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Introduction

Hepatocellular carcinoma (HCC), as one of the most 
common cancers worldwide, is the third-leading cause of 
worldwide mortality of various cancers and its incidence rate 
per year remains high (1). Although liver transplantation 

and surgical resection are the backbones of curative 
therapies for HCC, the overall survival (OS) rate of patients 
with advanced HCC is still strongly unsatisfactory, with a 
postoperative 5-year recurrence rate of approximately 70% 
primarily due to tumor heterogeneity (2,3). Therefore, 
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the urgent identification of reliable biomarkers and the 
establishment of a molecular prognostic signature for 
HCC are imperative. These advancements are not only 
important for aiding in the early detection of HCC but also 
critical for substantially improving the prognosis of patients 
through earlier diagnosis and precisely targeted therapeutic 
intervention.

Long non-coding RNAs (lncRNAs) are non-protein 
coding transcripts over 200 nucleotides in length, which are 
often dysregulated during tumorigenesis and might cause 
tumor development (4). As a result, they are used as valuable 
molecular biomarkers for the diagnosis and prediction of 
various types of cancers. For example, lncRNA H19 was 
reported to promote the cell pyroptosis by targeting miR-
22-3p/NLRP3 axis in pneumonia, which could serve as 
an important curative marker (5). Chen et al. found that 
lncRNA SNHG7 expression led to NLRP3-dependent 
pyroptosis in HCC through the inhibition of NLR family 
domain and the upregulation of miR-34a, suggesting that 
SNHG7 may be regarded as a promising biomarker in 
HCC treatment outcomes (6). Liu et al. discovered that the 
overexpression of lncRNA HOTAIR may act as a marker 
of poor prognosis outcome and contribute to a better 
understanding of gastric carcinogenesis progression and 
metastasis (7).

Pyroptosis is  a form of programmed cell  death 
characterized by its inflammatory nature, typically initiated 
by the activation of caspase-1 or caspase-11 within 
inflammasomes in response to inflammatory signals. This 

process leads to the activation of gasdermin D and the 
disruption of the cell membrane, which facilitates the release 
of cellular contents and the generation of an inflammatory 
response, culminating in inflammatory cell death (8,9). 
Recent researches have highlighted that pyroptosis plays a 
crucial role in tumor suppression and cancer therapeutics 
(10-12). Based on these findings, researchers have proposed 
pyroptosis-based strategies to identify potential biomarkers 
and construct prognostic models associated with various 
types of cancers. For example, Yang et al. constructed a 
risk model based on 10 pyroptosis-related lncRNAs in 
breast cancer, which showed great prognostic prediction 
ability (13). Song et al. constructed a pyroptosis‐related 
prognostic model for colorectal cancer, which could 
provide help in the choice of immunotherapy strategies 
and chemotherapy drugs for patients (14). Wang et al. 
proposed a prognostic signature based on pyroptosis‐
related genes, potentially offering the optimal therapeutic 
schedule for multiple myeloma patients (15). Zhou et al. 
built a pyroptosis-related prognostic signature which had 
the potential to offer novel directions for immunotherapy in 
lung squamous cell carcinoma (16), and so on.

The aforementioned pyroptosis-related studies have 
made contributions to the identification of biomarkers and 
the establishment of prognostic model for various cancers. 
However, most of them are based on the quantitative 
expression value of genes and thus lack robustness for 
clinical applications, mainly because these methods require 
the pre-collection of samples for data normalization 
and there is a need to eliminate the batch effect (17,18). 
These requirements may not be feasible for clinical 
practice as they add complexity to sample collection and 
processing. Fortunately, research has shown that the 
within-sample relative expression orderings (REOs) of 
gene pairs are robust against the influence of batch effects 
and data normalization, which is an individual qualitative 
transcriptional trait (19,20). Consequently, several 
individual qualitative signatures have been proposed based 
on the with-sample REOs of gene pairs for predicting 
the prognosis of several cancers, including that of HCC 
(21-23). However, it is important to note that the most 
recent REO-based prognostic model associated with 
pyroptosis for HCC still has limitations, including limited 
consideration of the number of pyroptosis datasets and 
a lack of independent external sets for validation, etc. To 
overcome these limitations, it is necessary to develop a 
more reliable prognostic model for HCC, which can be 
better applied in clinical practice, providing more accurate 
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prognosis assessment and treatment guidance for HCC 
patients.

In this study, we developed a novel pyroptosis-related 
lncRNA-based prognostic index (PLPI) using a set of 10 
pyroptosis-related lncRNA pairs. The results demonstrated 
that PLPI exhibited great performance in predicting the 
prognosis of HCC patients, indicating its potential to aid 
personalized therapy and management of HCC patients. 
The workflow of this study is shown in Figure 1. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1804/rc).

Methods

Data collection

In this study, we selected two independent databases 
from different high-throughput platforms, including 
374 HCC samples and 50 normal samples from The 
Cancer Genome Atlas-Liver Hepatocellular Carcinoma 
(TCGA-LIHC) database (https://xena.ucsc.edu/public), 
and 159 HCC samples from the National Omics Data 
Encyclopedia (NODE) database (https://www.biosino.
org/node/). Additionally, we extracted gene expression 
data and matching clinical information from these two 
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Figure 1 The workflow of this study. RNA-seq, RNA sequencing; TCGA-LIHC, The Cancer Genome Atlas-Liver Hepatocellular 
Carcinoma; NODE, National Omics Data Encyclopedia; lncRNA, long non-coding RNA; mRNA, message RNA; REOs, relative expression 
orderings; PLPI, pyroptosis-related lncRNA-based prognostic index.
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databases. Patients with an OS time of less than 30 days and 
incomplete clinical information were excluded from the 
survival analysis. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). There 
were 155 pyroptosis-related genes obtained from a previous 
study (24), which are shown in table available at https://cdn.
amegroups.cn/static/public/tcr-23-1804-1.pdf.

