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Background: Chromatin regulators (CRs) are implicated in the development of cancer, but a 
comprehensive investigation of their role in colon adenocarcinoma (COAD) is inadequate. The purpose 
of this study is to find CRs that can provide recommendations for clinical diagnosis and treatment, and to 
explore the reasons why they serve as critical CRs.
Methods: We obtained data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
databases. Weighted Gene Co-Expression Network Analysis (WGCNA) screened tumor-associated CRs. 
LASSO-Cox regression was used to construct the model and to screen key CRs together with support vector 
machine (SVM), the univariate Cox regression. We used single-cell data to explore the expression of CRs in cells 
and their communication. Immune infiltration, immune checkpoints, mutation, methylation, and drug sensitivity 
analyses were performed. Gene expression was verified by quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR). Pan-cancer analysis was used to explore the importance of hub CRs.
Results: We finally obtained 32 tumor-associated CRs. The prognostic model was constructed based on 
RCOR2, PPARGC1A, PKM, RAC3, PHF19, MYBBP1A, ORC1, and EYA2 by the LASSO-Cox regression. 
Single-cell data revealed that the model was immune-related. Combined with immune infiltration analysis, 
immune checkpoint analysis, and tumor immune dysfunction and exclusion (TIDE) analysis, the low-
score risk group had more immune cell infiltration and better immune response. Mutation and methylation 
analysis showed that multiple CRs may be mutated and methylated in colon cancer. Drug sensitivity analysis 
revealed that the low-risk group may be more sensitive to several drugs and PKM was associated with 
multiple drugs. Combined with machine learning, PKM is perhaps the most critical gene in CRs. Pan-cancer 
analysis showed that PKM plays a role in the prognosis of cancers.
Conclusions: We developed a prognostic model for COAD based on CRs. Increased expression of the 
core gene PKM is linked with a poor prognosis in several malignancies.
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Introduction 

Colon cancer is an adenocarcinoma that is caused by several 
lifestyle, nutritional, and hereditary factors (1). Colon 
adenocarcinoma (COAD) is the second leading reason 
for cancer-associated death, and its mortality rate among 
young people is progressively rising (2). Treatment options 
for colon cancer include total or partial colectomy and 
resection of the colon by endoscopic surgery, followed by 
radiotherapy or chemotherapy (3). In recent years, attempts 
have been made to apply the immune system to assess 
prognosis and treat patients with colon cancer, showing 
that the immunity system may be the way to overcome 
tumors (4-6). Due to the heterogeneity of the tumor 
microenvironment, researchers are studying colon cancer 
tumor microenvironment and immunotherapy targets 
through multi-omics to provide new options and directions 
for colon cancer treatment (7,8).

Clinical predictive modeling is intended for use in 
healthcare settings, where healthcare practitioners can 
use a patient’s clinical data to calculate the absolute risk 
of an event occurring. Clinicians can then use the risk 
information to guide care, and cancer patients can use 
their individualized risk to guide self-management (9). 
Then, although many clinical prediction models are 
currently developed, it is difficult for clinicians to choose 
a model that can be applied to their clinical work. This 
may be due to the poor usability and reproducibility of 
current clinical prediction models, the risk of bias in a 
small number of models, and the quality of reporting of 
prediction models that limits clinicians’ choices (10,11). 
More and more clinical prediction models are emerging, 

however, harmonized standards still do not seem to exist. 
Nonetheless, we still need clinical predictive modeling to 
provide options for clinical work, as it may serve as a basis 
for clinicians to diagnose and treat.

Chromatin regulators (CRs) are crucial upstream 
regulators for epigenetics and a way of elucidating primary 
cancer management. CRs may be divided into the following 
three classifications: DNA methylators, histone modifiers, 
and chromatin remodelers (12-14). CRs may be involved 
in colon carcinogenesis, metastasis, and drug resistance. 
Radhika Mathur et al. found that ARID1A, belonging to 
CRs, acts as a tumor inhibitor in the mouse colon and that 
invasive ARID1A-deficient adenocarcinoma resembles 
human colorectal cancer (15). Depletion of BMI1, a 
member of CRs, can reduce proliferation and result in 
apoptosis of epithelial and leukemic cell lines, and in murine 
colorectal cancer xenograft models (16-19). Epigenetic 
regulation is one of the key mechanisms of immune 
checkpoint expression in the tumor microenvironment (20). 
Li et al. identified DNASE1L3, an enzyme that regulates 
autoimmune responses to its own DNA and chromatin, as 
a potential neoregulator of antitumor immunity and a tumor 
suppressor in colon cancer (21). MTA1 affects downstream 
gene expression by participating in chromatin remodeling. 
Zhou et al. demonstrated that the regulation of tumor-
associated macrophages (TAM) by MTA1 could affect the 
anti-tumor effects of cytotoxic T-lymphocytes (CTL) in the 
tumor microenvironment of colorectal cancer (22). CRs have 
been shown to provide recommendations for the diagnosis 
as well as the treatment of many diseases. Currently, 
researchers have found that immune-related CRs have 
an important role in idiopathic pulmonary fibrosis (IPF). 
Moreover, researchers have found that clinical prediction 
models constructed on the basis of immune-related CRs 
have excellent diagnostic performance and provide an 
important basis for the diagnosis, treatment and prognosis 
assessment of IPF patients (23). However, in colon cancer, 
research on CRs is still ongoing. 

Now, researchers have identified functional aberrations 
in individual CRs in multiple cancer types. In addition, 
many CRs have been found to have dysregulated gene 
expression in different types of cancer (24). For instance, 
it has been found that up-regulated expression of EZH2, a 
lysine methyltransferase, promotes tumor cell proliferation 
by increasing promoter occupancy of H3K27 trimethylation 
in various cancers (25-27). Further, patients with 
mutations in DNMT3A, a DNA methyltransferase, have 
a poorer prognosis compared to patients without DNA 
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methyltransferase mutations (28). However, the effect of 
multiple CRs synergizing on cancer remains unclear.

