacy of
immunotherapy, it is of great significance to explore new
and more effective immune biomarkers.

The tumor microenvironment (TME) refers to
the pericellular environment including immune cells,
blood vessels, extracellular matrices, fibroblasts, mast
cells, and various signaling molecules around the tumor
(10,11). In recent years, the important role of the TME
in tumorigenesis and development has been recognized.

Highlight box

Key findings

® Tubulin polyglutamylase complex subunit 2 (TPGS2) is a
potential prognostic and immunotherapeutic biomarker in many
types of cancers, especially colon adenocarcinoma and stomach
adenocarcinoma.

What is known and what is new?
e TPGS2 has been found to be associated with some tumors.
e TPGS?2 plays a crucial role in tumor immunity.

What is the implication, and what should change now?
® TPGS2 is a promising tumor immune target, and more research on
TPGS2 and tumor immunity should be conducted.
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Tumor proliferation, infiltration, and metastasis depend
not only on the tumor cells but also on the regulation of
various cellular and signaling molecules in the TME (12). T
cells, which are crucial in the anti-tumor immune response,
have been relatively well studied among adaptive immune
cells (13,14). Conversely, the second adaptive immune cell
population (i.e., B cells) in the TME has not been well
characterized.

However, in the last 5 years, several studies have reported
an association between the presence of B cells in the TME
and improved clinical outcomes (15-20). B cells can resist
tumors by producing tumor-specific antibodies under certain
conditions, but specific B cell subsets and antibody specificity
can also suppress anti-tumor immunity and promote tumor
growth (21). Meanwhile, infiltrating B cells are an important
component of tertiary lymphoid structures (TLSs) in tumor
tissues (15). Many studies have shown that the number
and proportion of stromal cells and immune cells in tumor
tissues are closely related to clinical features and prognosis
(22-28). A thorough understanding of the TME is essential
for accurate evaluation and treatment. To improve prognosis,
more targeted molecules need to be identified for cancer
diagnosis and treatment and to assess patient prognosis.

Few relevant studies have been conducted on tubulin
polyglutamylase complex subunit 2 (7PGS2). We obtained
partial information on TPGS?2 from the Entrez Molecular
Sequence Database Entrez (https://www.ncbi.nlm.nih.gov/
search/), which showed that TPGS?2 encodes a protein that
is an element of the neuronal polyglutamylase complex,
which plays a role in the post-translational addition
of glutamate residues to C-terminal tubulin tails, and
alternatively spliced transcript variants encoding multiple
isoforms have been observed for this gene. TPGS2 also
appears to be associated with tumors and the TME (29,30).

In our preliminary analysis, we confirmed that 7PGS2
has a special role in cancer immunity. Based on this finding,
we then performed the pan-cancer analysis to explore
the expression, prognostic function, and immune role of
TPGS?2 in various cancers. We comprehensively analyzed
the relationship between TPGS2 expression and patient
prognosis in 33 types of cancer. Additionally, we further
evaluated the association between TPGS2 and tumor-
infiltrating immune cells. Our findings revealed that TPGS2
has a potential role in the development and progression of
cancers; thus, TPGS2 may serve as a potential prognostic
and immunotherapeutic biomarker. We present this
article in accordance with the REMARK reporting
checklist (available at https://tcr.amegroups.com/article/
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view/10.21037/tcr-23-113/rc).

Methods

The research data were downloaded from The Cancer
Genome Atlas (TCGA), Genotype-Tissue Expression
(GTEx), Cancer Cell Line Encyclopedia (CCLE), and
Human Protein Atlas (HPA). databases. Data were
downloaded for the following tumors: adrenocortical
carcinoma (ACC), bladder urothelial carcinoma (BLCA),
breast carcinoma (BRCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),
cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), lymphoid neoplasm diffuse large B-cell lymphoma
(DLBC), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), acute myeloid leukemia (LAML), brain
low-grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian serous
cystadenocarcinoma (OV), pancreatic adenocarcinoma
(PAAD), pheochromocytoma and paraganglioma (PCPG),
prostate adenocarcinoma (PRAD), rectum adenocarcinoma
(READ), sarcoma (SARC), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular germ
cell tumor (TGCT), thyroid carcinoma (THCA), thymoma
(THYM), uterine corpus endometrial carcinoma (UCEC),
uterine carcinosarcoma (UCS), and uveal melanoma (UM
or UVM). The study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013).