Differentially expressed pyroptosis-related lncRNAs 
(DEPR-lncRNAs)

First, lncRNAs and messenger RNAs (mRNAs) were 
identified for further analyses using the annotation files 
(hg38.99) downloaded from the Ensemble database (https://
ensemblgenomes.org/). The expression profile of mRNAs 
and lncRNAs extracted from RNA sequencing (RNA-seq) 
count data was normalized using the edgeR package (version 
3.32.1). Then, differentially expressed mRNAs (DEmRNAs) 
and differentially expressed lncRNAs (DElncRNAs) shared 
by the TCGA-LIHC and NODE databases were identified 
by the Wilcoxon rank-sum test [|log2(fold change)| >1, false 
discovery rate (FDR) <0.05]. The intersections between 
the DEmRNAs and the 155 pyroptosis-related genes were 
considered as DEPR-mRNAs. To identify the DEPR-
lncRNAs, Pearson correlation analysis was performed to 
construct the co-expression network between the DEPR-
mRNAs and the DElncRNAs. Finally, the DElncRNAs 
with |R2|>0.4 and P<0.001 in the co-expression network 
remained as the DEPR-lncRNAs.

Identification of the prognostic pyroptosis-related lncRNA 
pairs

Initially, we conducted univariate Cox regression analysis in the 
TCGA-LIHC database to identify the significant prognostic 
DEPR-lncRNAs. These DEPR-lncRNAs were then used to 
construct the DEPR-lncRNA pairs. For a given lncRNA pair 
(lncRNA1, lncRNA2), the expression levels of lncRNA1 and 
lncRNA2 can be described as: ( )1 11 12 1, , , ,iE expr expr expr=   ,  

( )2 21 21 2, , , ,iE expr expr expr=   , respectively. In our study, 
the expression level of the given lncRNA pair (lncRNA1, 
lncRNA2) was defined as follows:

( )

( )

1 2

1 2
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1
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If the frequency of 1 or 0 in the expression level of the 
given lncRNA pair (lncRNA1, lncRNA2) was less than 85%, 

the lncRNA pair was remained. Then, the prognosis ability 
of these remained lncRNA pairs was further evaluated by 
the univariate Cox regression analysis, and the lncRNA 
pairs with FDR <0.2 were screened as the prognostic 
lncRNA pairs.

To improve the stability and generalization of PLPI, 
we employed Concordance index (C-index) to further 
select the optimal prognostic lncRNA pairs. The C-index, 
a commonly used evaluation metric, plays a crucial role 
in identifying the most relevant prognostic factors by 
helping assess the predictive ability of factors, which aids 
in improving the accuracy and reliability of prognostic 
models, and supporting clinical decision-making and patient 
management (25,26). The larger the C-index value for the 
prognostic factor, the better its predictive accuracy and 
discriminatory ability. In our study, we chose the prognostic 
lncRNA pair with the highest C-index value as the candidate 
seed lncRNA (CSlncRNA) pair, and then added additional 
prognostic lncRNA pairs in descending C-index order to 
the CSlncRNA pair one by one. Those prognostic lncRNA 
pairs that increased the C-index value were ultimately 
selected. Finally, to avoid overfitting, we further utilized 
least absolute shrinkage and selection operator (LASSO) 
regression analysis to select the prognostic lncRNA pairs, 
which were used for constructing the prognostic model 
PLPI.

Construction and validation of the prognostic model PLPI

In this study, the PLPI was constructed based on the 
prognostic pyroptosis-related lncRNA pairs to predict 
the prognosis of HCC patients. The risk score (RS) was 
calculated for each patient by the following formula:

( ) ( )1

n
i ii

RS expr lncRNA pair coef lncRNA pair
=
 = × ∑ [2]

where the ( )iexpr lncRNA pair  is  the gene expression 
level of ilncRNA pair  , and the ( )icoef lncRNA pair   is the 
corresponding estimated regression coefficient for each 
lncRNA pairs in the LASSO regression analysis.

Firstly, we randomly divided the patients in the TCGA-
LIHC database into a training set and a testing set at a ratio 
of 1:1 using the caret package. The training set was used 
to train and build the prognostic model PLPI, while the 
testing set and the external set (NODE database) were used 
to validate the predictive performance of the PLPI. All the 
patients in the training set, the testing set, and the external 
set were stratified into the high- or low-risk groups based 
on the median RS calculated from the training set. We 

https://cdn.amegroups.cn/static/public/tcr-23-1804-1.pdf
https://cdn.amegroups.cn/static/public/tcr-23-1804-1.pdf
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employed receiver operating characteristic (ROC) analysis, 
utilizing the timeROC package, to assess the predictive 
performance of the PLPI and calculated the area under 
the curve (AUC) in the training set, the testing set, and the 
external set. Kaplan-Meier (KM) analysis was further used 
to evaluate the OS between the high- and low-risk groups. 
Additionally, we performed univariate and multivariate Cox 
regression analyses to investigate whether the RS could 
be regarded as an independent prognostic predictor after 
considering other clinical features, such as gender, age, 
tumor-node-metastasis (TNM) stage, and grade.

Functional gene set enrichment analysis (GSEA)

GSEA is a special type of computational method used 
to identify whether a predefined set of genes shows 
statistically significant differences in expression under 
different biological states, as determined by analyzing gene 
expression data. Therefore, we used GSEA to discover 
the potential pathways and explore the biological process 
between the high- and low-risk groups in the TCGA-
LIHC database. Specifically, based on the Hallmarks 
gene set “h.all.v7.0.symbols.gmt” and the gene set “c2.
cp.kegg.v7.5.1.symbols.gmt” from the MSigDB database, 
GSEA was carried out through GSEA software (27,28) 
and clusterProfiler package (version 4.8.2) (29). The gene 
sets could be downloaded on the website (https://www.
gsea-msigdb.org.). Additionally, P<0.05, |normalized 
enrichment score (NES)| >1, and FDR <0.25 were set as 
the significance threshold for our statistical analyses.

