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Introduction

Pancreatic cancer is a malignant tumor that is difficult 
to diagnose and treat, and ranks fourth in cancer-related 
deaths worldwide, with a 5-year survival rate of less than 
9% (1). In recent years, the incidence and mortality rates of 

pancreatic cancer have been on the rise, and it is expected 

that it will overtake colorectal cancer to become the second 

most common cause of cancer deaths by 2040 (2). For 

borderline resectable pancreatic cancer (RPC), surgical 

treatment is undoubtedly the most effective. However, 
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only 20% of patients have the opportunity to undergo 
surgery at the time of diagnosis due to the lack of early 
symptoms of pancreatic cancer and the presence of lymph 
node invasion or distant metastasis at the early stage of the 
disease (2). For junction RPC, neoadjuvant therapy based 
on FOLFIRINOX chemotherapy regimen can reduce the 
tumor volume or downstage, and improve the surgical 
resection rate of pancreatic cancer patients, but it does not 
significantly improve the prognosis of patients (3). Due to 
the “cold tumor” characteristics of pancreatic cancer tumor 
cells, conventional chemotherapy and radiotherapy are not 
effective in the treatment of locally advanced pancreatic 
cancer (LAPC). Immunotherapy, as a novel therapeutic 
strategy, has achieved encouraging results in melanoma, 
lung cancer, renal cancer, uroepithelial cancer and other 
malignant tumors. Immunotherapy for pancreatic cancer, 
including monoclonal antibody therapy, tumor vaccines, 
and chimeric antigen receptor T cell (CAR-T cell) therapy, 
has made some progress and demonstrated potential 
therapeutic effects in clinical trials. However, there are no 
clear biological markers to predict which patients are more 
likely to benefit from immunotherapy (4). Therefore, the 
search for a biomarker that more accurately predicts the 
prognosis of pancreatic cancer patients and the efficacy of 
immunotherapy is imminent.

Apoptosis is involved in several physiological and 
pathological processes in tumors. Resistance to normal 
death is considered to be the basis of cancer cell genesis 

and progression (5). In recent years, many newly discovered 
apoptotic cell deaths such as ferroptosis, cuproptosis, 
and immunogenic cell death have attracted attention 
(6,7). Disulfidptosis is a special mode of cell death that is 
different from the programmed forms of cell death that 
have been discovered so far, and its mechanism is that the 
abnormal accumulation of intracellular disulfide will cause 
disulfide stress, which ultimately leads to rapid cell death. 
A recent study has found that cells with high expression of 
SLC7A11, under glucose starvation, abnormally accumulate 
intracellular disulfide bonds such as cystine, which affects 
the binding between cytoskeletal proteins, leading to the 
collapse of the cytoskeletal protein network and rapid cell 
death (8). In the era of precision oncology, targeting the 
weakness of tumor metabolism by inducing Disulfidptosis 
provides new ideas in the field of cancer metabolic therapy (9).  
The study of Li et al. found that the disulfidptosis-related 
genes (DRGs), SLC7A11 and LRPPRC, play an important 
role in predicting the prognosis of hepatocellular carcinoma 
patients (10). DRGs can affect the prognosis and therapeutic 
effects of hepatocellular carcinoma patients by regulating 
the tumor microenvironment (TME), drug sensitivity and 
immune infiltration (11).

Long-stranded non-coding RNA (lncRNA) is a type of 
non-coding RNAs (ncRNAs) with a length of more than 200 
nucleotides that participates in the regulation of a range of 
physiological and pathological processes but cannot encode 
proteins. It has been demonstrated that lncRNA is implicated 
in the genesis and development of several different tumors 
by way of regulating the biological behavior of tumor cells. 
For example, MALAT1, one of the most studied lncRNAs, is 
up-regulated in pancreatic cancer cells and plays a significant 
part in epithelial-to-mesenchymal transition (EMT)-
mediated programs to promote pancreatic tumor invasion 
and metastasis, and its expression has been linked to patients’ 
chances of survival from pancreatic cancer (12). LUCAT1 
is associated with non-small cell lung cancer prognosis and 
is involved in the proliferation, invasion and metastasis of a 
variety of cancer cells (13). The regulation of prostate cancer 
cell growth is carried out by PCGEM1. Overexpression of 
PCGEM1 inhibits DOX-induced apoptosis in cancer cells 
(14). However, the relationship between disulfidptosis-
related lncRNAs (DRlncRNAs) and the diagnosis, prognosis, 
and therapeutic efficacy of immunotherapy in pancreatic 
adenocarcinoma (PAAD) still needs to be further explored.