Data source and processing

The gene expression and clinical data of normal human tissues
and cancer tissues were downloaded from the GTEx database
and TCGA by UCSC Xena (https://xenabrowser.net/) (31).
For a multidimensional demonstration, the expression of
TPGS?2 was analyzed in various cancer cell lines with data from
the CCLE. The transcripts per million (I'PM) format and
the log,(TPM+1) format were used for the expression profiles
and subsequent analyses. Statistical significance was defined as
follows: P<0.05, P<0.01, and P<0.001.

IHC of TPGS2

The protein expression of the tumor tissues and normal
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tissues from the HPA (http://www.proteinatlas.org/)
database was applied to verify the protein expression levels
of TPGS2 (32). Data from the HPA database were also used
to confirm the intensity of TPGS2 in immunohistochemical
staining in six normal and cancer tissues, including LIHC,

LUSC, COAD, STAD, PRAD, and TGCT.

Genomic alterations analysis of TPGS2

The cBioPortal (http://www.cbioportal.org) is a
multipurpose cancer genomics database that can recognize
the molecular information of cancer tissues and comprehend
the associated genetics, epigenetics, gene expression, and
proteome information (33,34). The cBioPortal was used
to display the alteration frequency (including mutation,
structural variation, amplification, deep deletion, and
multiple alterations) across cancers, and the results were
visualized in bar plots. We also obtained a landscape map
of the gene mutation sites, a correlation diagram of the
copy number alterations (CNAs) and TPGS2 expression,
and Kaplan-Meier curves of the pan-cancer data using the
cBioPortal webtool.

Prognostic analysis

The UCSC Xena database was used to download the
related prognostic data, including overall survival (OS),
progression-free survival (PFS), and disease-specific survival
(DSS) data. Next, we plotted the Kaplan-Meier model and
univariate Cox regression results to assess the prognosis
of various cancers. The TPGS2 expression median of each
cancer was used to divide patients into high- and low-
expression subgroups. Next, the Kaplan-Meier method was
used to compute the log-rank P value and hazard ratio (HR)
with a 95% confidence interval (CI). The “survival” package
(3.2-10) was used for the statistical analysis of the survival
data, and the “survminer” package (0.4.9) was used for the
visualization.

Single-cell analysis of TPGS2

The Cancer Single-cell State Atlas (CancerSEA), a
specialized single-cell sequencing database, provides
various functional data on cancer cells at the single-cell
level (35). The average correlations between the TPGS2
expression and functional states in different cancers were
summarized and presented in a heatmap. The correlations
between TPGS2 expression and several tumor functions
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were investigated using single-cell sequencing data. The
TPGS?2 expression profiles of single cells are shown in
the t-distributed stochastic neighbor embedding (t-SNE)

diagrams.

Gene set envichment analysis (GSEA)

A GSEA was conducted using the “clusterProfiler” package
(3.14.3), and “ggplot2” (3.3.3) was used to graph the results
(36,37). The reference gene set was ¢5.bp.v7.2.symbols.gmt
(Gene Ontology), which was derived from the website of
the Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/index.jsp). It is generally accepted
that the threshold of significant enrichment is a false
discovery rate (FDR) <0.25 and a P adjusted value <0.05.

Immune cell infiltration analysis and TME

The immune cell infiltration analysis was largely
performed using the Tumor Immune Estimation Resource
(TIMER) (38). The TPGS2-associated immune cell
infiltration correlations were downloaded from the
TIMER 2.0 database (http://timer.cistrome.org/). Finally,
we visualized the statistical Spearman correlations
between TPGS2 messenger RNA (mRNA) expression and
20 immune cell subsets.

Correlation analysis of the TMB, MSI, and immune
regulators

A Spearman correlation analysis of immune regulators
and TPGS2 expression was performed to investigate the
correlation between TPGS?2 and the reported biomarkers
of cancer immunotherapy, including immunostimulators,
immunoinhibitors, the major histocompatibility complex
(MHC) genes, chemokines, and chemokine receptors,
for various cancer types. A Spearman correlation analysis
was also conducted to analyze the relationship between
the tumor mutational burden (TMB) (39), microsatellite
instability (MSI), and TPGS2 expression (40) across various
cancers.

Statistical analysis

The Wilcoxon rank-sum test was used to evaluate the
statistical significance of and compare the TPGS2 expression
levels between tumor and normal tissues. The survival
analysis was performed using the Kaplan-Meier method
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(log-rank test) and a univariate Cox regression analysis
was also conducted. A Spearman correlation analysis was
conducted to evaluate the correlations between TPGS2
and other factors, such as immune cell infiltration, the
TMB, and MSI. A P value <0.05 was considered statistically
significant.