Analyses of tumor-infiltrating immune cells

To validate the effectiveness of the PLPI model we 
proposed, we conducted an analysis of tumor-infiltrating 
immune cells using three tools: Cell-Type Identification 
by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT) (https://cibersort.stanford.edu/), the 
single-sample GSEA (ssGSEA), and the Estimation of 
Stromal and Immune Cells in Malignant Tumor Tissues 
using Expression Data (ESTIMATE). CIBERSORT can 
determine the proportions of different cell types within a 
mixed cell population by analyzing gene expression data 
of the cancer patients (30). We utilized it to analyze the 
distribution of 22 immune cell types in the high- and low-
risk patient groups from the TCGA-LIHC database. The 
detailed list of 22 cell types is shown in Table S1. ssGSEA, 
a bioinformatics method, is used to calculate enrichment 

scores for gene sets within individual samples and has been 
employed to assess the infiltration of 28 immune cells in 
the high- and low-risk patient groups from the TCGA-
LIHC database (31). The 28 immune gene sets are shown 
in table available at https://cdn.amegroups.cn/static/public/
tcr-23-1804-2.pdf. ESTIMATE is a tool that estimate the 
compositions of stromal and immune cells within the tumor 
microenvironment by analyzing gene expression data from 
cancer patients (32), which was applied to estimate tumor 
purity, stromal, immune, and estimate scores.

Drug and mutation analyses

Following the acquisition of tumor mutation data of HCC 
patients, we utilized the TCGAbiolinks package and 
maftools package to explore somatic mutations in the high- 
and low-risk groups from the TCGA-LIHC database. In 
addition, the pRRophetic package was used to establish the 
relation between drug response and gene expression data to 
identify potential therapeutic drugs. Therefore, we used the 
pRRophetic package to calculate the half-maximal inhibitory 
concentration (IC50) values of each patient in the high- and 
low-risk groups of 29 drugs, which had previously been 
shown to have promising efficacy in relevant studies (33-35).  
In this study, the gene expression and drug sensitivity data 
from cell lines in the Cancer Genome Project (https://
www.sanger.ac.uk/group/cancer-genome-project/) and gene 
expression data from the TCGA-LIHC database were used 
in the drug analysis.

Statistical analysis

Statistical analyses were performed using R 4.0.3 and 
GSEA software.  Univariate and multivariate Cox 
proportional hazard regression analyses were utilized to 
evaluate the independent prognostic predictive power of 
the proposed PLPI. Besides, the Wilcoxon rank-sum test 
was used to analyze immune infiltration cell scores and 
the drug sensitivity between high- and low-risk groups. 
Statistical significance was defined as P<0.05, unless 
otherwise noted.

Results

Identification of DEPR-lncRNAs

Initially, we obtained 10,877 lncRNAs and 54,561 
mRNAs shared in TCGA-LIHC and NODE databases 

https://www.gsea-msigdb.org.
https://www.gsea-msigdb.org.
https://cibersort.stanford.edu/
https://cdn.amegroups.cn/static/public/TCR-23-1804-Supplementary.pdf
https://cdn.amegroups.cn/static/public/tcr-23-1804-2.pdf
https://cdn.amegroups.cn/static/public/tcr-23-1804-2.pdf
https://www.sanger.ac.uk/group/cancer-genome-project/
https://www.sanger.ac.uk/group/cancer-genome-project/
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according to the same gene symbol. We performed the 
Wilcoxon rank sum test and identified 764 DElncRNAs 
and 5,642 DEmRNAs [|log2(fold change)| >1, FDR 
<0.05], which are shown in tables available at https://
cdn.amegroups.cn/static/public/tcr-23-1804-3.pdf and 
https://cdn.amegroups.cn/static/public/tcr-23-1804-4.
pdf. The volcano plot of the DElncRNAs is displayed in  
Figure 2A. Next, we intersected the 5,642 DEmRNAs and 
155 pyroptosis-related mRNAs, resulting in 110 DEPR-
mRNAs. Finally, we identified 407 DEPR-lncRNAs from 
the co-expression network between 110 DEPR-mRNAs 
and 764 DElncRNAs (|R2|>0.04, P<0.001). Additionally, 
a data flow diagram of the data collection for DEPR-
lncRNAs is shown in Figure S1.

Construction of the prognostic pyroptosis-related lncRNA 
pairs

Based on the 407 DEPR-lncRNAs, we performed 
univariate Cox regression analysis and identified 35 DEPR-
lncRNAs that were significantly associated with the OS 
of HCC patients (P<0.01). Following the methodology 
detailed in the Methods section, we obtained a set of 595 
DEPR-lncRNA pairs that were sorted in descending order 
based on the C-index, which is shown in table available 
at https://cdn.amegroups.cn/static/public/tcr-23-1804-
5.pdf. We identified the DEPR-lncRNA pair with the 
highest C-index as the candidate seed DEPR-lncRNA 
pair, and subsequently added other DEPR-lncRNA pairs 
to the candidate seed DEPR-lncRNA pair. As a result, a 

Figure 2 Identification of DEPR-lncRNAs and construction of the prognostic lncRNA pairs. (A) Volcano plot of DElncRNAs between 
normal and tumor tissues in the TCGA-LIHC database. (B) LASSO Cox regression analysis of the 15 pyroptosis-related lncRNA pairs. (C) 
Partial likelihood deviation for different number of variables. (D,E) Distribution of RS, survival status of HCC patients in the TCGA-LIHC 
database. FDR, false discovery rate; DEPR-lncRNA, differentially expressed pyroptosis-related lncRNAs; lncRNA, long non-coding RNA; 
DElncRNAs, differentially expressed lncRNAs; TCGA-LIHC, The Cancer Genome Atlas-Liver Hepatocellular Carcinoma; LASSO, least 
absolute shrinkage and selection operator; RS, risk score; HCC, hepatocellular carcinoma.
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total of 15 DEPR-lncRNA pairs that exhibited improved 
the C-index were remained. To further refine the DEPR-
lncRNA pairs and reduce the risk of overfitting, LASSO 
Cox regression analysis was employed. We displayed the 
LASSO coefficients of the 15 lncRNA pairs in Figure 2B 
and conducted 10-fold cross-validation to identify the 
optimal penalty parameter lambda. Our findings showed 
that the result achieved satisfactory performance with 
the fewest possible parameters when logλ =−3.60010  
(Figure 2C). Finally, we identified 10 DEPR-lncRNA pairs 
by the above multiple algorithms for constructing the PLPI, 
which is shown in Table S2.

