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Introduction

According to the 2020 global cancer statistics, primary liver 
cancer was the sixth most common cancer worldwide in 
2020 and the third leading cause of cancer deaths (1), of all 
primary liver cancers, hepatocellular carcinoma (HCC) is 

the most common tumor, accounting for 90% of cases (2), 

and it is estimated that more than 1 million people will be 

affected by HCC each year by 2025 (3). Distant metastasis 

often leads to a poor prognosis of HCC (4,5). Anoikis is 

caused by cells and extracellular matrix (ECM) and is a 
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specific form of apoptotic process induced by absent or 
inappropriate attachment to adjacent cells (6). Anoikis is an 
important mechanism for maintaining the correct location 
of cells in tissues. Induction of anoikis occurs when cells 
lose attachment to ECM or adhere to inappropriate types 
of ECM (7). It has been shown that promoting anoikis 
resistance has an important role in tumor cell progression 
(8,9), resistance to anoikis is an inherent property of 
aggressive tumor cells. Anoikis resistance is believed to 
contribute to the survival of tumor cells that detach from 
the primary tumor, thereby facilitating metastasis (10). 
Without anoikis resistance, cancer cells cannot survive 
outside their primary site (11,12). Ye et al. discovered that 
nuclear MYH9 conferred anoikis resistance to gastric 
cancer cells by identifying the CTNNB1 promoter and, 
in turn, facilitated the metastasis of gastric cancer (13). 
Research by D’Amato indicates that TDO2 promotes 
anoikis resistance, migration, and invasive capabilities in 

triple-negative breast cancer, leading to a shorter overall 
survival (OS) (14). According to Wang et al., CPT1A-
mediated fatty acid oxidation inhibits anoikis, which in turn 
encourages colorectal cancer (CRC) cells to metastasize (15). 
Previous studies have shown that anoikis resistance plays 
an important role in the progression of HCC (16,17). The 
main components of the tumor microenvironment (TME) 
are immune cells and stromal cells, responsible for tumor 
dissemination, recurrence, metastasis, immune therapy 
efficacy, and prognosis (18,19). Infiltration of CD4 and 
CD8 T lymphocytes in tumors exerts anti-tumor effects, 
and is associated with a favorable prognosis (20). Tumor-
associated macrophages (TAMs) exert a tumor-promoting 
effect by secreting immunosuppressive factors, leading 
to a poorer prognosis (21). TME characteristics of HCC 
include abnormal angiogenesis, chronic inflammation, and 
dysregulated ECM remodelling, collectively leading to 
an immunosuppressive environment, thereby promoting 
the proliferation, invasion, and metastasis of HCC (22). 
Therefore, exploring the prognostic value of ANRGs in 
HCC, differences in the TME, and establishing a new 
prognostic model for HCC is of significant importance.

In this study, we primarily investigated the prognostic 
value of ANRGs in HCC. We established a prognostic 
scoring model based on ANRGs and further explored the 
differences in the TME among patients stratified by this 
risk-scoring system. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-23-2096/rc).

Methods

Data acquisition and processing

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The gene 
expression profiling and clinical information of 371 HCC 
tissues and 50 normal adjacent tissues were obtained from 
The Cancer Genome Atlas Program (TCGA) database 
(https://portal.gdc.cancer.gov/). The gene expression 
profiling and clinical information of 115 HCC tissues and 
52 adjacent non-tumor tissues were obtained from The 
Gene Expression Omnibus (GEO) database [National 
Center for Biotechnology Information (https://nih.gov)]. 
From the GeneCard database (23) (https://www.genecards.
org/) and the Harmonizome portals (24) (https://maayanlab.
cloud/Harmonizome/), 516 anoikis-related genes (ANRGs) 
in total were obtained. In addition, the “Limma” R package 
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was used to compare the expression of 516 ANRGs in 
tumor tissues and nearby normal tissues in the TCGA-Liver 
Hepatocellular Carcinoma (TCGA-LIHC) cohort, and 
219 differentially expressed genes (DEGs) were identified. 
Ninety-nine ANRGs associated with prognosis in HCC 
patients were obtained using univariate Cox regression 
analysis. The TCGA-LIHC cohort was combined with 
the GSE76427 cohort and the batch effect was removed to 
obtain the new “LIHC-GSE76427” cohort.