Results
Expression of TPGS?2 in cancer tissues

First, we integrated the mRNA expression levels of
normal tissues in the GTEx database. The results showed
that TPGS2 was highly expressed in the normal tissues
of TGCT, BLCA, and OV, and most lowly expressed in
LIHC (Figure 14). According to the tumor cell data from
the CCLE, compared to the other tumor cells, TPGS2
was the most highly expressed in small cell lung cancer
and CESC, and the most lowly expressed in chronic
lymphocytic leukemia (Figure 1B). We then combined
the data from TCGA and GTEx databases to reflect the
expression levels of TPGS2 mRNA in various malignancies
(Figure 1C). The results showed that TPGS2 mRNA was
more highly expressed in 22 kinds of tumors (BRCA,
CESC, CHOL, COAD, DLBC, ESCA, GBM, HNSC,
LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG, READ,
SKCM, STAD, THCA, THYM, UCEC, and UCS) than
their respective normal tissues. Conversely, TPGS2 was
more lowly expressed in five tumors (ACC, KIRC, LAML,
PRAD, and TGCT) than their normal tissues. Further,
TPGS2 mRNA was significantly more highly expressed in
BLCA, CHOL, COAD, ESCA, HNSC, LIHC, LUSC,
STAD, and UCEC cancer tissues than matched normal
tissues, and more highly expressed in KICH and PRAD
tumor tissues (Figure 1D).

Moreover, we evaluated the protein expression of
TPGS2 between normal and tumor tissues using the HPA
database. As Figure 2 shows, compared to the weak staining
of TPGS2 in the normal liver, lung, colon, and stomach
tissues, stronger staining was observed in the LIHC, LUSC,
COAD, and STAD tissues (Figure 24-2D). Normal prostate
and testes tissues had medium TPGS2 staining, while their
tumor tissues had weaker staining (Figure 2E,2F). Thus,
the immunohistochemistry (IHC) results re-confirmed
our previous analyses. These results indicated that TPGS2
is aberrantly expressed across human cancers, and we
speculated that 7PGS2 may be able to inform the prognosis
and treatment of various cancers.
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Figure 1 TPGS2 mRNA expression levels in pan-cancer. (A) TPGS2 expression levels in normal tissues from the GTEx; (B) TPGS2
expression levels in tumor cells from the CCLE; (C) TPGS2 expression difference between tumor tissues from TCGA and normal tissues
from the GTEx; (D) TPGS2 expression difference between tumor tissues and matched normal tissues from TCGA. ns, no significance; *,
P<0.05; **, P<0.01; ***, P<0.001. TPGS2, tubulin polyglutamylase complex subunit 2; TPM, transcripts per million; mRNA, messenger
RNA; GTEx, Genotype-Tissue Expression; CCLE, Cancer Cell Line Encyclopedia; TCGA, The Cancer Genome Atlas.

Association with molecular and immune subtypes show, TPGS2 expression was significantly associated with
the molecular stages of many cancers, such as BRCA,
COAD, HNSC, LGG, LUSC, and PCPG. To explore
the relationship between 7PGS2 and cancer immunity, we

analyzed the correlation between the immune subtypes and
system interaction database (TISDB). As Figure 3A-3F TPGS?2 expression, and found that the expression of TPGS2

To explore the associations between TPGS2 expression and
molecular and immune subtypes across human cancers,

we performed a further analysis by the tumor-immune
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Figure 2 THC results for various normal and tumor tissues from the HPA. The staining of the TPGS2 protein in (A) liver and LIHC tissues
(https://www.proteinatlas.org/ENSG00000134779-TPGS2/pathology/liver+cancer); (B) lung and LUSC tissues (https://www.proteinatlas.
org/ENSG00000134779-TPGS2/pathology/lung+cancer); (C) colon and COAD tissues (https://www.proteinatlas.org/ENSG00000134779-
TPGS2/pathology/colorectal+cancer); (D) stomach and STAD tissues (https://www.proteinatlas.org/ENSG00000134779-TPGS2/
pathology/stomach+cancer); (E) prostate and PRAD tissues (https://www.proteinatlas.org/ENSG00000134779-TPGS2/pathology/
prostate+cancer); and (F) testis and TGCT tissues (https://www.proteinatlas.org/ENSG00000134779-TPGS2/pathology/testis+cancer).
All images have a magnification of x80. LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma; COAD, colon
adenocarcinoma; STAD, stomach adenocarcinoma; PRAD, prostate adenocarcinoma; TGCT, testicular germ cell tumor; IHC,

immunohistochemistry; HPA, Human Protein Atlas; TPGS2, tubulin polyglutamylase complex subunit 2.

was significantly related to immune subtypes in many
cancers, including BRCA, KIRC, LIHC, STAD, OV, and
SARC (Figure 3G-3L). These results indicated that TPGS2
has potential prediction and treatment functions in pan-
cancer.