Construction and validation of PLPI based on the DEPR-
lncRNA pairs

In this study, we excluded patients with an OS time of less 
than 30 days or incomplete clinical information, leaving 
a total of 346 HCC patients from the TCGA-LIHC 
database. These patients were randomly divided into the 
training and testing sets in a ratio of 1:1. In the training 
set, we constructed the prognostic model PLPI using the 
10 DEPR-lncRNA pairs selected by the LASSO regression 
analysis. By the multivariate Cox regression analysis, the 
calculation formula of the RS was as follows:

( )
( )
( )
( )

0.15071817 CTC-297N7.9 | CTD-2510F5.4

0.39970634 CTC-297N7.9 | RP11-432J22.2

0.08535059 LINC00942 | RP11-92C4.6

0.18964465 RP11-150O12.3 | RP11-92C4.6

0.19772532 RP11-187E13.1| RP11-92C4

RS expr

expr

expr

expr

expr

= × −

× +

× +

× +

× ( )
( )
( )
( )
( )

.6

0.22879151 RP11-443B20.1| RP11-92C4.6

0.05831977 RP11-519G16.5 | RP11-92C4.6

0.11283769 RP11-536K7.3 | RP11-92C4.6

0.33477349 RP11-540A21.2 | RP11-92C4.6

0.10068751 RP11-92C4.6 | RP3-439

expr

expr

expr

expr

expr

+

× +

× +

× +

× −

× ( )F8.1
 

[3]

Using the median RS in the training set (RS =0.2113288), 
we segregated the 346 HCC patients into high- and low-
risk groups. The distribution of the RS values and survival 
status of the 346 patients were showed in Figure 2D,2E. 
Furthermore, we performed KM analysis and observed 
that patients in the low-risk group had significantly longer 
OS time than those in the high-risk group, both in the 
training set and the testing set (Figure 3A,3B; P<0.001). In 
the training set, the time-dependent ROC curves revealed 
that the AUCs for 1-, 3-, and 5-year OS predictions were 
0.76, 0.73, and 0.73, respectively (Figure 3C). Similarly, 

in the testing set, the AUCs used for 1-, 3-, and 5-year 
OS predictions were 0.8, 0.75, and 0.81, respectively  
(Figure 3D).

To validate the effectiveness of the PLPI, we analyzed 
158 HCC patients whose OS time were more than 30 days 
from the external set (NODE database). These patients 
were divided into high- and low-risk groups based on 
the median RS cutoff value obtained from the training 
set. KM analysis was conducted on the external set, 
which showed similar results as those in the training set  
(Figure 3E; P<0.001). Since the patients’ survival time from 
the external set was less than 5 years, the AUCs for 1-, 3-, 
and 4-year OS of the time-dependent ROC curves were 
analyzed, which were 0.68, 0.62, and 0.79, respectively 
(Figure 3F).

The above results suggested that the prognostic model 
PLPI has good predictive accuracy for OS of HCC patients. 
To evaluate the independent prognostic ability of the PLPI, 
we also performed both univariate and multivariate Cox 
regression analyses on the RS and other clinical information 
in the TCGA-LIHC database. As shown in Table 1, in the 
training set, the multivariate analysis showed that RS was 
significantly independent with other clinical information 
[hazard ratio (HR): 4.8455; 95% confidence interval (CI): 
2.3239−10.1036; P<0.001]. Similar findings were obtained 
in the testing set (HR: 4.6485; 95% CI: 2.2084−9.7847; 
P<0.001). Moreover, these results were further confirmed 
in the whole database (HR: 4.1956; 95% CI: 2.5865−6.806; 
P<0.001). Overall, these findings indicated that the 
proposed model PLPI has an independent prognostic 
predictive ability for OS in patients with HCC.

Potential pathways associated with the PLPI

GSEA was performed to explore the differences of the 
underlying biological functions between high- and low-risk 
groups in the TCGA-LIHC database. The results showed 
that several metabolism-related pathways, (xenobiotic 
metabolism, fatty acid metabolism, bile acid metabolism, 
drug metabolism-cytochrome p450, propanoate metabolism, 
and tryptophan metabolism), some HCC-related pathways 
[peroxisome, peroxisome proliferators-activated receptor 
(PPAR) signaling pathway and cytokine-cytokine receptor 
interaction], were significantly enriched in the low-risk 
group (Figure 4A,4B). On the other hand, several disease-
related pathways (Huntington disease, Alzheimer disease, 
non-alcoholic fatty liver disease, Parkinson disease, and 
prion disease), some metastatic pathways (DNA repair, Myc 

https://cdn.amegroups.cn/static/public/TCR-23-1804-Supplementary.pdf
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targets V1, Myc targets V2) were enriched in the high-risk 
group (Figure 4C,4D).

Association between the PLPI and the tumor-infiltrating 
immune cells

We also investigate the relationship between the PLPI and 
the tumor-infiltrating immune cells using CIBERSORT 

analysis. Our results showed that the patients in the high-
risk group had higher fractions of macrophages_M0, and 
T cell regulatory, while lower fractions of monocytes, 
macrophages_M1, and T cell gamma delta compared to the 
low-risk group (Figure 5A). Furthermore, we utilized the 
ssGSEA algorithm to estimate the infiltration of 28 types 
of immune cells in HCC patients and found significant 
differences in 18 types of immune cells (Figure 5B). 