HCC subtype analysis

The anoikis scores of each HCC patient in the LIHC-
GSE76427 cohort were assessed using the R gene set 
variation analysis (GSVA) algorithm based on 99 anoikis 
genes. The cut-off values for the anoikis score were 
determined using the “survminer” package in R, and HCC 
patients were divided into the anoikis high score group 
and the anoikis low score group. Consistency of clustering 
was verified using the R package “ggplot2” for Uniform 
Manifold Approximation and Projection (UMAP) and 
t-Distributed Stochastic Neighbor Embedding (t-SNE).

Function enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of ANRGs was performed using the 
“GSVA” R package to explore their potential function in 
HCC progression (25). The “c2.cp.Kegg.symbols.gmt” 
gene sets were derived from the Molecular Signatures 
Database (MSigDB) (26).

Construction of HCC prognostic model based on ANRGs

The ANRG expression associated with HCC prognosis 
in the LIHC-GSE76427 cohort was randomly grouped 
to obtain experimental and control groups, with 50% of 
the experimental group and 50% of the control group, the 
least absolute shrinkage and selection operator (LASSO) 
regression model was constructed using data from the 
training group, and the penalty regularization parameter 
λ was determined by cross-validation, and the Cox model 
was constructed using the obtained characteristic genes 
to obtain their corresponding coefficients. The ANRG 
risk model was constructed as follows: ANRG risk score 
= Ʃ (Coeii × Expi), Coeii is the corresponding coefficient 
of the ith gene, and Expi is the expression of the ith gene. 
The receiver operating characteristic (ROC) curves of the 

train and test groups were analyzed with the “TimeROC” 
package in R. The training and test groups were divided 
into high-risk and low-risk groups based on the median 
value of the risk score, and the Kaplan-Meier (KM) survival 
curves of the train and test groups were analyzed with the 
“SURVIVAL” package in R, to further explore the accuracy 
of the model for HCC prognosis.

Relationship between risk score and immune cell 
infiltration

Immune cell infiltration analysis was performed using 
the “CIBERSORT” package in R (27). Differences in 
immune cells between risk scores were analyzed using the 
“LIMMA” package. Spearman correlation analysis was used 
to assess the correlation between risk score and immune cell 
infiltration.

Relationship between risk score and clinicopathological 
features in patients with HCC

Univariate Cox analysis was used to investigate the 
corre lat ion between OS and c l in icopathologica l 
characteristics such as age, gender, pathological stage, and 
risk score. Clinicopathological features were associated 
with OS in HCC patients, and multivariate Cox regression 
analysis was used to screen independent prognostic factors 
for HCC. The nomogram was created using risk scores and 
clinicopathological characteristics. To ensure their accuracy, 
calibration charts were internally validated. The Time-
dependent Concordance (Time-C) index was used to verify 
the nomograms’ accuracy in making predictions. Decision 
curve analysis (DCA) was performed to assess the clinical 
net benefit (28).

Tumor immune single cell hub database

A comprehensive online database of single-cell RNA 
sequencing (RNA-seq) focusing on the TME is called 
the Tumor Immune Single-Cell Hub (TISCH; http://
tisch.comp-genomics.org) (29). Using this database, the 
TME heterogeneity in diverse data sets and cell types was 
methodically investigated.

Statistical analysis

Data were prepared using Perl programming language 
(v5.32.1). All analyses in this study were performed using 
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R software (v4.2.1). P<0.05 was considered statistically 
significant (*, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001).