Genetic alteration of TPGS2

Given the abnormal expression of TPGS2 observed in
cancer, we sought to examine whether genetic alterations
in TPGS?2 caused this change. Therefore, we conducted a
genetic alteration analysis of TPGS2 using the cBioPortal
database with data from T'CGA, and PanCancer Atlas. As
Figure 44 shows, PAAD had the highest alteration rate (6%)

© Translational Cancer Research. All rights reserved.

with “amplification” and “deep deletion” as the primary
types. Conversely, the “deep deletion” type of the CNAs
was the primary altered type in the ESAD cases, which
had an alteration frequency of ~4%. Notably, the main
genetic alteration in UCEC and SKCM was “mutation”
(Figure 44). As Figure 4B shows, after examining putative
CNAs from the significant targets in cancer (GISTIC)
module, the CNAs were closely related to the mRNA
expression of TPGS2.

Clinical prognostic significance of TPGS2

To examine the prognostic role of TPGS2 across human
cancers, prognostic indicators in 33 cancers were
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Figure 3 Distribution of TPGS2 expression across the molecular subtypes of BRCA (A), COAD (B), HNSC (C), LGG (D), LUSC (E), and
PCPG (F); associations between TPGS2 expression and the main immune subtypes of BRCA (G), KIRC (H), LIHC (I), STAD (J), OV (K),
and SARC (L). CPM, counts per million reads; TPGS2, tubulin polyglutamylase complex subunit 2; BRCA, breast carcinoma; COAD, colon
adenocarcinoma; HNSC, head and neck squamous cell carcinoma; LGG, low-grade glioma; LUSC, lung squamous cell carcinoma; PCPG,
pheochromocytoma and paraganglioma; KIRC, kidney renal clear cell carcinoma; LIHC, liver hepatocellular carcinoma; STAD, stomach
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Figure 4 Relationship between TPGS?2 expression and gene alterations. (A) The genetic alteration types and frequency of TPGS2 in various

cancers; (B) the association between CNA and the RNA expression of TPGS2. 1, structural variants are shown instead of CNA when a

sample has both. TPGS2, tubulin polyglutamylase complex subunit 2; CNA, copy number alterations; TCGA, The Cancer Genome Atlas;

VUS, variants of uncertain significance.

was a risk factor for the poor prognosis of ACC, BLCA,

LGG, LIHC, MESO, SARC, STAD, and UCS, while it was

investigated using the Kaplan-Meier method and a

univariate Cox regression analysis. The results showed that

a protective factor for OV and THYM. The results of the

Kaplan-Meier OS analysis, which were basically consistent

TPGS?2 was highly correlated with the prognosis of most

cancers. As Figure 54 shows, the univariate Cox regression

with the results of the univariate Cox regression analysis,

analysis of OS suggested that the high expression of TPGS2
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Figure 5 Relationship between TPGS?2 expression and OS. (A) Forest map showing the univariate Cox regression analysis results for TPGS2

in pan-cancer samples from TCGA. (B-J) Kaplan-Meier curves for nine significant cancers. HR, hazard ratio; CI, confidence interval; ACC,

adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; LGG, low-grade glioma; LIHC, liver hepatocellular carcinoma; MESO,

mesothelioma; OV, ovarian serous cystadenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; THYM, thymoma; TPGS?2,

tubulin polyglutamylase complex subunit 2; OS, overall survival; TCGA, The Cancer Genome Atlas.

showed that the high expression of TPGS2 was significantly
correlated with a poor prognosis in SARC, MESO, LIHC,
LGG, BLCA, and ACC, but was significantly correlated
with a better prognosis in OV and THYM (Figure 5B-57).
The results of the Cox regression analysis of PFS revealed
that TPGS2 was a risk factor in ACC, HNSC, MESO,
and UCS (Figure 64). The results of the Kaplan-Meier
analysis showed that patients with high TPGS2 expression
had poorer PFS than those with low TPGS2 expression in
ACC, CHOL, HNSC, LIHC, SARC, and UCS, but had
better PFS in PCPG, LUCA (Figure 6B-61). Additionally,
the results of the Cox regression analysis of DSS revealed
that TPGS2 acts as a risk factor for ACC, LGG, LIHC,

© Translational Cancer Research. All rights reserved.