Figure 3 Construction and validation of prognostic model PLPI. (A,B,E) KM curves showed the OS differences between the high- and 
low-risk groups in the training set, testing set and the external set. (C,D) Time-dependent ROC curves of RS for 1-, 3-, and 5-year OS 
prediction in the training and testing sets. (F) Time-dependent ROC curves of RS for 1-, 3-, and 4-year OS prediction in the external set. 
AUC, area under the curve; PLPI, pyroptosis-related lncRNA-based prognostic index; lncRNA, long non-coding RNA; KM, Kaplan-Meier; 
OS, overall survival; ROC, receiver operating characteristic; RS, risk score.
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Additionally, ESTIMATE analysis revealed that the stromal 
score, immune score, and estimate score were higher in the 
low-risk group than those in the high-risk group (Figure 
5C; P<0.001, P<0.01, P<0.001). However, the high-risk 
group showed higher tumor purity compared to the low-
risk group (Figure 5D), where tumor purity represents the 
proportion of tumor cells compared to normal cells.

Potential drugs for the patients and somatic mutation 
analyses

To assess the potential effectiveness of immune-based 

therapy for HCC patients, it is important to analyze the 
somatic mutational landscape of the tumor. We compared 
the somatic mutations of 335 patients with complete 
mutation data from the TCGA-LIHC database who were 
divided into high- and low-risk groups based on the median 
RS of the training set. Then, it was calculated that 71.82% 
of low-risk group patients (130/181) and 85.06% of high-
risk group patients (131/154) altered somatic mutation. 
Additionally, missense mutations were the highest frequency 
of all the variants, single nucleotide polymorphism (SNP) 
was the most common variant type, and C>T was the most 
frequent single nucleotide variation (SNV) in both low- 

Table 1 Univariate and multivariate Cox regression analyses in the training set, testing set, and the whole database

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Training set (n=112)

RS† 4.2617 2.2129−8.2077 <0.001 4.8455 2.3239−10.1036 <0.001

Age (<70 vs. ≥70 years) 0.9993 0.9706−1.0288 0.96 0.9917 0.9601−1.0244 0.61

Gender (male vs. female) 0.9162 1.8976−1.4859 0.81 1.5029 0.6548−3.4500 0.33

T stage (T1 + T2 vs. T3 + T4) 3.9694 1.9898−7.9183 <0.001 4.0839 1.7948−9.2928 <0.001

M stage (M0 vs. M1) 3.7882 0.8964−16.0100 0.07 2.1067 0.3925−11.3070 0.38

N stage (N0 vs. N1) 1.4585 0.1975−10.7686 0.71 1.8048 0.2095−15.5495 0.59

Grade (G1 + G2 vs. G3 + G4) 0.7885 0.3945−1.5761 0.50 1.1744 0.5233−2.6356 0.69

Testing set (n=111)

RS† 4.8504 2.5743−9.1390 <0.001 4.6485 2.2084−9.7847 <0.001

Age (<70 vs. ≥70 years) 0.9968 0.9740−1.0201 0.78 1.0067 0.9776−1.0366 0.65

Gender (male vs. female) 0.6816 0.3502−1.3268 0.25 1.2176 0.5469−2.7106 0.62

T stage (T1 + T2 vs. T3 + T4) 4.0337 1.9926−8.1659 <0.001 2.5369 1.1138−5.7784 0.02

M stage (M0 vs. M1) 11.5824 1.4612−91.4354 0.02 22.3088 2.1846−22.7814 0.08

N stage (N0 vs. N1) 6.3612 0.8428−48.0121 0.07 1.1614 0.1071−12.5593 0.90

Grade (G1 + G2 vs. G3 + G4) 1.4851 0.7644−2.8856 0.24 0.6583 0.3062−1.4151 0.28

The whole database (n=223)

RS† 4.5425 2.8975−7.1215 <0.001 4.1956 2.5865−6.806 <0.001

Age (<70 vs. ≥70 years) 0.9982 0.9803−1.0164 0.84 1.0001 0.9808−1.020 >0.99

Gender (male vs. female) 0.7677 0.4723−1.2481 0.28 1.2836 0.7479−2.203 0.36

T stage (T1 + T2 vs. T3 + T4) 3.7191 2.3173−5.9688 <0.001 2.7875 1.6746−4.640 <0.001

M stage (M0 vs. M1) 4.3522 1.3607−13.9208 0.01 2.5552 0.7342−8.892 0.14

N stage (N0 vs. N1) 2.2997 0.5608−9.4306 0.24 1.1807 0.2698−5.167 0.82

Grade (G1 + G2 vs. G3 + G4) 1.0496 0.6547−1.6828 0.85 0.8515 0.5104−1.420 0.53
†, derived from the RS model proposed in our study. HR, hazard ratio; CI, confidence interval; RS, risk score.
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and high-risk groups. Besides, detailed information on the 
frequency of variant classification, variant type, SNV class, 
variant classification summary and the number of variants 
per sample for both the low- and high-risk groups were 
displayed (Figure 6A,6B). Next, the top ten genes exhibiting 
the highest mutation frequency were analyzed, with TP53, 
TTN, and CTNNB1 being found to be the major driver genes in 
HCC, consistent with previous studies (36-38). Interestingly, 
we noted significantly lower mutation frequencies of TP53, 
TTN, and CTNNB1 in the low-risk group compared to 
the high-risk group. Our findings could have significant 
implications in identifying potential therapeutic targets for 
patients in the high-risk groups and devising personalized 
treatment strategies for HCC.

Meanwhile, several metabolism-related pathways were 
significantly enriched in the low-risk group, suggesting 
the potential for personalized drug susceptibility analysis. 
The IC50, which evaluates drug sensitivity, is vital in 
determining appropriate drug options for patients. The 
results displayed that erlotinib (P<0.001) and lapatinib 

(P=0.04) showed a lower IC50 in the low-risk group 
compared to the high-risk group (Figure 7A,7B), indicating 
that they may be effective options for this patient 
population. In addition, AKT inhibitor VIII (P=0.02), 
cytarabine (P=0.009), docetaxel (P<0.001), etoposide 
(P<0.001), gemcitabine (P<0.001), imatinib (P=0.004), 
methotrexate (P<0.001), paclitaxel (P<0.001), sorafenib 
(P=0.04), vorinostat (P<0.001), tipifarnib (P<0.001), and 
vinblastine (P<0.001) showed lower IC50 in the patients 
in the high-risk group compared to the low-risk group  
(Figure 7C-7N).