Because of the role of CRs in colon cancer being unclear, 
this paper provides a comprehensive analysis to identify 
the function of CRs in colon malignancy. We constructed 
a clinical prediction model from The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO) 
data and analyzed the correlation of the model with the 
tumor microenvironment, immune infiltration, immune 
checkpoints, mutations, methylation, and therapy. This 
research aims to provide a prognostic model for clinical 
diagnosis and cancer treatment, as well as to screen 
key genes that can be used as drug targets. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1886/rc).

Methods

Data gathering and collation

The TCGA COAD (https://portal.gdc.cancer.gov/) group’s 
clinical features and mRNA expression were gathered from 
the UCSC database (https://xenobrowser.net/datapages/). 
Furthermore, the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) was queried for clinical information and mRNA 
expression linked with the GSE39582 (29) and GSE17537 
(30,31) patient datasets. The same filtering process was 
performed for the TCGA and GEO cohorts, removing 
missing values and values that could not be evaluated. 
Finally, the TCGA cohort contained 375 tumor samples 
and 32 normal samples, the GSE39582 cohort collected 419 
tumor samples, and the GSE17537 cohort had 55 tumor 
samples. Data from GSE132465 were used for single-cell 
analysis (32). There were 870 CRs obtained from a previous 
study by Lu et al. (24). 

Gene enrichment and function analysis

Based on CRs, the “clusterProfiler” R package was employed 
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses (33). The false discovery 
rate (FDR) threshold was set at FDR <0.05. GO functional 
analysis consists of three segments: biological processes, 
molecular functions, and cellular components.

KEGG analysis revealed pathways in which CRs may be 
involved.

Differentially expressed genes (DEGs) analysis

We quantified the genes utilizing the compute counts per 
million (CPM) function in the edgeR R program, then 
filtered the low-expressed genes. R package “limma” was 
employed to select DEGs (34). We set tumor samples 
with normal samples for analysis. The astringent filter of 
|logFC| >1 and a set P value <0.05 was applied to identify 
reliable DEGs.

Weighted Gene Co-Expression Network Analysis 
(WGCNA)

There were 3,309 DEGs included for WGCNA analysis (35) 
(R package “WGCNA”) (available online: https://cdn.
amegroups.cn/static/public/tcr-23-1886-1.docx). We 
screened for genes in the top 75% of median absolute 
deviation (MAD) with at least MAD >0.01. An investigation 
of hierarchical clustering eliminated outliers from the 
research. The best power cutoff for the soft threshold was 
set at R2 =0.88 and mean connectivity =0. Based on the 
ideal values, weighted gene co-expression networks were 
formed, and all gene expressions and co-expression modules 
were recognized and grouped based on their similarity. 
The lowest number of genes in every module was adjusted 
to 30, and the module-merging cutoff was set at 0.25. The 
degree of association between genes was computed utilizing 
metric of topological overlap measure (TOM) (36). We 
calculated correlations between each module and clinical 
information and correlations between gene salience and 
gene connectivity within modules to identify vital clinical 
modules for subsequent analysis. Genes in the key modules 
were intersected with CRs to obtain key CRs that were 
clinically relevant and belong to DEGs.

Prognostic model construction based on the key CRs

For model  creation,  the least  absolute shrinkage 
and selection operator (LASSO) Cox regression was 
employed (37) (R package “glmnet”). In brief, LASSO 
Cox regression constructed a regression model by cross-
validating and selecting the best λ value while extracting 
the regression coefficients by TCGA data. The risk score 
calculation equation is: gene expression1*genecoef 1 + gene 
expression2*genecoef 2 +…+ gene expression N*genecoef 
N. The genecoef used for the risk score of the validation 
set GSE39582 was consistent with the TCGA data. Then, 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1886/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1886/rc
https://portal.gdc.cancer.gov/
https://xenobrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cdn.amegroups.cn/static/public/tcr-23-1886-1.docx
https://cdn.amegroups.cn/static/public/tcr-23-1886-1.docx
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univariate and multivariate Cox regression analyses were 
employed to assess the prognostic significance of COAD’s 
independent risk variables. We used a multivariate Cox-
based Nomogram model to forecast the risk and prognosis 
of COAD. 

Hub gene screening

Using univariate Cox regression (R package “survival”) 
and support vector machine-recursive feature elimination 
(SVM-RFE) (R package “e1071”), the core genes in CRs 
were further screened (38). Univariate Cox regression 
was analyzed for genes associated with patient prognosis. 
SVM-RFE was better than linear discriminant analysis and 
the approach of mean squared error for selecting relevant 
features and removing superfluous variables. Employing 
ten-fold cross-validation, SVM-RFE was performed to pick 
characteristics.

Single-cell analysis

We calculated the scores of model genes in the single-cell 
dataset by the AddModuleScore function and showed them 
by violin and tsne plots (R package “Seurat”). Based on this 
score, we looked at the distribution of the model gene set in 
the tumor microenvironment, and we hoped to find the cells 
in which it functioned. Subsequently, we divided the cells 
into a high-scoring group and a low-scoring group based 
on the scores and observe the communication between 
the two groups of cells in the tumor microenvironment. 
Cellular communication in the tumor microenvironment 
was evaluated by CellChat (R package “CellChat”) (39). 
CellChat is a tool that predicts the primary outputs and 
inputs of cellular signaling, as well as how cells and signals 
coordinate their tasks, utilizing network analysis and pattern 
recognition techniques.