In this research, we combined the transcription and 
clinical data of 178 patients with PAAD to develop a novel 
DRlncRNAs index (DRLI). We further elucidated the 
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potential of the associated lncRNAs as PAAD biomarkers 
to predict patient prognosis, guide clinical decision-making, 
and specify personalized therapy. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tcr.amegroups.com/article/view/10.21037/tcr-23-
1706/rc).

Methods

Dataset

One hundred and seventy eight PAAD patients’ RNA 
sequencing and related clinical details were gathered from 
The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/). Relevant clinical characteristics included 
information on age, sex, clinical grade, clinical stage and 
overall survival (OS). Patients lacking survival information 
were excluded. Subsequently, we obtained 31 DRGs from 
the previously published literature (10,11,15). The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of DRlncRNAs

Pearson correlation analysis was utilized to identify 
DRlncRNAs. LncRNAs with P value <0.01 and an absolute 
Pearson correlation coefficient ≥0.4 were selected as 
DRlncRNAs. 

Construction and validation of prognostic DRLI

We randomized PAAD patients from the TCGA database 
into training and validation sets. From the training sets, 
we screened lncRNAs having prognostic significance using 
univariate Cox regression analysis (P<0.05). Least absolute 
shrinkage and selection operator (LASSO) regression is 
an approach for selecting and shrinking variables in Cox 
proportional risk models, which improves stability and 
usability while reducing model complexity (16). The LASSO 
regression was performed in the training set by using the 
R package “glmnet” to identify the DRlncRNAs with the 
most prognostic value. Subsequently, multifactorial COX 
regression analysis was further used to find DRlncRNAs 
independently affecting prognosis to establish a DRLI.

The following is the DRLI equation:

( ) ( )DRLI score Exp LncRNA Coef LncRNA= ×  ∑          [1]

In the equation, Coef (LncRNA) denotes the coefficient 

of survival-related lncRNAs, exp (LncRNA) denotes the 
expression of lncRNA. Depending on the median DRLI 
score, PAAD patients were categorized into low- and 
high-DRLI subgroups. Survival analysis was conducted 
using the R package “Survival” to verify the availability of 
prognostic signatures. By the R package “survivalroc”, the 
receiver operating characteristic (ROC) curves was plotted 
to verify the diagnostic value of the DRLI for 1-, 2- and 
3-year survival. Subsequently, we performed analyses in the 
validation sets and in the whole sets to validate these results.

Independence evaluation of DRLI 

The independent predictive power of the DRLI was 
verified by univariate and multivariate Cox regression 
analyses. The criterion of independence for both analyses 
was P<0.05. In oncology treatment, nomograms are widely 
used in the assessment of patient prognosis, and they 
facilitate clinical decision-making by condensing prediction 
models to quantified probabilities of an event occurring in 
a given circumstance for a specific patient (17). We used 
the R package “RMS” to establish a nomogram combining 
DRLI scores and clinical factors to verify the clinical 
viability of the DRLI. Correction curves at the 1-, 2-, and 
3-year intervals were employed to validate how well their 
estimated and actual survival probability agreed with one 
another. Then, using data from the TCGA cohort, we 
additionally examined at the association between DRLI 
scores and clinical features. OS determined by DRLI score 
was compared in each clinical subgroup (age, sex, grade, 
stage) to verify the predictive value of our DRLI.