Discussion

HCC is a major cause of mortality in Asia and America, 
mainly due to the poor performance of conventional 
treatment and the heterogeneity (39,40). LncRNA has been 
extensively studied as oncogenes or tumor suppressor genes 
that play a crucial role in the physiological and pathological 
processes of various cancers, including gastric cancer, HCC, 

Figure 4 Functional enrichment analysis. (A,B) Potential pathways in the low-risk group. (C,D) Potential pathways in the high-risk group. 
NES, normalized enrichment score; NOM, nominal; PPAR, peroxisome proliferators-activated receptor.
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Figure 5 Comparison of immune microenvironment between high- and low-risk groups. (A) The fractions of 22 tumor-infiltrating immune 
cells in the TCGA-LIHC database were determined using CIBERSORT. (B) The NESs of 28 immune-infiltrating immune cells were 
calculated using ssGSEA. (C) ESTIMATE algorithm revealed stromal score, immune score, and estimate score between the high- and 
the low-risk groups. (D) The difference of tumor purity between the high- and low-risk groups. *, P<0.05; **, P<0.01; ***, P<0.001; ns, 
not significant. NK, natural killer; ssGSEA, single-sample gene set enrichment analysis; TME, tumor microenvironment; ESTIMATE, 
Estimation of Stromal and Immune Cells in Malignant Tumor Tissues using Expression Data; TCGA-LIHC, The Cancer Genome Atlas-
Liver Hepatocellular Carcinoma; CIBERSORT, Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts; NES, 
normalized enrichment score.

0.6

0.4

0.2

0.0

1.25

1.00

0.75

0.50

1000

500

0

0.81

0.78

0.75

0.72

0.69

B_c
ell

s_
na

ive

Act
iva

te
d.B

.ce
ll

B_c
ell

s_
m

em
or

y

Act
iva

te
d.C

D4.T
.ce

ll

Plas
m

a_
ce

lls

Act
iva

te
d.C

D8.T
.ce

ll

Act
iva

te
d.d

en
drit

ic.
ce

ll

CD56
brig

ht
.na

tu
ra

l.k
ille

r.c
ell

CD56
dim

.na
tu

ra
l.k

ille
r.c

ell

Cen
tra

l.m
em

or
y.C

D4.T
.ce

ll

T_
ce

lls
_C

D8

T_
ce

lls
_C

D4_
na

ive

Cen
tra

l.m
em

or
y.C

D8.T
.ce

ll

T_
ce

lls
_C

D4_
m

em
or

y_
re

sti
ng

Effe
ct

or.
m

em
or

y.C
D4.T

.ce
ll

T_
ce

lls
_C

D4_
m

em
or

y_
ac

tiv
at

ed

Effe
ct

or.
m

em
or

y.C
D8.T

.ce
ll

T_
ce

lls
_fo

llic
ula

r_h
elp

er

Eos
ino

phil

T_
ce

lls
_re

gu
lat

or
y_

Tre
gs

Gam
m

a.d
elt

a.T
.ce

ll

T_
ce

lls
_g

am
m

a_
delt

a

Im
m

at
ur

e.B
.ce

ll

NK_c
ell

s_
re

sti
ng

Im
m

at
ur

e.d
en

drit
ic.

ce
ll

NK_c
ell

s_
ac

tiv
at

ed

M
ac

ro
pha

ge

M
as

t.c
ell

M
DSC

M
em

or
y.B

.ce
ll

M
on

oc
yte

M
on

oc
yte

s

M
ac

ro
pha

ge
s_

M
0

Nat
ur

al.
kil

ler
.ce

ll

Nat
ur

al.
kil

ler
.T.

ce
ll

Neu
tro

phil

Plas
m

ac
yto

id.d
en

drit
ic.

ce
ll

Reg
ula

to
ry.

T.c
ell

T.f
oll

icu
lar

.he
lper.

ce
ll

Ty
pe.1

.T.
he

lper.
ce

ll

Ty
pe.1

7.T
.he

lper.
ce

ll

Ty
pe.2

.T.
he

lper.
ce

ll

M
ac

ro
pha

ge
s_

M
1

M
ac

ro
pha

ge
s_

M
2

Den
drit

ic_
ce

lls
_re

sti
ng

Den
drit

ic_
ce

lls
_a

ct
iva

te
d

M
as

t_c
ell

s_
re

sti
ng

M
as

t_c
ell

s_
ac

tiv
at

ed

Eos
ino

phil
s

Neu
tro

phil
s

Fr
ac

tio
n

ss
G

S
E

A
 s

co
re

TM
E

 s
co

re

Fr
ac

tio
n

Stromal score       Immune score       ESTIMATE score Tumor purity

ns ns ns ns ns ns ns ns

ns ns ns ns ns ns ns ns ns ns

ns ns ns ns***

*** ******

*** *** *****

*** *** *** *** *** ***** ** ** ** ** ** ** ***

*** ******** ** ** ** ****

Group            high             low

Group             high             low

Group     high     low Group     high    low

A

B

C D



Translational Cancer Research, Vol 13, No 3 March 2024 1417

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(3):1406-1424 | https://dx.doi.org/10.21037/tcr-23-1804

and glioma (41). Recent studies have shown that pyroptosis, 
a type of programmed cell death, has an important role in 
anti-cancer defense, activation of the immune system, and 
enhancing the efficacy of cancer treatment combined with 
chemotherapy (42,43). Additionally, the REOs of gene pairs 
have been considered as a reliable method that reduces 
statistical errors from data normalization and batch effect 
among different samples, and is widely applicable to clinical 
treatment (44,45).