Immune infiltration and immune checkpoints analysis

In the Tumor Immune Estimation Resource (TIMER) 
database (http://timer.comp-genomics.org/), immune 
infiltration is evalated by the TIMER (40), xCELL (41), 
Cell-type Identification By Estimating Relative Subsets Of 
RNA Transcripts (CIBERSORT) (42), the quantification of 
the Tumor Immune contexture from human RNA-seq data 
(QUANTISEQ) (43), Microenvironment Cell Populations 
counter (MCP-counter) (44), and Estimate the Proportion 
of Immune and Cancer cells (EPIC) (45) methods. Immune 

checkpoint-associated genes were received from previous 
research (46). We employed Tumor Immune Dysfunction 
and Exclusion (TIDE, http://tide.dfci.harvard.edu) to 
anticipate patient response after immunotherapy (47).

Gene mutation and methylation analysis

The copy number variation (CNV), single nucleotide variation 
(SNV), and methylation analysis was performed in the Gene 
Set Cancer Analysis (GSCA) online analysis platform (http://
bioinfo.life.hust.edu.cn/web/GSCALite/) (48). The platform 
only shows meaningful results. GSCALite is a web-based 
cancer gene set analysis platform that analyzes alterations in 
the DNA or RNA of cancer gene sets.

Drugs sensitivity analysis

To evaluate the model in predicting the clinical response 
of COAD treatment, we calculated the IC50 of all targeted 
agents in pRRophetic R package (49). The pRRophetic 
program predicts the clinical chemotherapeutic response 
employing gene expression and drug sensitivity datasets 
from cell lines in the Cancer Genome Project (CGP) (49,50). 
On the GSCA online analytic platform, the relationship 
between genes and drug sensitivity was evaluated (48).

Quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR)

We collected tissue samples for qRT-PCR from Northern 
Jiangsu People’s Hospital. 2X SG Fast qPCR Master Mix 
(High Rox, B639273, BBI, ABI) was used for the RT step to 
produce cDNA, which was used as a template in the qPCR 
step using the QuantStudio 1 Real-Time Fluorescence PCR 
System (QuantStudioTM 1 Plus System, ABI/Thermo 
Fisher, Foster, CA, USA). The primer sets are displayed in 
Table S1. The qRT-PCR assays were performed three times 
independently.

Pan-cancer analysis

We conducted a pan-cancer study of the most central gene 
in the Kaplan-Meier plotter database (https://kmplot.com/
analysis/) (51,52). Kaplan-Meier Plotter, a commonly used 
site for survival analysis, is able to assess the correlation 
between the expression of genes in 21 tumors and patient 
survival, thereby identifying and validating biomarkers 
associated with survival.

http://timer.comp-genomics.org/
http://tide.dfci.harvard.edu
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://kmplot.com/analysis/
https://kmplot.com/analysis/
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Ethics approval 

The patient participating in the study gave informed consent. 
The Medical Ethics Committee of Northern Jiangsu People’s 
Hospital approved the study on March 17th, 2021 (No. 
2021ky104). This study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). 

Statistical analysis

R.4.1.3 and GraphPad Prism 8.0.2 were employed to accomplish 
data analysis and visualization. Some figures in this research 
were plotted using the ggplot2 R tool (53). When P<0.05, all 
findings were deemed statistically significant. The figures 
were illustrated by *P<0.05, **P<0.01, ***P<0.001, and 
****P<0.0001.

Results

Gene enrichment and function analysis

After screening mRNAs in the TCGA cohort, a total of 
859 CRs were finally involved in the study. GO analysis 
was divided into three parts: biological process analysis 
revealed that CRs participated in histone modification, 

chromatin organization, peptidyl-glutamine modification, 
chromatin remodeling, and other processes; SWI/SNF 
superfamily-type complex, histone acetyltransferase 
complex, ATPase complex, protein acetyltransferase 
complex, and other components were the primary focus 
of cellular element study; analysis of molecular function 
revealed histone binding, transcription coregulator activity, 
modification-dependent protein binding, transcription 
coactivator activity, and other roles (Figure 1A). The 
KEGG signaling mechanism analysis was enriched for cell 
cycle, Viral carcinogenesis, Thermogenesis, Transcriptional 
misregulation in cancer, Ubiquitin-mediated proteolysis, 
Wnt  s igna l ing  mechani sm,  and  other  proces ses  
(Figure 1B). These findings were consistent with the role of 
CRs described in the preceding article. 

The selection of hub genes based on CRs

We obtained 3,309 DEGs after setting the |logFC| >1 
and a set P value <0.05 in the TCGA cohort (available 
online: https://cdn.amegroups.cn/static/public/tcr-23-1886-
1.docx). These DEGs were performed in the WGCNA 
analysis. A total of 2,481 DEGs were screened through 
MDA for analysis. After TOM analysis, we identified 

Figure 1 The gene function enrichment of CRs in COAD. (A) CRs enrichment ratio in biological process, cellular components, and 
cellular components by R package “clusterProfiler”. (B) The KEGG signaling pathway analysis of CRs by R package “clusterProfiler”. CRs, 
chromatin regulators; COAD, colon adenocarcinoma; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; HIV, 
human immunodeficiency virus; MAPK, mitogen-activated protein kinase; AMPK, adenosine 5’-monophosphate (AMP)-activated protein 
kinase; RNA, ribonucleic acid.
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nine modules (Figure 2A). The relation heatmap between 
modules and clinical characteristics showed that the 
turquoise module (cor=0.86, P=2.8e−118) had the maximum 
correlation (Figure 2B). We evaluated the relation between 
gene significance (GS) and gene connectivity in each 
module based on normal traits and tumor traits separately. 
In normal traits, GS in the turquoise module (cor=0.47, 
P=2.7e−25) and brown module (cor=0.41, P=3.2e−15) were 
highly correlated with connectivity (Figure S1). Yellow 
module (cor=0.42, P=8.6e−16) and green module (cor=0.37, 
P=3.3e−12) also had the same characteristics in tumor 
traits (Figure S2). After comprehensive comparison of the 
correlation, we finally obtained 435 genes in the turquoise 
module and 332 genes in the green module for analysis. 
Eventually, we obtained 32 CRs for downstream analysis 
after intersecting the selected 767 DEGs and 859 CRs 
(Figure 2C).