Functional enrichment analysis

To further investigate the possible mechanisms leading to 
the prognostic differences between the high- and low-DRLI 
groups, we analyzed the differentially expressed genes (DEGs, 
|log2FC|>1 and P<0.05) between the two subgroups. 
Functional enrichment analysis of DEGs was performed to 
explore the differences in biological processes (BPs), cellular 
components (CCs), molecular functions (MFs) and signaling 
pathways between the high- and low-DRLI groups.

Immune checkpoint analysis and immune cell infiltration 
analysis 

By using single-sample gene set enrichment analysis (ssGSEA) 
based on the “gsva” R package, we evaluated distinction in 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-1706/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-1706/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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immune-related functional pathways and tumor-infiltrating 
immune cell (TIIC) subsets between the high- and low-DRLI 
subgroups (18). With the help of the ESTIMATE algorithm, 
we examined the abundance of immune and mesenchymal 
stromal cells in PAAD samples to assess TME differences 
between the high- and low-DRLI subgroups (19). Also, 
immune checkpoint inhibitors’ (ICIs’) therapeutic effects 
might be influenced by the expression of genes associated 
with immunological checkpoints. By using the “ggpubr” R 
package, we compared the activation of immune checkpoint 
genes between the high- and low-DRLI subgroups.

Association between DRLI scores and tumor mutations

Patients with poorer prognosis tend to be associated with 
more genetic mutations. Therefore, tumor mutation burden 
(TMB) analysis was performed on PAAD tumor mutation 
data from the TCGA database in order to compare TMB 
values between low- and high-DRLI groups throughout the 
whole cohort. The R package “maftools” was used to assess 
mutation data. The relationship between survival and TMB 
status was also explored, and subgroup survival analysis was 
performed by combining TMB status and DRLI score.

Statistical analysis

All statistical analyses were performed with R software 
(4.2.2) and Perl. P<0.05 differences were statistically 
significant. The accuracy of the DRLI in assessing 
prognosis was confirmed using ROC curves and Kaplan-
Meier survival analysis. Subgroups with different clinical 
characteristics were analyzed to fully assess the stability of 
the DRLI. Differences between subgroups were explored 
using t-tests and Wilcoxon signed rank tests.

Results

Determination of prognosis-related DRlncRNAs

We obtained the expression profiles of 31 DRGs and 
16,901 lncRNAs from 178 PAAD patients from the TCGA 
database. Further 958 DRlncRNAs were obtained by 
Pearson correlation analysis (Figure 1A). 

Construction of the DRLI

We randomized 178 patients with PAAD containing clinical 
information in the TCGA database into a training group 

(n=89) and a validation group (n=89). Cross-validation 
showed no considerable variation in clinical characteristics 
between the groups, demonstrating that the groups were 
independent of each other (P>0.05) (Table 1). In combination 
with clinical data, we determined the prognostic value of 
these DRlncRNAs by univariate Cox regression in the 
training subgroup. The results showed that among the 958 
DRlncRNAs, 84 lncRNAs significantly linked to patient 
survival in PAAD (P<0.05), and a forest plot (Figure 1B) 
was produced to show their expression. Seven prognostic 
DRlncRNAs associated with OS in PAAD were identified 
by LASSO regression analysis in the training subgroup 
(Figure 1C,1D). Multifactorial COX regression analysis 
showed that five DRlncRNAs could independently assess 
the prognosis of PAAD, and the DRLI was established using 
these five DRlncRNAs. The DRLI was then used to assess 
the distribution of DRLI scores, survival status and survival 
time of the training set, validation set and the overall patients 
(Figure 2A-2C). The accuracy of the DRLI for prediction at 1, 
2 and 3 years was validated by ROC curves (Figure 2D).

To verify the excellent predictive value of the prognostic 
signature associated with disulfidptosis, we compared the 
DRLI score with other clinical elements. The C-index of 
all factors of interest was calculated, and the results showed 
that the C-index of the DRLI score was superior to most 
other clinical elements (Figure 2E). These results imply 
that the DRlncRNAs-based index might provide a more 
accurate prognosis assessment for PAAD patients.