MESO, PAAD, and SARC, but acts as a protective factor
for OV (Figure 7A). Further, the results of the Kaplan-
Meier analysis of DSS showed that a high expression of
TPGS2 was associated with a worse prognosis in ACC,
LGG, LIHC, MESO, PAAD, and SARC (Figure 7B-7H).
Overall, TPGS2 expression was significantly associated with
prognostic parameters in many cancers.

TPGS?2 expression patterns in single-cell analyses and
related-functional status

Due to the complexity of tumor cells, the new technique
of single-cell transcriptome sequencing is increasingly

Transl Cancer Res 2024;13(3):1458-1478 | https://dx.doi.org/10.21037/tcr-23-113
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Figure 6 Relationship between TPGS?2 expression and PFI. (A) Forest map showing the univariate Cox regression analysis results for TPGS2

in pan-cancer samples from TCGA. (B-I) Kaplan-Meier curves for eight significant cancers. HR, hazard ratio; CI, confidence interval; PFI,

progress free interval; TPGS2, tubulin polyglutamylase complex subunit 2; ACC, adrenocortical carcinoma; CHOL, cholangiocarcinoma;

HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; PCPG, pheochromocytoma and paraganglioma;

SARC, sarcoma; UCS, uterine carcinosarcoma; LUCA, lung carcinoma; TCGA, The Cancer Genome Atlas.

being used to analyze a variety of cancer cells, immune
cells, endothelial cells, and stromal cells. To explore
the expression of TPGS2 in single-cell analyses in pan-
cancer and its relationship with tumor functional status,
we obtained tumor single-cell data on TPGS?2 from the
CancerSEA.

As Figure 84 shows, we found that many types of cancers,
including UM, non-small cell lung cancer (NSCLC), and
high-grade glioma (HGG), were associated with most
tumor functional states. We also analyzed expression
distribution with t-SNE plots, and the correlation between
TPGS?2 expression and functional states in different cancers
based on the CancerSEA database, and found that TPGS2
expression in UM was significantly associated with DNA

© Translational Cancer Research. All rights reserved.

repair, DNA damage, apoptosis, metastasis, invasion, and
quiescence (Figure §B); acute myelocytic leukemia (AML)
was closely associated with invasion and differentiation
(Figure 8C); retinoblastoma (RB) was correlated with
differentiation and angiogenesis (Figure §D); chronic
myeloid leukemia (CML) was closely associated with
proliferation (Figure 8E); and NSCLC was associated with
epithelial-to-mesenchymal transition (Figure 8F). The
t-SNE plots showed the expression distribution of TPGS2
in UM, AML, RB, CML and NSCLC cells (Figure §G-
8K). In the plots, every point represents a single cell, and
the color of the point represents the expression level of
TPGS?2 in the cell. The results suggest TPGS2 might play

an important role in some functional states, and most of the
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Figure 7 Relationship between TPGS2 expression levels and DSS. (A) Forest map showing the univariate Cox regression analysis results

for TPGS2 in pan-cancer samples from TCGA. (B-H) Kaplan-Meier curves for seven significant cancers. HR, hazard ratio; CI, confidence

interval; DSS, disease-specific survival; TPGS2, tubulin polyglutamylase complex subunit 2; ACC, adrenocortical carcinoma; LGG, low-

grade glioma; LTHC, liver hepatocellular carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; SARC, sarcoma; TCGA, The Cancer Genome Atlast.

functional states have been linked to the occurrence and
progression of cancers.

GSEA

To explore the biological processes related to TPGS2
expression across human cancers, we performed a
differential expression analysis between the top 50% TPGS2
expression subgroup and the bottom TPGS2 expression
subgroup for each type of cancer. We conducted a GSEA to
evaluate the biological processes of 33 types of cancers from
TCGA. The results showed that TPGS?2 is likely involved
in a great deal of immune regulation-related biological
processes, especially immunoglobulin (Ig) production, the

© Translational Cancer Research. All rights reserved.

humoral immune response mediated by circulating Ig, B
cell-mediated immunity, the regulation of the humoral
immune response, and the B cell receptor signaling pathway
(Figure 9A4-9F). This provides evidence that 7PGS2 may
be involved in the immune response and cancers, which
prompted us to explore the role of TPGS2 in the cancer-
immune process and immune microenvironment.