The LASSO Cox regression analysis screened eight CRs 
(RCOR2, PPARGC1A, PKM, RAC3, PHF19, MYBBP1A, 
ORC1 ,  EYA2 )  for  prognost ic  model  construct ion  
(Figure 2D,2E; ST. 2). Genes were represented by lines, and 
the values of the vertical coordinates they pointed to were 
the gene coefficients calculated by LASSO Cox regression 
analysis (Figure 2E).The univariate Cox regression showed 
RCOR2 (HR: 1.12, P=0.02), PKM (HR: 1.00, P=0.01), RAC3 
(HR: 1.06, P=0.03), MYBBP1A (HR: 1.04, P=0.02), EYA2 
(HR: 1.07, P=0.00) had high hazard ratio and PPARGC1A 
(HR: 0.75, P=0.05) has low hazard ratio (Figure 2F). 
Fourteen CRs (MYBBP1A, EYA2, CBX8, CHAF1B, CBX4, 
MIER3, PCNA, RCC1, APOBEC3B, PKM, HMGA1, CBX2, 
PRMT1, UHRF1) was screened in SVM-RFE analysis 
(Figure 2G,2H). Combining the results of three machine 
algorithms, PKM, MYBBP1A, and EYA2 were screened 
(Figure 2I).

Prognostic model construction based on the LASSO Cox 
regression analysis

We constructed a clinical prediction model based on the 
results of LASSO Cox regression (Figure 3). We divided the 
TCGA cohort into two risk groups based on the median 
value of the risk score, and the GEO cohorts were treated 
the same way (Table S2). Both the TCGA cohort (P=0.0004) 
and the GSE39582 cohort (P=0.0076) showed that the 
low-risk cohort had better OS (Figures 3A-3C,4A-4C). 
Nevertheless, the GSE17537 cohort showed no significance 
in OS versus subgroup, despite the poorer prognosis in 
the high-risk group (Figure S3). The high-risk cohort had 

bad status and survival time, higher pathological staging, 
higher TNM staging, and more females than the low-
risk cohort in both cohorts. However, differences existed 
in age: the low-risk cohort in the TCGA cohort had more 
patients over 60 years of age, while the GSE39582 cohort 
has the opposite results (Figures 3D,4D; Table 1). The ROC 
curves examined the anticipated impact of the risk score 
for OS. The area under the curve (AUC) reached 0.645 
(1 year), 0.659 (3 years), and 0.659 (5 years) in the TCGA 
cohort (Figure 3E), and 0.61 (1 year), 0.561 (3 years), and  
0.595 (5 years) in the GSE39582 cohort (Figure 4E). 
GSE17537 also showed the same performance (Figure S3). 
The univariate Cox regression illustrated that age, T, N, M, 
and risk score were risk factors for the prognosis of COAD 
in the TCGA and GSE39582 cohorts (Figures 3F,4F). The 
multivariate Cox regression revealed that age, T, and risk 
score in the TCGA cohort and age, T, N, M, and risk score  
in the GSE39582 cohort were risk factors (Figures 3G,4G). 
Stage was a protected factor in the GSE39582 cohort 
through the multivariate Cox regression, which was 
the object to the result in the univariate Cox regression  
(Figure 4F-4G). In addition, We used the nomogram model 
constructed according to multivariate Cox regression to 
anticipate the prognostic risk of COAD (Figures 3H,4H). 
Calibration curves showed a high degree of accuracy in 
predicting actual observations at 1, 3, and 5 years (Figures 3I,4I; 
Figure S3).

The performance of the eight genes in the predictive model 
based on single-cell analysis

We chose GSE132465 for single-cell analysis (32) (Figure 5A). 
We calculated CRscore based on the eight genes in the 
predictive model through the AddMouduleScore function 
(R package “Seurat”). We found that CRscore was enriched 
in Epithelial cells and Myeloids (Figure 5B,5C). Cellchat 
analysis was performed to infer intercellular communication, 
and signaling pathways participated in communication (39). 
We divided Epithelial cells and Myeloids into two cohorts 
based on their respective median values of CRscore. The 
number of interactions analysis revealed little difference 
in the interactions between the CRscore high Epithelial 
cells group and the CRscore low Epithelial cells group with 
other cells. However, the interaction weights between the 
CRscore high Epithelial cells group with Myeloids, T cells, 
and B cells was stronger than the CRscore low Epithelial 
cells group. The number and weights of interactions 
showed that the CRscore high Myeloid cells group had 