Relationship between DRLI scores and clinicopathologic 
features

Subgroup survival analysis validated the prognostic 
value of DRLI scores in patients with different clinical 
characteristics. According to the calculated DRLI 
scores, PAAD patients with different clinicopathological 
characteristics were categorized into low-DRLI and high-
DRLI groups, respectively. Kaplan-Meier survival analyses 
showed that patients in the low-DRLI subgroups were 
significantly relevant to poorer survival outcomes except 
those with stages III–IV (Figure 3A-3H). The Figures 3I 
further shows the distribution of clinicopathologic features 
and DRLI scores.

Independent prognostic analysis and the establishment of 
nomogram

DRLI scores were analyzed as a factor influencing the 
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Figure 1 Determination of prognosis-related DRlncRNAs. (A) Sankey diagram displayed the relationship between DRGs and DRlncRNAs. 
(B) DRlncRNAs with different hazard ratios. (C,D) Selection of seven most prognostic DRlncRNAs. The two dashed lines in the figure 
D indicate two particular values of λ, lambda.min on the left and lambda.1se on the right. lambda between these two values of λ are both 
considered appropriate. lambda.1se constructs the simplest model, using a small number of genes. The model constructed by lambda.min, 
on the other hand, is more accurate and uses a larger number of genes. DRlncRNAs, disulfidptosis-related long-stranded non-coding RNAs; 
DRGs, disulfidptosis-related genes.
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prognosis of PAAD patients in univariate and multivariate 
COX regression analyses along with traditional clinical 
parameters. The results showed that DRLI score could be 
used as an independent prognostic predictor [univariate 
hazard ratio (HR) =1.167, 95% confidence interval (CI): 
1.102–1.236, P<0.001; multivariate HR =1.168, 95% CI: 
1.099–1.241, P<0.001] (Figure 4A,4B). Compared to the 
other clinicopathologic parameters, the DRLI score’s area 
under the curve (AUC) value was greater (Figure 4C). 
Several clinical factors and DRLI scores were included in 
the nomogram to better predict survival outcomes in PAAD 
patients (Figure 4D). Subsequently, a calibration curve was 

plotted to investigate the accuracy of this nomogram, and 
the results that followed indicated that the actual values were 
generally consistent with the predicted values (Figure 4E).  
Overall, our nomogram is a useful tool to estimate a 
patient’s prognosis for PAAD.

Exploration of cellular processes and signaling pathways 
affected by DRlncRNAs

By analyzing the functional enrichment of 897 DEGS 
between the high- and low-DRLI subgroups,  we 
investigated the potential biological pathways and functions 
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between the two subgroups. Gene Ontology (GO) 
functional enrichment analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis point to a strong 
relationship between DEGs and a variety of activities 
and processes, including those involved in the control 
of chemical synaptic transmission, the cyclic adenosine 
monophosphate (cAMP) signaling pathway, and the 
mitogen-activated protein kinase (MAPK) signaling 
network (Figure 5A,5B).

Analysis of tumor immune infiltration 

We further investigated the tumor immune landscape of 
PAAD in the TCGA database. We explored the infiltration 
profiles of 16 immune cells by ssGSEA algorithm. The 
results are shown in Figure 6A: between the high- and low-
DRLI subgroups, there were appreciable differences in 
the infiltration profiles of five TIICs. It is interesting to 
note that none of these cells were as high as those in the 

Table 1 The clinical information of the training group and the validation group

Clinical feature Type Total Validation Train

Age, years ≤65 94 (52.81) 47 (52.81) 47 (52.81)

>65 84 (47.19) 42 (47.19) 42 (47.19)

Gender Female 80 (44.94) 42 (47.19) 38 (42.7)

Male 98 (55.06) 47 (52.81) 51 (57.3)

Grade G1 31 (17.42) 18 (20.22) 13 (14.61)

G2 95 (53.37) 41 (46.07) 54 (60.67)

G3 48 (26.97) 29 (32.58) 19 (21.35)