Immune cell infiltration analysis

To further explore the role of 7PGS2 in tumor immunity,
we explored the correlations between TPGS2 expression
and immune cell infiltration levels across cancers. TIMER
2.0 was used to generate a heatmap associated with a variety
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Figure 8 The expression levels of TPGS2 based on the single-cell analysis. (A) Average correlations between the expression levels of TPGS2

and functional states in various cancers; (B-F) the relationship between TPGS2 expression and various functional states in UM, AML, RB,
CML, and NSCLC were explored by the CancerSEA; (G-K) the expression distribution of TPGS2 in cells of UM, AML, RB, CML and
NSCLC are displayed in a t-SNE diagram. *, P<0.05; **, P<0.01; ***, P<0.001. ALL, acute lymphoblastic leukemia; AML, acute myeloid

leukemia; CML, chronic myelogenous leukemia; CRC, colorectal cancer; BRCA, breast carcinoma; AST, astrocytoma; GBM, glioblastoma;

HGG, high-grade glioma; ODG, oligodendroglioma; HNSCC, head and neck squamous cell carcinoma; RCC, renal cell carcinoma;

LUAD, lung adenocarcinoma; NSCLC, non-small cell lung cancer; OV, ovarian carcinoma; MEL, melanoma; RB, retinoblastoma; UM,

uveal melanoma; EMT, epithelial-to-mesenchymal transition; t-SNE, t-distributed stochastic neighbor embedding; TPGS2, tubulin

polyglutamylase complex subunit 2.

of immune cell infiltration, which was performed on a
variety of quantitative immuno-infiltration platforms. The
results were then categorized based on different immune
score categories (Figures S1-S6). These analyses showed
the infiltration levels of cluster of differentiation (CD)8"
T cells, CD4" T cells, T regulatory cells (Tregs), B cells,
neutrophils, macrophages, progenitors, dendritic cells
(DCs), mast cells, cancer-associated fibroblasts (CAFs),
endothelial cell (endos), natural killer (NK) cells, T cell
follicular helper (Tth) cells, T cell gamma delta (y6T)
cells, NK T cells, monocytes, myeloid-derived suppressor
cells (MDSCs), and eosinophils (Eos). As Figure 10
shows, TPGS2 was positively related to the level of many
cells, such as macrophages, CD4" T cells, CD8" T cells, B
cells, neutrophils, and CAFs. We also found that TPGS2

© Translational Cancer Research. All rights reserved.

had a higher correlation with immune cell infiltration in
THYM and HNSC than other tumors, especially in CD4"
T cells, CD8" T cells, macrophages, and B cells. However,
their trend of correlation was slightly different, which might
be related to the immune specificity of these cancers.

Co-expression of TPGS2 with immune-associated genes

To further explore the role of TPGS2 in cancer immunity,
we performed a Spearman correlation analysis to reveal the
correlation between TPGS?2 expression and immune-related
genes (Figure 11A-11E). The heatmaps illustrated that
the gene encoding immunoinhibitor, immunostimulator,
MHC, chemokine, and chemokine receptor proteins were
significantly correlated with the expression of TPGS2 in
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Figure 9 GSEA of TPGS2 in various cancers. (A-F) Top biological processes of the GSEA in indicated tumor types. GO, Gene Ontology;
PAAD, pancreatic adenocarcinoma; LIHC, liver hepatocellular carcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma;
SKCM, skin cutaneous melanoma; THCA, thyroid carcinoma; GSEA, gene-set enrichment analysis; TPGS2, tubulin polyglutamylase

complex subunit 2.
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Figure 11 Co-expression between TPGS2 and immune-associated genes. Co-expression between TPGS2 and gene encoding chemokines
(A), MHCs (B), immunoinhibitors (C), chemokine receptors (D), and immunostimulators (E). *, P<0.05; **, P<0.01. TPGS2, tubulin
polyglutamylase complex subunit 2; MHC, major histocompatibility complex.
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most cancers. The correlation analyses revealed strong
connections between TPGS?2 and specific cancer types, such
as HNSC, LIHC, PAAD, PRAD, SARC, THYM, and UM.
Additionally, TPGS2 was positively correlated with most of
the immunomodulatory factors in COAD, HNSC, KIRP,
LIHC, PAAD, PRAD, READ, and UVM, but negatively
correlated with ESCA and SARC.