https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1886-Supplementary.pdf
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Figure 2 Hub CRs screening. (A) Dynamic tree and hierarchical clustering modules with different color by R package “WGCNA”. (B) 
Heatmap of correlation between modules and clinical features by R package “WGCNA”. (C) Venn diagram of selected modular genes 
versus CRs by R package “ggvenn”. (D) LASSO coefficient profiling by R package “glmnet”. The dotted vertical lines represent the partial 
likelihood deviance SE. The bolded dashed line vertical line is drawn at the optimal lambda. (E) Ten-time cross-verification for tuning 
parameter selection in the LASSO-Cox model by R package “glmnet”. Each curve corresponds to a single gene. (F) The univariate Cox 
forest map of the selected CRs by R package “survival” and “forestplot”. (G,H) SVM-RFE algorithm for feature selection by R package 
“e1071” and “randomForest”. The highest and lowest points of the line represent the most accurate and least error-prone areas. (I) Venn 
diagram of the LASSO-Cox, the univariate Cox, the SVM-RFE algorithm by R package “ggvenn”. CRs, chromatin regulators; WGCNA, 
Weighted Gene Co-Expression Network Analysis; LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector 
machine-recursive feature elimination.
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Figure 3 Risk prognosis model construction of CRs in TCGA data. (A) Survival curve comparing high-risk and low-risk groups by R 
package “survival”. (B,C) The distribution of risk score and the scatterplot of the relationship between risk scores and survival time. (D) 
Heat map of prognostic CRs and clinical parameters at high risk and low risk groups by R package “pheatmap”. (E) ROC curve of 1, 3, 5-year 
survival by R package “timeROC”. (F) The univariate Cox forest map of the clinical characteristics by R package “survival” and “forestplot”. 
(G) The multivariate Cox forest plot of the clinical characteristics by R package “survival” and “forestplot”. (H) The nomogram baseline of 
multivariate Cox analysis by R package “rms” and “regplot”. (I) The calibration curve of the nomogram baseline. *, P<0.05; ***, P<0.001, and 
ns: no significant. CRs, chromatin regulators; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, area under 
the curve.
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Figure 4 Risk prognosis model construction of CRs in GSE39582 data. (A) Survival curve comparing high-risk and low-risk groups by R 
package “survival”. (B,C) The distribution of risk score and the scatterplot of the relationship between risk scores and survival time. (D) Heat 
map of prognostic CRs and clinical parameters at high risk and low risk groups by R package “pheatmap”. (E) ROC curve of 1-, 3-, 5-year 
survival by R package “timeROC”. (F) The univariate Cox forest map of the clinical characteristics by R package “survival” and “forestplot”. 
(G) The multivariate Cox forest plot of the clinical characteristics by R package “survival” and “forestplot”. (H) The nomogram baseline of 
multivariate Cox analysis by R package “rms” and “regplot”. (I) The calibration curve of the nomogram baseline. *, P<0.05; **, P<0.01; ***, 
P<0.001, and ns: no significant. CRs, chromatin regulators; ROC, receiver operating characteristic; AUC, area under the curve.
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Table 1 Clinical characteristics between high-risk group and low-risk group in the TCGA and GSE39582 cohorts

Clinical characteristic 
TCGA cohort GSE39582 cohort

High risk group Low risk group High risk group Low risk group

T

1 3 6 4 5

2 28 40 13 20

3 144 139 136 144

4 28 19 56 41

N

0 114 133 97 127

1 50 41 57 53

2 39 30 50 29

3 5 1

M

0 165 175 178 188

1 38 29 31 22

Stage

1 28 40 9 13

2 80 89 83 107

3 57 46 86 68

4 38 29 31 22

Age (years)

>60 142 147 63 61

≤60 61 57 146 149

Gender

Female 96 93 99 98

Male 107 111 110 112

TCGA, The Cancer Genome Atlas; T, tumor; N, node; M, metastasis.

more interactions with T cells and B cells than the CRscore 
low Myeloid cells group (Figure 5D-5E). We found that 
GRN-SORT1 pathway had different performance in the 
CRscore high Epithelial cells group with Stromal cells and 
B cells in the tumor environment (Figure 5F). We finally 
analyzed the prognostic model genes in tumors and found 
that PKM has higher expression than other genes in six cells 
(Figure 5G). 

Immune infiltration

Depending on the six methods in the TIMER database, 
B cells and CD4+ memory T cells were enriched in 
the reduced-risk cohort. Based on the CIBERSORT 
algorithm, T cells follicular helper, Macrophage M2, 
Myeloid dendritic cell resting, Mast cell activated enriched 
in the low-risk cohort and T cell regulatory (Tregs), NK 
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Figure 5 Single cell data analysis. (A) TSNE map of single cell data by R package “Seurat”. (B,C) Expression of CRs scores in the tumor 
microenvironment by R package “Seurat”. (D,E) The number of cell-to-cell interactions and the total interaction strength by R package 
“CellChat”. (F) Pathway analysis between cells by R package “CellChat”. (G) Expression of model genes in different cells by R package 
“Seurat”. CRs, chromatin regulators; TSNE, T-distributed stochastic neighbor embedding.

cell resting, Macrophage M0, Mast cell resting elevated 
in the high-risk cohort. T cell CD4+ naïve, T cell CD4+ 
central memory, T cell CD4+ effector memory, T cell NK, 
T cell CD4+ Th1, and stroma score had raised levels in 
the high-risk cohort. In contrast, T cell CD8+ naïve, T 
cell CD8+, common lymphoid progenitor, granulocyte-
monocyte progenitor, T cell gamma delta, and T cell CD4+ 
Th2 were raised in the low-risk cohort according to the 
XCLL. Neutrophil was more elevated in the reduced-risk 
cohort depending on XCLL and QUANTISEQ methods. 
The endothelial cell was elevated in the high-risk cohort 
depending on XCLL and EPIC methods. In the EPIC, T 
cell CD8+ had raised infiltration levels in the reduced-risk 
cohort, and NK cell was higher in the high-risk cohort. 
Cancer-associated fibroblasts (CAFs) infiltrated more in the 
high-risk group according to EPIC and MCPCOUNTER  

(Figure 6). Combining the results of these six methods, 
CAFs and Endothelial were highly infiltrated in the high-
risk cohort. At the same time, B cells, Neutrophils, and T 
cell CD8+ had high levels in the low-risk cohort.