G4 2 (1.12) 0 (0) 2 (2.25)

GX 2 (1.12) 1 (1.12) 1 (1.12)

Stage I 21 (11.8) 9 (10.11) 12 (13.48)

II 147 (82.58) 73 (82.02) 74 (83.15)

III 3 (1.69) 2 (2.25) 1 (1.12)

IV 4 (2.25) 3 (3.37) 1 (1.12)

Unknown 3 (1.69) 2 (2.25) 1 (1.12)

T T1 7 (3.93) 4 (4.49) 3 (3.37)

T2 24 (13.48) 10 (11.24) 14 (15.73)

T3 142 (79.78) 72 (80.9) 70 (78.65)

T4 3 (1.69) 2 (2.25) 1 (1.12)

TX 1 (0.56) 0 (0) 1 (1.12)

Unknown 1 (0.56) 1 (1.12) 0 (0)

M M0 80 (44.94) 38 (42.7) 42 (47.19)

M1 4 (2.25) 3 (3.37) 1 (1.12)

MX 94 (52.81) 48 (53.93) 46 (51.69)

N N0 49 (27.53) 21 (23.6) 28 (31.46)

N1 120 (67.42) 63 (70.79) 57 (64.04)

N1b 4 (2.25) 2 (2.25) 2 (2.25)

NX 4 (2.25) 2 (2.25) 2 (2.25)

Data are presented as n (%).
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Figure 2 Predictive value of the DRLI. (A) Predictive value of the DRLI in the training cohort. (B) Predictive value of the DRLI in the 
validation cohort. (C) Predictive value of the DRLI in the entire cohort. (D) Time-dependent receiver operating characteristic curves in 1-, 2- 
and 3-year. (E) The C-index of the risk score and other clinical parameters. A C-index of 0.5 represents complete inconsistency, indicating 
that the index has no predictive role (dashed lines). DRLI, disulfidptosis-related long-stranded non-coding RNA index; AUC, area under the 
curve.
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Figure 3 Kaplan-Meier survival curves layered by age (A,B), gender (C,D), tumor grade (E,F), and stage (G,H) between two risk groups. (I) The 
heatmap of clinicopathological features and five DRlncRNAs. *, P<0.05. DRlncRNAs, disulfidptosis-related long-stranded non-coding RNAs.

PAAD high-risk subgroup. The ssGSEA algorithm was 
subsequently applied to assess the immune-related functions 
between the two subgroups. The high-DRLI subgroups 
showed less levels of immune function (Figure 6B). The 
ESTIMATE algorithm revealed that the low-DRLI 
subgroups had higher immunity scores, stroma scores, and 
estimated scores (Figure 6C-6E). This suggests that the 
purity of tumors in the high-DRLI subgroup was higher. 
The above results suggest that an immunosuppressive 
tumor immune microenvironment exists in the high-
DRLI subgroup, which may be a contributing factor to 
the poorer prognosis of this patient subgroup. In addition, 
the expression analysis of immune checkpoint genes was 
also negatively correlated with DRLI score (Figure 6F). In 

conclusion, these results provide new insights for future 
individualized and precise treatment of patients in different 
risk subgroups.

Tumor mutation analysis 

We examined the TMB profiles of two subgroups and 
identified the top 20 mutated genes (Figure 7A). The low 
TMB group had better survival outcomes (Figure 7B). The 
combined analysis of TMB and DRLI score showed that 
the low DRLI + low TMB group had better survival than 
the other three groups (Figure 7C). These results suggest 
that DRLI score has better prognostic predictive ability 
compared to TMB.
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Figure 4 Independent analyses and establishment of nomogram. (A,B) Univariate and multivariate Cox regression analyses. (C) The receiver 
operating characteristic curves. (D) Nomogram. (E) Calibration curves for the nomogram. ***, P<0.001. AUC, area under the curve; Pr, 
probability; OS, overall survival.
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Discussion