Results

Identification of ANRGs associated with prognosis

Genecards and Harmonizome portals were used to get a total 
of 516 genes associated with anoikis. The expression of these 
ANRGs was compared between tumor and adjacent normal 
tissues in the TCGA-LIHC cohort, and 219 DEGs were 
identified based on logFC (fold change) >1 and false discovery 
rate (FDR) <0.05. The heatmap showed the first 30 DEGs 
(Figure 1A). Univariate Cox regression analysis showed that 
99 genes in 219 ANRGs were associated with survival, and 

the difference was statistically significant (P<0.05). Twenty-
eight genes were screened for P<0.001 and shown in a forest 
plot (Figure 1B), all of which were associated with poor 
prognosis. These DEGs may play a role in the development 
and progression of HCC. The network diagram shows the 
relationship between the expression levels of these genes  
(Figure 1C). It can be seen that all of these DEGs are 
prognosis-related high-risk genes for HCC, and all of them 
are positively regulated by each other. To learn more about 
how these ANRGs are altered on the chromosome and the 
location of each gene on the chromosome, copy number 
variation (CNV) data were retrieved from the TCGA database. 
As shown in Figure 1D,1E, PHLDA2, KIF18A, and CTTN 
have the most “gains” on chromosome 11, whereas SPP1 and 
MAD2L1 have the biggest “losses” on chromosome 4.
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Figure 1 Features and variations of anoikis-related regulators in HCC. (A) The heat map shows the top 30 DEGs. (B) The top 28 ANRGs 
(P<0.001) from the univariate Cox regression analysis are displayed in the forest plot. (C) The connections between the 28 ANRGs were 
displayed in a network diagram. (D) In TCGA-LIHC, 28 ANRGs have CNVs. Red dots: increase in copy numbers. Blue dots: missing copy 
numbers. Black dots: normal copy numbers. (E) Chromosome region and alteration of ANRGs. CI, confidence interval; CNV, copy number 
variant; HCC, hepatocellular carcinoma; DEGs, differentially expressed genes; ANRGs, anoikis-related genes; TCGA-LIHC, The Cancer 
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Consistent clustering of HCC molecular subgroups using 
ANRGs

The “Consensus clustering plus” R program was used 
to perform consensus clustering utilizing prognosis-
associated ANRGs. The figure illustrates that the queue 
can be effectively separated into two subtypes when K =2  
(Figure 2A). UMAP and t-SNE were used to test the 
accuracy of concordance clustering. The results show that 
when K =2, two clustering subtypes can be well identified 
(Figure 2B,2C). A statistically significant difference in 
prognosis between the two subtypes was found in the OS 
analysis (P<0.001) (Figure 2D). The GSVA R package was 
used to test the differential enrichment of KEGG pathways 
between cluster A and cluster B (Figure 2E). Cluster B had 
a poor prognosis and is mainly involved in the cell cycle 

and pathogenic Escherichia coli infection. Aberrancy in cell 
cycle progression is one of the fundamental mechanisms 
underlying tumorigenesis (30). HCC is frequently associated 
with pathogen infection-induced chronic inflammation (31).

Analysis of gene expression and difference of immune cells 
between the two subtypes

The boxplot displays the two subgroups’ ANRG expression 
patterns (Figure 3A). The expression of ANRGs in cluster 
B was higher than that in cluster A. These genes may be 
important molecules that affect the prognosis of HCC 
patients and prospective targets for targeted therapeutics 
due to the poor overall prognosis of cluster B. In addition, 
there was also a significant difference in the level of immune 
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cell infiltration between the two clusters (Figure 3B), and 
the activation ratio of myeloid-derived suppressor cells 
(MDSC) cells in cluster B was significantly higher than 
that in cluster A. It has been demonstrated that MDSC 
are produced as tumors grow and inhibit T and natural 
killer (NK) cell antitumor activity. In cancer patients, 
their enrichment is linked to a poor prognosis and a worse 
response to immunotherapy (32).