Immune checkpoints analysis and TIDE analysis

Given the significance of immune checkpoint inhibitor 
immunotherapies, we examined the connection between 
immune checkpoints and risk groups and module genes. 
We found significant differences in multiple immune 
checkpoint genes (BTLA, ICOS, CD40LG, CD48, CD28, 
CD200R1, ADORA2A, CD276, LGALS9, CD160, VTCN1, 
HHLA2, TNFSF18, BTNL2, CD70, TNFSF9, TNFRSF8, 
C10orf54, TNFRSF4, TNFRSF18, CD44) between high-risk 
and low-risk groups (Figure 7A). The expression of BTLA, 
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ICOS, CD40LG, CD48, CD28, CD200R1, CD160, HHLA2, 
BTNL2, TNFSF18, and CD44 was elevated in the low-risk 
cohort and others were elevated in the high-risk cohort. 
PKM was the most critical gene related to many immune 
checkpoint genes (LAG3, CD276, PDCD1, TNFSF9, 
TNFRSF18, CD274) (Figure 7B). We used TIDE to 
anticipate the proportion of therapeutic responses in various 
risk groups. The results revealed that the individuals in the 
high-risk cohort received fewer immunotherapy responses, 
indicating a suboptimal outcome of immunotherapy. The 
individuals in the low-risk cohort received more responses, 
although P>0.05 (Figure 7C). We also found that lower-risk 
scores can get an immunotherapy response (Figure 7D). 

The CNV, SNV, and methylation analysis

Because CRs were closely related to CNV, SNV, and 
methylation, we performed CNV, SNV, and methylation 
analysis. Heterozygous amplification of module genes was 
present in COAD except for PPARGC1A, MYBBP1A, and 
PKM. Except for the heterozygous deletion of SLC25A15 
and EYA2 in COAD, all other genes had heterozygous 
deletions (Figure 8A,8B). SLC25A15, MYBBP1A, PHF19, 
PPARGC1A ,  RCOR2 ,  and EYA2  were significantly 
correlated to their mRNA RSEM, and MYBBP1A was the 
most correlated gene (Figure 8C). In the mutation analysis, 
PPARGC1A had the highest mutation frequency (Figure 8D). 

Figure 6 Immune infiltration in high and low risk groups calculated by TIMER, xCELL, CIBERSORT, QUANTISEQ, MCP-counter, 
and EPIC methods. TIMER, Tumor Immune Estimation Resource; CIBERSORT, Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts; QUANTISEQ, the quantification of the Tumor Immune contexture from human RNA-seq data; MCP-counter, 
microenvironment cell populations counter; EPIC, Estimate the Proportion of Immune and Cancer cells; NK cell, natural killer cell.
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Figure 7 Immune checkpoint and immunotherapy analysis. (A) Correlation of high and low risk groups with immune checkpoints by R 
package “ggboxplot”. (B) Correlation of model genes with immune checkpoints by R package “corrplot”. (C) Response to immunotherapy in 
high and low risk groups by TIDE. (D) The relationship between immunotherapy response and risk score by TIDE. *, P<0.05; **, P<0.01; 
***, P<0.001; ****, P<0.0001. TIDE, tumor immune dysfunction and exclusion; ICB, immune checkpoint blockade.
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Figure 8 The CNV, SNV, and methylation analysis for module genes. (A) The distribution of CNV types in COAD from GCSC database. (B) 
The heterozygous amplification and deletion about the module genes in colon adenocarcinoma from GCSC database. (C) The correlation 
between CNV and gene expression of the module genes with spearman analysis from GCSC database. (D) Mutation frequency of module 
genes from GCSC database. (E) Waterfall diagram of module genes from GCSC database. (F) The methylation difference between tumor 
and normal samples in the COAD from GCSC database. (G) Spearman correlation coefficient of methylation and gene expression in the 
COAD from GCSC database. COAD, colon adenocarcinoma; SCNA, somatic copy number alterations; FDR, false discovery rate; CNV, 
copy number variation; SNV, single nucleotide variation; GCSC, gene set cancer analysis.

The mutation rate of MYBBP1A, PARGC1A, EYA2, PHF19, 
and RCOR2 was more than 10% in 43 samples (Figure 8E). 
In the GCSC database, the methylation level of EYA2, 
RAC3, RCOR2, PPARGC1A was higher in colon cancer 
(Figure 8F). The expression of MYBBP1A, PPARGC1A, 
PHF19 ,  RCOR2 ,  RAC3 ,  EYA2 ,  and SLC25A15  was 
negatively correlated to methylation (Figure 8G).

Drug sensitivity analysis 

We tried to find drugs matching risk groups based on the 
CGP database (54). We analyzed all drugs and selected 73 
drugs that had significance in the CGP database based on 
the R package “pRRophetic”. We found that the low-risk 
group was more frequently associated with more substances 
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in comparison to the high-risk group. Eventually, we chose 
12 commonly used drugs of 73 drugs. Interestingly, afatinib, 
AKT inhibitor VIII, epothilone B, and gemcitabine had 
higher sensitivity in the high-risk group, especially AKT 
inhibitor VIII (Figure 9A-9D). Dasatinib, docetaxel, 
erlotinib, gefitinib, pyrimethamine, pazopanib, paclitaxel, 
and sunitinib were more sensitive to the low-risk group 
(Figure 9E-9L). The relationship analysis between module 
genes and drug sensitivity was performed on the GSCA 
online analysis platform. The results showed that PKM was 
related to more drugs than other genes (Figure 10). 

Expression validation

We explored the expression of model genes using the 
TCGA cohort and the GSE39582 cohort, which showed 
consistent results. The expression of RCOR2, PKM, RAC3, 
PHF19, MYBBP1A, and ORC1 was higher in cancer patients 
than in normal patients. In contrast, PPARGC1A and EYA2 
had the opposite result (Figure 11). The effects of qRT-
PCR were generally consistent with the results of the two 
cohorts, except for EYA2 and ORC1, which may be due to 
the number of samples (Figure 11).