To date, the molecular mechanisms underlying the 
pathogenesis of PAAD are not fully understood. LncRNAs 
are crucial in the incidence and progression of PAAD 

according to several studies (20). PAAD-associated 
lncRNAs can act as oncogenic or tumor suppressor 
lncRNAs and serve as potential markers for assessing the 
survival and diagnosis of patients with PAAD (21). For 
example, LNC00976, a tumor suppressor lncRNA, is a good 
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predictor of PAAD prognosis. Further studies have shown 
down-regulation of LINC00976 expression would result in 
reduced proliferation, migration potential and invasiveness 
of pancreatic cancer cells in vivo and in vitro (22).  
Upregulation of LINC00462 resulted in EMT of PAAD 
cells and could interact with miR-665 to increase the 
metastatic and invasive power of PAAD cells (23). On the 
contrary, LINC01111, a newly discovered lncRNA, was 
shown to inhibit various biological functions of PAAD cells, 
such as proliferation, metastasis, cell survival, and cell cycle 
progression in vitro experiments (24). However, studies 
on disulfidptosis-related lncRNAs are few, particularly in 
PAAD.

In this study, we included 178 patients with PAAD from 
the TCGA dataset. First, we identified 84 lncRNAs with 
prognostic significance associated with disulfidptosis by 
univariate Cox regression analysis. Five lncRNAs (including 
TM4SF1.AS1, AL031722.1, AP005264.1, AL358472.2, 
AC021087.1) were selected by LASSO regression and 

multifactorial Cox regression analysis to develop a predictive 
signature for estimating OS in PAAD patients. On the basis 
of their median DRLI scores, patients were classified into 
low- and high-DRLI groupings. The results of survival 
analysis revealed a substantial difference between the high-
DRLI and low-DRLI groups in survival. ROC curves were 
applied to confirm the validity and dependability of the 
DRLI’s prediction capability. To test its validation furtherly, 
we repeated all analyses in validation set and entire set. We 
also used DRLI scores together with other clinical factors 
to construct nomogram plots to quantitatively predict 1-, 
2-, and 3-year survival rate in individual PAAD patients, 
thereby providing recommendations for clinical diagnosis 
and treatment.

Among the five lncRNAs used to construct the model, 
TM4SF1 .AS1  and AP005264 .1  were potential risk 
factors, while AL031722.1, AL358472.2 and AC021087.1 
were protective factors. A previous study has found that 
TM4SF1-AS1 contributes to tumorigenesis by inducing 

Figure 5 Functional enrichment. (A) GO function enrichment. (B) KEGG pathway enrichment. GO, Gene Ontology; BP, biological 
process; CC, cellular compartment; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 6 Analysis of tumor immune infiltration and immunotherapy response. The scores of immune cells (A) and immune-related 
functions (B) in different risk group. (C) Stromal score. (D) Immune score. (E) ESTIMATE score. (F) Different immune checkpoints 
expression pattern between two risk groups. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. IFN, interferon; APC, antigen-presenting 
cells; CCR, chemokine receptor; MHC, major histocompatibility complex; HLA, human leukocyte antigen.
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Figure 7 Tumor mutation analysis. (A) Top 20 mutation genes’ information in two risk groups. (B) Kaplan-Meier curves of OS stratified by 
TMB. (C) Kaplan-Meier curves of OS stratified by both TMB and risk score. TMB, tumor mutation burden; OS, overall survival.

stress granule formation and inhibiting apoptosis (25). In 
hepatocellular carcinoma, TM4SF1-AS1 promotes tumor 
cell proliferation, migration, and invasion by enhancing 
TM4SF1 expression (26). M4SF1-AS1 is upregulated 
in gastric cancer tissues, and affects the ability of cells 
to proliferate, invade and transition from epithelium to 
mesenchyme through the PI3K-AKT signaling pathway (27). 
Lin et al. found that AL031722.1 may be associated with 
the prognosis of lower-grade gliomas (28). Alterations of 
metabolism-related lncRNA AP005264.1 expression were 
strongly correlated with poor prognosis in osteosarcoma (29). 
In addition, other lncRNAs in this study have not been 
reported in the relevant literature.