In this study, we developed a novel REOs based-

prognostic model PLPI using 10 pyroptosis-related 
lncRNA pairs for predicting the prognosis of HCC 
patients. The effectiveness of the proposed PLPI was 
successfully validated on the TCGA-LIHC and NODE 
databases, which demonstrated that the prognostic model 
PLPI achieved a high prediction accuracy by separating 
the patients into high- and low-risk groups. Specifically, 
the 5-year AUC for the TCGA-LIHC database was 0.81, 
while the 4-year AUC for the NODE database was 0.79. 
Compared to previous signatures which were constructed 

Figure 6 Somatic mutation analysis. (A) Somatic mutational landscape of significantly mutated genes in the low-risk group. (B) Somatic 
mutational landscape of significantly mutated genes in the high-risk group. A, T, C, G represent adenosine, thymine, cytosine, guanine. 
SNV, single nucleotide variation; SNP, single nucleotide polymorphism; ONP, oligo-nucleotide polymorphism; INS, insertion; DEL, 
deletion.
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Figure 7 Drug susceptibility analysis. The differences in the IC50 values between the high- and low-risk groups of (A) erlotinib, (B) lapatinib, 
(C) docetaxel, (D) AKT inhibitor VIII, (E) etoposide, (F) gemcitabine, (G) imatinib, (H) cytarabine, (I) methotrexate, (J) paclitaxel, (K) 
sorafenib, (L) tipifarnib, (M) vinblastine, and (N) vorinostat. IC50, half-maximal inhibitory concentration.
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by pyroptosis-related lncRNAs in HCC, the AUCs of our 
prognostic model are greater than others and show better 
predictive ability (46-48). These results indicated that our 
PLPI has a favorable performance for survival prediction.

The prognostic model constructed in this study was 
based on 10 prognostic lncRNA pairs, consisting of 
12 lncRNAs (CTC-297N7.9, CTD-2510F5.4, RP11-
432J22.2, LINC00942, RP11-92C4.6, RP11-150O12.3, 
RP11-187E13.1, RP11-443B20.1, RP11-519G16.5, 
RP11-536K7.3, RP11-540A21.2, and RP3-439F8.1). 
Notably, several lncRNAs included in our model have 
been previously shown to be association with various 
cancers, indicating their potential as powerful prognostic 
biomarkers. For example, Zhu et al. uncovered that the 
expression of CTC-297N7.9 is associated with tumor 
stage, tumor differentiation, and serum alpha-fetal protein, 
which suggested its clinical significance as a prognostic 
biomarker (49). Similarly, CTD-2510F5.4 had been 
identified as a crucial lncRNA possibly involved in the 
molecular pathogenesis of gastric cancer by regulating 
cell proliferation, cell cycle, and apoptosis (50). Moreover, 
Wang et al. have discovered the importance of LINC00942 
in the initiation and progression of lung adenocarcinoma, 
as it promotes apoptosis of A549 and H1299 cells (51). 
Previous studies have also highlighted that RP11-150O12.3 
might exert an indispensable role in the development 
and prognosis of different types of tumors, including 
HCC, colorectal adenocarcinoma, and gastric cancer 
(52-54). Furthermore, Qi et al. demonstrated that the 
lncRNA RP3-439F8.1 would motivate the proliferation 
and development of glioblastoma multiform tumor cells 
through vitro experiment (55). These findings, combined 
with our study, further confirmed the significance of these 
lncRNAs identified by multiple algorithms. Moreover, 
the identification of 10 prognostic lncRNA pairs holds 
promising implications for personalized effective treatment 
strategies for patients with HCC.

To better investigate the underlying biological functions 
of the PLPI, GSEA was performed on the high- and low-
risk groups. The results of GSEA revealed that several 
pathways were significantly enriched in the low-risk group, 
which have been proved to play a key role in HCC. For 
instance, Che et al. reported that fatty acid metabolism 
is involved in the molecular pathogenesis of HCC and is 
greatly harmful to the growth of HCC cells, showing the 
potential to be a new treatment method (56). Meanwhile, 
Sato et al. had explored the association between HCC 
prognosis and coagulation, which showed future prospect 

for HCC treatment (57). Additionally, cytokine-cytokine 
receptor interaction is essential for understanding the 
immunological and inflammatory responses in disease and 
may be a key pathway during HCC development (58,59). 
Moreover, the function of peroxisome has been shown to 
be highly correlated with metabolic stress, mammalian 
target of rapamycin (mTOR) inhibition, and lethality in 
liver cancer cells, as well as serving as a key regulator of 
immune function and inflammation during development 
and infection (60,61). Kimura et al. found that the PPAR 
signaling is essential for the mechanism of carcinogenesis in 
fatty liver, which also is involved in several other mechanisms 
such as apoptosis and anti-inflammatory responses (62). In 
contrast, the GSEA results indicated that three essential 
signal pathways were notably enriched in the high-risk 
group, including DNA repair, Myc targets V1, Myc targets 
V2, which were primarily associated with initiation, invasion, 
and metastasis of tumor cells (63). Patel et al. found that the 
enrichment of Unfold protein response is associated with 
poorer OS in HCC patients (64). Simultaneously, the high-
risk group was also enriched in some disease pathways such 
as Parkinson disease, Alzheimer disease, and non-alcoholic 
fatty liver disease, while the low-risk group was also enriched 
in metabolism-related pathways and immune-related 
pathways, such as drug metabolism cytochrome p450 and 
PPAR signaling pathway. Therefore, these findings suggest 
that the prognostic model PLPI is highly correlated with 
the development of HCC, and the pathways highlighted 
above may help uncover the potential mechanisms of HCC 
carcinogenesis and development.