Pan-cancer analysis

Initially, we screened PKM, MYBBP1A, and EYA2 by 
LASSO Cox regression, SVM, and Cox regression 
(Figure 2I). Then, we analyzed the correlation between 
the predictive model genes with the tumor cells, immune 
checkpoints, and drug sensitivity. In contrast to other genes, 
PKM had a better performance. Therefore, we believed 
that PKM may be the most hub gene in the model. To 
research the effect of PKM in other cancers, we performed 
the pan-cancer analysis in the Kaplan-Meier plotter 
database. Expression analysis demonstrated that PKM 
was differentially expressed in all cancers except Adrenal 
carcinoma (Figure 12A). In the TCGA and GSE39583 
cohorts, high PKM expression was associated with a bad 
outcome, which also can be seen in breast cancer, cervical 
squamous cell cancer, head-neck squamous cell cancer, 
liver hepatocellular cancer, lung cancer, ovarian cancer, 
pancreatic ductal adenocarcinoma, testicular germ cell 
cancer, and thymoma (P<0.05) (Figure 12B-12L). The 
results of the pan-cancer analysis suggested that PKM not 
only affected COAD but also played an essential role in 
other cancers, such as Liver hepatocellular carcinoma, 
Pancreatic ductal adenocarcinoma.

Discussion

The contribution of chromatin-regulated processes in 
disease and development has been intensively examined. 
Researchers found chromatin-organized and regulated 
gene mutations in more than 50% of cancers (55-57). 
However, comprehensive studies assessing the role of CRs 
in colon cancer are deficient. Therefore, we used machine 
learning to construct a clinical prediction model based on 
CRs and screened core genes. Meanwhile, we explored the 
model and the relationship between model genes with the 
tumor microenvironment, immune infiltration, immune 
checkpoints, CNV, SNV, methylation, and drug sensitivity. 
Finally, we identified the critical role of PKM in colon 
cancer and performed a pan-cancer analysis.

Through functional enrichment analysis of CRs, we 
found that their functions are mainly focused on histone 
modifications, chromatin regulation, transcriptome 
regulation, and some pathways that have been shown to 
impact tumor progression. This is identical to the results 
of previously published studies (58). The importance of 
chromatin in cancer has been deliberated in recent years 
(59-61). Therefore, research on the function of CRs is 
imminent.

We used WGCNA to screen for differential genes 
associated with clinical features and obtained 32 CRs. Eight 
genes were screened to construct a clinical prediction model 
using the LASSO Cox regression. Cox regression and SVM 
analysis further filtered out PKM, MYBBP1A, and EYA2 
from the 32 CRs. This is our initial screening of CRs in 
colon cancer. Since the contribution of each gene to the 
model we constructed cannot be denied, in the downstream 
analysis, we analyzed each model gene in the hope of 
finding the most crucial core genes. 

The model we constructed exhibits good predictive 
performance. To investigate the role of the model in the 
tumor microenvironment of colon cancer, we observed 
model scores, gene expression, and cellular communication 
utilizing single-cell data. We found that the high CRscore 
group communicated closely with immune cells, which 
may explain the poor prognosis of the high-risk group. 
Moreover, GRN-SORT1 pathway may play a key role. 
SORT1 has been promising as a tumor therapeutic target 
in recent years, as its expression has been increased in 
several types of cancers, including those of the digestive  
system (62-64). 

Immune infiltration analysis showed that CAFs and 
Endothelial cells were highly infiltrated in the high-risk 
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Figure 9 Drug sensitivity analysis between high and low risk groups based on the R package “pRRophetic”. (A) Afatinib. (B) AKT inhibitor 
VIII. (C) Epothilone B. (D) Gemcitabine. (E) Dasatinib. (F) Erlotinib. (G) Gefitinib. (H) Docetaxel. (I) Paclitaxel. (J) Pazopanib. (K) 
Pyrimethamine. (L) Sunitinib.
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group. In contrast, B cells, Neutrophil, and T cell CD8+ 
had high levels in the low-risk group. CAFs contribute 
significantly to extracellular matrix maintenance, 
desmoplasia, angiogenesis, immunosuppression, invasion, 
and chemoresistance (65,66).  CAFs also shape an 
immunosuppressive tumor microenvironment by secreting 
various cytokines, growth factors, chemokines, exosomes 
and other effector molecules that interplay with tumor-
infiltrating immune cells and other immune components 
of the tumor immune microenvironment, enabling cancer 
cells to evade the immune monitoring system (67). The 
characteristics of CAFs may explain the low response to 
immunotherapy in the high-risk group. The researchers 
have uncovered the significance of endothelial cells in 
the progression of colorectal carcinogenesis, including 
epithelial cell proliferation, angiogenesis, and immune  
remodeling (68). The function of these two cell types 
may explain the high-risk source. The B-cell tumor 
promoter Bcl-3 can suppress inflammation-associated colon 
tumorigenesis (69). However, researchers also found that 
LIN28B promotes colon cancer progression by increasing 
B-cell lymphoma 2 expression (70). Neutrophils may also 
have an opposite function in cancer. Neutrophils can directly 
kill tumor cells in vitro and vivo (71,72), while they may also 
facilitate the dissemination of tumor cells by augmenting the 
degradation of the basement membrane (73). CD8+ T cells 
can release cytokines to mediate the deposition of cytotoxic 
particles near the target cell membrane, inducing apoptosis 
of tumor cells (74,75). Although the immune landscape 
in the low-risk group does not clearly explain its effect 
on cancer, the better prognosis of patients in the low-risk 
group suggests that tumor suppression played a significant 
role. In conclusion, the poor prognosis of patients in the 
high-risk group may be related to malignant cell infiltration.