TMB and MSI analysis

The TMB and MSI are two well-known biomarkers
that predict immune therapy responses across different
cancers (41,42). Most scholars believe that patients
with a high TMB and MSI have increased response
rates to immunotherapy and display better outcomes to
immunotherapy treatments. Therefore, we assessed the
correlation with TMB and MSI to evaluate the efficacy of
TPGS?2 in predicting ICIs therapy outcomes in pan-cancer.
As Figure 12 shows, TPGS2 expression was positively
correlated with the TMB in BRCA, BLCA, ACC, SKCM,
STAD, and COAD, and TPGS?2 expression was negatively
correlated with the TMB in ESCA, KIRC, THCA, and
THYM (Figure 12A4). Additionally, TPGS2 expression
was positively correlated with MSI in BRCA, COAD, and
STAD, and TPGS2 expression was negatively correlated
with MSI in DLBC and PCPG (Figure 12B). Thus, our
analyses indicate that TPGS2 could have a potential role in
predicting the effectiveness of ICIs in a number of cancers.

© Translational Cancer Research. All rights reserved.

Discussion

Currently, many immune checkpoint molecules have been
applied to pharmacotherapy, such as CTLA-4, PD-1,
PD-L1, T cell immunoreceptors with Ig and
immunoreceptor tyrosine-based inhibitory motif domains
(TIGIT), and lymphocyte activating 3 (43-47). CTLA-4
and PD-L1/PD-1 have received the greatest attention; thus,
anti-PD-1/PD-L1 and anti-CTLA-4 techniques have been
applied to the immunotherapy of a number of cancers (46).
However, at present, the most serious challenges for such
treatments are related to their inapparent efficacy and
side effects (48). As a result, there is a pressing need to
investigate novel immunological checkpoints and methods
to estimate the effects of cancer immunotherapy (48,49).
Our results showed that TPGS2 is a promising biomarker
of cancer, which provides a vital clue for further research
on the potential role of TPGS2 in prognosis and tumor
immunity.

The analysis of TPGS2 expression based on the GTEx
and TCGA databases revealed that TPGS2 was abnormally
upregulated in 22 cancers and downregulated in five
cancers (Figure 14). Moreover, the expression of TPGS2
was notably downregulated in TGCT tissue compared
with normal testicular tissue. Data about RNA was used to
cluster genes based on their expression in single-cell types.
Based on the single-cell type expression cluster from HPA,
we found that TPGS2 was mainly expressed in spermatids.
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javascript:;
javascript:;

1474

Thus, we speculate that the specific expression in normal
testicular tissue is connected with the lower expression
of TPGS2 in TGCT. However, it is not yet known why
TPGS?2 is unevenly expressed across cancers.

Next, the IHC results from the HPA were consistent
with our preliminary conclusions (Figure 2). According to
the analysis of the association between TPGS2 and various
subtypes, TPGS2 may be associated with molecular and
immune subtypes across human cancers (Figure 3). This
suggests that TPGS2 can be used to differentiate among
molecular and immune types of tumors. Since most genetic
alteration proportions of TPGS2 in cancers are less than
5%, there appears to be no significant correlation between
TPGS?2 expression and genomic alterations (Figure 4A).

In addition, we evaluated the clinical prognosis of
patients who were grouped according to TPGS2 expression
levels. There were differences among the various survival
measures (i.e., OS, PFI, and DSS); however, the expression
of TPGS?2 was still significantly associated with survival
(Figures 5-7). According to the Kaplan-Meier and univariate
Cox regression analyses, the upregulated expression of
TPGS2 was associated with a poor prognosis in patients
with SARC, LIHC, and LGG, while the high expression
of TPGS2 was associated with a better OS prognosis in
patients with OV and THYM. Thus, TPGS2 is likely to
be an important biomarker for predicting the prognosis of
cancer patients.

The single-cell analysis showed that TPGS2 expression
was associated with a number of functional states, including
the cell cycle, metastasis, invasion, inflaimmation, DNA
damage, and stemness, in various cancers (Figure §). These
results suggest that TPGS?2 is associated with multiple
cancer functional states in many human cancers.

According to the GSEA, TPGS?2 was closely related to
some immune response processes, such as Ig production,
B cell-mediated immunity, the humoral immune response
mediated by circulating Ig, the regulation of the humoral
immune response, and the B cell receptor signaling pathway
(Figure 9). Therefore, it is very likely that TPGS2 is
involved in the functions related to B cells.