The TME is a complex and evolving system composed 
mainly of non-tumor cells, extracellular matrix (ECM), 
vascular system, and non-cellular components (30). The 
immune microenvironment, composed of multiple immune 
cells, is an important component of the TME and can serve 
as a predictor of tumor immunotherapy efficacy (31). The 
high- and low-DRLI subgroups exhibited significantly 
different immune cell infiltration and immune function 
scores. Interestingly, the scores of CD8+ T cells, Th cells, 
B cells, Tfh cells, and TIL cells were significantly higher 
in the low-DRLI group than in the high-DRLI group. 
CD8+ T lymphocytes can differentiate into effector 
CTLs upon stimulation with tumor-associated antigens. 
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CTLs can participate in the tumor immune response by 
transferring from the peripheral immune organs to the 
tumor site through chemokines. Tfh cells enhance CD8+ 
T lymphocytes functions by secreting IL-21. Th cells 
can participate in both CTL cell activation and secretion 
of cytokines with antitumor immune effects. B cells can 
differentiate into plasma cells with the ability to secrete 
antitumor antibodies upon stimulation with tumor-
associated antigens. TIL cells are infiltrating lymphocytes 
isolated from tumor tissues. Some of these cells are T 
cells targeting tumor-specific mutant antigens, which are 
immune cells capable of penetrating deep into the interior 
of tumor tissues to kill tumors. As innate immune cells, 
NK cells, macrophages and NKT cells did not observe 
significant differences between the two subgroups. In 
summary, the anti-tumor ability of the low-DRLI group 
was stronger than that of the high-DRLI group. The TME 
results showed that the stromal score and the immune 
score of the low-DRLI group were higher than those of 
the high-DRLI group, which indicated that the high-
DRLI group samples had less infiltration of immune cells, 
a low content of stromal cells, and a high purity of tumors, 
which was in line with the results assessed by the ssGSEA 
algorithm. These findings suggest that the tumor immune 
microenvironment in patients with PAAD in the high-DRLI 
group is immunosuppressive, and the low-DRLI group may 
have a stronger anti-tumor immune response, which explains 
the difference in prognosis between the two groups.

Today, ICIs have emerged as a novel focus for cancer 
treatment (32). Compared with conventional therapies, 
immune checkpoint inhibition therapy has shown rapid and 
consistent efficacy in certain cancer patients, especially in 
patients with advanced metastatic cancer (33,34). Our study 
found differences in the distribution of immune checkpoint 
genes in the two subgroups, with most of the genes being 
more highly expressed in the low-DRLI subgroups. Patients 
in the low-DRLI group may have a better therapeutic 
response to immune checkpoint inhibition therapy.

The higher the tumor mutational load, the greater 
the production of neoantigens that can be recognized 
by immune cells, and the better the efficacy of receiving 
immune checkpoint inhibitor therapy is likely to be (35,36). 
This study found higher TMB values in the high-DRLI 
group, suggesting that immunotherapy may be more 
beneficial in this subgroup. In a subsequent subgroup 
survival analysis, it was shown that the DRLI score was a 
more accurate predictor of prognosis in patients with PAAD 
compared to TMB.

There are some limitations in this study. First, there 
was no external validation of our results with other 
datasets due to the lack of lncRNA expression profiles. 
Second, we explored the potential mechanisms of different 
prognoses between high- and low-risk subgroups by pure 
bioinformatics analysis. However, the results need to be 
verified by more funda-mental experiments.

Conclusions

The present study implicates that several DRlncRNAs 
(TM4SF1.AS1, AL031722.1, AP005264.1, AL358472.2, 
AC021087.1) may serve as independent prognostic 
biomarkers for pancreatic cancer.  Our study also 
demonstrated that this lncRNAs are strongly correlated 
with the immune microenvironment, mutational burden, 
and response to immunotherapy in pancreatic cancer. This 
research may provide a new view for the clinical treatment 
of pancreatic cancer.
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