The contribution of model genes to the model may be 
related to their role in cancer. RCOR2, a transcriptional 
repressor, plays a significant role in regulating embryonic 
stem cell pluripotency and neurogenesis (76). RCOR2 
may affect tumor progression by altering the infiltration 
profile of CD8+ T cells (77). However, there are few 
studies on the role of RCOR2 in colon cancer. PPARGC1A, 
peroxisome proliferator-activated receptor γ coactivator 
1A, reprogrammes tumor-specific T cells, resulting in 
superior intratumoral metabolic and effector function (78). 
PPARGC1A is associated with prognosis in patients with 
COAD in several studies (79,80). Overexpression of RAC3 
can activate p38 and Akt kinase activity, thereby blocking 
the translocation of apoptosis-inducing factor-1 from the 
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Figure 11 Expression of model genes: (A) TCGA cohort, (B) GSE39582 cohort, (C) qRT-PCR results. *, P<0.05; **, P<0.01; ***, P<0.001; 
****, P<0.0001, and ns: no significant. TCGA, The Cancer Genome Atlas; qRT-PCR, quantitative real-time reverse transcription-
polymerase chain reaction.
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mitochondria to the nucleus, resulting in anti-apoptotic 
and anti-autophagic effects (81). Genome-wide analysis 
identifies PHF19 and TBC1D16 as oncogenic super-
enhancers based on ChIP-Seq in colorectal cancer (82). 
MYBBP1A is a protein that binds to and stabilizes p53 and 
may play an important role in tumor suppression (83,84). 
ORC1 is essential for the viability of embryonic cells and the 
proliferation of intestinal epithelial cells (85). According to 
a previous study, ORC1 can promote the expansion of bladder 
cancer cells by activating Wnt/β-catenin signaling (86). EYA2, 
which belongs to the eyes absent family of proteins, may 
upregulate miR-93 expression and promote the malignant 
progression of breast cancer by targeting the STING 
signaling pathway (87). 

Our study proposed that PKM may be the critical gene 
for CRs in colon cancer. The PKM gene can be divided into 
PKM1 and PKM2 by variable splicing (88). PKM1 is mainly 
expressed at a stable level in most tissues, while PKM2 is 
expressed predominantly in proliferating cells and tumor 
cells (89). Nuclear translocation of PKM2 or its silencing 
by pharmacological inhibition reduces aerobic glycolysis and 
tumor cell proliferation (90,91). Researchers have revealed 
that the HOXB-AS3 ensures the formation of lower PKM2 
and suppresses glucose metabolism reprogramming in colon 
cancer. COAD patients with low expression of HOXB-AS3 
peptide have a poorer prognosis, which PKM2 may cause (92). 
These findings are consistent with the results of our pan-
cancer analysis.

Our study also has many limitations. We only used 

publicly available data for our research and did not conduct 
clinical trials to validate it. Furthermore, we lack basic 
experiments further to explore the molecular mechanisms 
of PKM in individual cancers.

Conclusions

In summary, we constructed an eight-gene clinical 
prediction model and explored the key genes in the model. 
Our results showed that our constructed model can be 
helpful to in clinical diagnosis and treatment. Finally, 
we found that PKM may be a beneficial target for cancer 
therapy, not only in colon cancer.
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Table S1 qRT-PCR primer sequences

mRNA Primer sequence

B-actin Forward: TAGTTGCGTTACACCCTTTCTTG

Reverse: TCACCTTCACCGTTCCAGTTT

RCOR2 Forward: CGCACGCTACAGCAACAAG

Reverse: CTTGTCCTCTACTGTCCACTCGT

PPARGC1A Forward: TAAAGCGAAGAGTATTTGTCAACAG

Reverse: GGTCAGAGGAAGAGATAAAGTTGTT

PKM Forward: CTCCAGGTGAAGCAGAAAGGT

Reverse: TGCCTTGCGGATGAATGA

RAC3 Forward: CTTTCTGATCTGCTTCTCTCTGG

Reverse: GCCGCTCAATGGTGTCCT

PHF19 Forward: CCCCAGTGACAGATCGAGG

Reverse: GAGGCAACAAACCAGGCTT

MYBBP1A Forward: CCTCCCTGTCACGCCTACT

Reverse: TGGGCTTTCTTCTGGTTGTT

ORC1 Forward: GGACCTGCCAGAGCGAAT

Reverse: CCAGACAGTGCTGCTACCTTC

EYA2 Forward: GCGATTGTCTGGATAAACTGAA

Reverse: TTGTGCTGGAGGTGGGTAAG

qRT-PCR, quantitative real-time reverse transcription-polymerase 
chain reaction; RNA, ribonucleic acid.

Supplementary
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Supplementary Figure 1: Correlation of modular gene significance with gene linkage in normal traits.Figure S1 Correlation of modular gene significance with gene linkage in normal traits.

Figure S2 Correlation of modular gene significance with gene linkage in tumor traits.
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Table S2 Coef values of the model genes

Gene Coef

RCOR2 0.021725906

PPARGC1A −0.050256306

PKM 0.001422719

RAC3 0.007767943

PHF19 0.010947093

MYBBP1A 0.01123364

ORC1 −0.061084477

EYA2 0.041305297

Figure S3 Risk prognosis model validation in GSE17537 data. (A) Survival curve comparing high-risk and low-risk groups by R package 
“survival”. (B) ROC curve of 1-, 3-, 5-year survival by R package “timeROC”. (C) The calibration curve of the nomogram baseline. ROC, 
receiver operating characteristic; AUC, area under the curve.