Recently, the importance of B cells has been found in
tumor immunity. Since 2020, three research teams from the
United States, France, and Sweden have analyzed a large
sample of clinical cohort studies, and reported a positive
correlation between B-cell infiltration and the formation
of TLSs and the response to immunotherapy in a variety
of cancer types (50-52). B cells also express a number of
checkpoint molecules, including PD-1, PD-L1/2, and

© Translational Cancer Research. All rights reserved.
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CTLA-4B (15). Patients who responded to ICIs therapy
were reported that more memory B cells, C-X-C motif
chemokine receptor 3+ cells, and germinal center-like B
cells were found in their TMEs than patients who did not
response to ICIs therapy (52).

In addition, studies (21,53) have shown that the Igs in
many antibody-secreting B cells, which mainly secrete IgG
and IgA, are tumor-dependent. These Igs are correlated
with the tumorigenesis site, and higher proportions of
IgG have been observed in thyroid, testicular, and skin
tumors, while higher proportions of IgA been observed in
kidney, ovarian, pancreatic, and colorectal cancers. This is
consistent with our GSEA finding that a higher number of
Ig-related biological states were enriched.

Another important finding of our research is that
TPGS?2 plays a pivotal role in cancer immunity. In recent
years, many studies have shown that the immune status
of cancers is closely correlated to the cell composition
of and infiltration concentration around the tumor
(54-56). TPGS?2 was found to be positively correlated with
the infiltrating levels of multiple immune cells, such as
macrophages, CD4" T cells, CD8" T cells, B cells, and
neutrophils (Figure 10), which suggests that TPGS2 is likely
to influence development and prognosis of various cancers
by affecting the TME.

Pro-inflammatory mediators, including chemokines,
cytokines, and prostaglandins, have been found in the
TME, which affects tumor initiation, progression, and
metastasis (57-59). Our analyses of TPGS2 expression
and pan-cancer immunomodulatory factors suggested
that TPGS2 is co-expressed with genes that encode the
immunoinhibitor, immunostimulator, MHC, chemokine,
and chemokine receptor proteins, especially in THYM and
HNSC (Figure 11). These results suggest that TPGS?2 is
likely to be involved in the progression and prognosis of
cancers by interacting with the TME.

Further, the TMB is a promising prognostic and
predictive biomarker for immunotherapy in human cancers
(60-63). Research has demonstrated that patients, suffering
from melanoma (64,65) or urothelial carcinoma (66,67)
with a high TMB achieve better clinical outcomes from
ICIs. Similarly, MSI also plays a vital role as a predictive
biomarker for tumor immunotherapy (68). The Food and
Drug Administration has authorized MSI-high status or
deficient mismatch repair as prognostic biomarkers for
directing the therapeutic application of ICIs in certain
malignancies (69). According to our analyses, the TMB in
10 types of cancers and MSI in five types of cancers were
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significantly correlated with the expression of TPGS2.
Thus, TPGS?2 is likely to act as a predictor of the efficacy of
immunotherapy in many cancers.

Wang’s study demonstrated that the ci-TPGS2 (derived
from TPGS2)-related axis promoted breast cancer cell
motility by the TME (30). Another study demonstrated
that TPGS2 could be a potential gene in renal cell
carcinoma (29). Together with our findings, such results
suggest that TPGS2 could serve as a potential biomarker in
anti-tumor immunity treatments.

However, our research had a number of limitations.
First, while we showed that TPGS2 is a promising predictor
of prognosis and immunotherapy in many cancers, the
mechanism by which this occurs remains unknown, and we
have no evidence of any direct interaction. Second, our data
were mainly obtained from open databases, and no clinical
cohort was used for verification, which inevitably led to
various biases and decreased the credibility of the results.
Third, TPGS2 has rarely been studied in human tumors,
and in-depth studies need to be conducted to verify its role
in cancer prognosis prediction and immunotherapy. Fourth,
our research revealed a promising direction for tumor
research in TPGS2; however, this study was a descriptive
study based on bioinformatics, and the mechanism related
to both 7PGS?2 and the development and therapy of specific
tumors need to be further explored, and experimental
verification in vitro and in vivo is required. In the future,
we intend to conduct further experiments to examine the
mechanism of 7PGS?2 across human cancers.

Conclusions

In summary, we performed a comprehensive pan-cancer
analysis that demonstrated that the aberrant expression
of TPGS2 was associated with the prognosis, immune cell
infiltration, TME, some immune response processes, and
various function states across human cancers. Thus, TPGS2
could serve not only as a biomarker for predicting clinical
outcomes, but also as a promising biomarker for evaluating
and developing new approaches to immunotherapy in many

types of cancers, especially COAD and STAD.
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