Pyroptosis is a type of programmed cell death that has 
been implicated in inflammation and tumor immunity (65). 
In this study, we utilized CIBERSORT and ssGSEA 
analyses to evaluate the composition of tumor-infiltrating 
immune cells in HCC. Our finding showed that the high-
risk group had higher proportions of M0 macrophages and 
T regulatory (Treg) cells, whereas the low-risk group had 
more infiltrated of gamma delta T cell, monocytes, and B 
cells. Notably, Farha et al. discovered that high enrichment 
of M0 macrophages may contribute to a poor prognostic 
outcome in HCC (66). Treg cells may not only promote the 
invasion and immune escape of HCC but also suppress the 
immune response (67,68). However, gamma delta T-cells 
are not only essential for a favorable prognosis of HCC by 
assessing the patients’ survival time and tumor size, but also 
play a crucial role in tumor immunosurveillance, cancer 
immunotherapy, and anti-tumor cytokine production 
(69,70). Activated monocytes in the peritumoral stroma 
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of HCC turn the inflammatory response into tissue 
remodeling and proangiogenic pathway and accelerate 
expansion of memory T helper 17 cells, which might help 
the development of anticancer therapy (71). Garnelo et al. 
found that the interaction between tumor-infiltrating B 
cells and T cells is beneficial to enhance the local immune 
activation and lead to the better survival outcomes (72). 
Moreover, the results of ESTIMATE analysis displayed 
that the stromal score, immune score, and estimate score 
were higher in the low-risk group than those in the high-
risk group. In the meanwhile, it also demonstrated that the 
PLPI could partially reflect the immune status of patients 
with HCC and is useful for assessing the abundance 
of immune cell infiltration in different risk groups. In 
conclusion, the results of immune analyses demonstrated 
that immune therapy may be beneficial for patients in the 
low-risk group, which implied the crucial role of PLPI in 
the clinical treatment of HCC.

The development of cancer is known to be influenced 
by the accumulation of genetic mutations (73). In our 
study, we performed mutation analysis and found that 
the levels of TP53, CTHNB1, and TTN were significantly 
higher in the high-risk group compared to the low-risk 
group, which indicated that the low-risk group had a better 
prognosis for HCC patients. Hussain et al. have previously 
demonstrated that TP53 mutations are relevant to viruses as 
well as chemicals during the HCC pathogenesis period (74).  
Tornesello et al. found that CTNNB1 mutations activate 
the development of HCC and cause the aberrant activation 
of Wnt signaling and nuclear accumulation of β-catenin, 
which play an important role in HCC (75). Kong et al. 
found that TTN mutations, with the second highest 
mutation frequency in HCC, causes familial hypertrophic 
cardiomyopathy and the detection of TTN mutation, and 
could help patients make better treatment decisions (76). 
These findings indicated that the prognostic model PLPI 
constructed in our study may not only cast a new light on 
the HCC development, but also contribute to individualized 
treatment for HCC patients.

Drug sensitivity analysis suggested that HCC patients 
in the low-risk group were more sensitivity to erlotinib and 
lapatinib, which showed consistency to previous studies 
(77,78). On the other hand, HCC patients in the high-
risk group showed more sensitivity to drugs, such as AKT 
inhibitor VIII, Cytarabine, and Docetaxel. These results 
suggest that the prognostic model PLPI not only aids in 
selection of chemotherapy regimens, but also serves as a 
clinical treatment guide for HCC.

In conclusion, PLPI is a novel prognostic model 
for predicting the OS of the patients with HCC. It not 
only incorporates the significance of pyroptosis but also 
effectively mitigates the impact of the experimental batch 
effects through the application of REO method. The 
robustness and reliability of PLPI has been evaluated and 
validated using both the testing set (TCGA-LIHC dataset) 
and an independent external set (NODE-OEP000321 
dataset), which significantly enhancing its reliability and 
potential for clinical application. However, this study has 
several limitations. For example, the clinical information 
available from the TCGA-LIHC and NODE databases 
is inadequate and limited, and additional studies are 
necessary to confirm our findings through in vitro or in vivo 
experiments. Additionally, to enhance our understanding of 
the underlying mechanism of PLPI, further investigations 
should focus on the specific lncRNAs involved in its 
construction, which can provide valuable insights into 
the biological processes underlying HCC prognosis and 
potentially identify new therapeutic targets.

Conclusions

In summary, we developed a novel prognostic model PLPI 
using 10 pyroptosis-related lncRNA pairs, which offers 
a unique perspective for improving the clinical decision-
making process for patients with HCC. Moreover, this 
study could provide a valuable contribution towards the 
development of more effective treatments plans and 
improve outcomes for patients with HCC.
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Table S2 The list of 10 pyroptosis-related lncRNA pairs

CTC-297N7.9|CTD-2510F5.4

CTC-297N7.9|RP11-432J22.2

LINC00942|RP11-92C4.6

RP11-150O12.3|RP11-92C4.6

RP11-187E13.1|RP11-92C4.6

RP11-443B20.1|RP11-92C4.6

RP11-519G16.5|RP11-92C4.6

RP11-536K7.3|RP11-92C4.6

RP11-540A21.2|RP11-92C4.6

RP11-92C4.6|RP3-439F8.1

LncRNA, long non-coding RNA.

Table S1 The list of 22 immune cell types

B cells naive

B cells memory

Plasma cells

T cells CD8

T cells CD4 naive

T cells CD4 memory resting

T cells CD4 memory activated

T cells follicular helper

Treg cells

T cells gamma delta

NK cells resting

NK cells activated

Monocytes

Macrophages M0

Macrophages M1

Macrophages M2

Dendritic cells resting

Dendritic cells activated

Mast cells resting

Mast cells activated

Eosinophils

Neutrophils

Treg, T regulatory; NK, natural killer.

Supplementary

Figure S1 The data diagram of collection for DEPR-lncRNAs. LncRNA, long non-coding RNA; mRNA, message RNA; TCGA-LIHC, 
The Cancer Genome Atlas-Liver Hepatocellular Carcinoma; NODE, National Omics Data Encyclopedia; DElncRNAs, differentially 
expressed lncRNAs; DEmRNAs, differentially expressed mRNAs; DEPR-mRNAs, differentially expressed pyroptosis-related mRNAs; 
DEPR-lncRNAs, differentially expressed pyroptosis-related lncRNAs.