Construction of a prognostic model of ANRGs in HCC

ANRG r i sk  charac ter i s t i c s  were  ana lyzed  us ing 
the univariate LASSO Cox regression model. The 
“ANRGscore” refers to the ultimate risk score based on the 
seven characteristic genes (Figure 4A,4B). Prognostic index 
(PI) = (0.170 × ETV4 expression level) + (0.05 × SPINK1 
expression level) + (0.202 × PBK expression level) + (0.167 
× SLC2A1 expression level) + (0.191 × FASN expression 
level) + (0.259 × RAC3 expression level) + (0.220 × MMP3 
expression level). Under the model, the ROC curves at 1, 
3, and 5 years in both the TRAIN and TEST groups had 
good predictive performance (Figure 4C,4D). The KM 
curves in the high-risk group in the TRAIN group showed 
a poor prognosis, and the validation cohort in the TEST 
group also showed a poor prognosis (Figure 4E,4F). Risk 
scores were significantly different between the two subtypes 
(Figure 4G), showing anoikis-related clusters, ANRGscore, 
and alluvial layers of changes in survival status (Figure 4H).

Immune cell infiltration with different risk scores

The relative proportions of infiltrating immune cells were 
quantified using the CIBERSORT R script. First, using 
a risk score to rank HCC from low to high, the number 
of various immune cells was displayed (Figure 5A). As the 
risk score rose, the percentage of activated T-cell CD4 
steadily increased (R=0.44) (Figure 5B). In addition, a higher 
proportion of activated memory T-cell CD4 cells among 
immune cells in the high-risk group (Figure 5C), shows 
that memory T-cell CD4 activation may have a significant 
role in the patient’s poor prognosis for HCC. Immune 
cell interactions in HCC patients may offer hints to better 
comprehend the makeup of the immune microenvironment 
during particular periods (Figure 5D). 

The risk score is an independent prognostic factor in HCC 
patients

Nomogram was created using the clinical data and the 
ANRGscore model (Figure 6A). The calibrated plot 
demonstrates the reliability of the nomogram (Figure 6B). The 
DCA curve shows that the model has guiding significance 
for clinical application and may be beneficial to patients 
with HCC (Figure 6C-6E). Patients with a higher HCC 
score on the nomogram had a gradually increased OS risk, 
as indicated by the cumulative risk curve (Figure 6F). The 
forest plot shows that risk score and stage are the primary 
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influencing elements in the nomogram (Figure 6G). These 

findings indicate the reliability of the nomogram based on 

the ANRGs risk score in predicting the clinical prognosis of 

patients with HCC. 

Analysis of the correlation between the tumor immune 
microenvironment and ANRGs

The expression of seven ANRGs in TME was examined 
using the single-cell dataset LIHC-GSE166635 from the 

Figure 4 Determine the prognostic signature linked to anoikis. (A) Seven prognostic ANRGs were found using the univariate LASSO 
approach with cross validation. (B) Profile graphs of seven prognostic ANRGs with coefficients. (C) Time-dependent ROC curve for OS 
at 1, 3 and 5 years in the train group. (D) Time-dependent ROC curves for OS at 1, 3 and 5 years in the test group. (E) The KM curve of 
train group. (F) KM curve of test group. (G) Risk score in two clusters established before. (H) Alluvial diagram of subtype and living status. 
AUC, area under the curve; ANRG, anoikis-related gene; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating 
characteristic; OS, overall survival; KM, Kaplan-Meier. 
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TISCH database. There are 10 different cell types and 
20 different cell populations in the GSE166635 dataset  
(Figure 7A-7C). BAK1 was mainly expressed in malignant 
cells, with lower expression in endothelial cells, epithelial 
cells, fibroblasts, and immune cells (Figure 7D). SPINK1 
was highly expressed in all cells, especially in malignant and 
epithelial cells (Figure 7E), PBK was less expressed in all 
cells (Figure 7F), SLC2A1 was more expressed in dendritic 
cells (Figure 7G), and FASN was more expressed in 
malignant cells (Figure 7H). RAC3 expression was generally 
low in all cells and relatively high in malignant cells  
(Figure 7I), and MMP3 was mainly expressed in endothelial 
cells, epithelial cells, and fibroblasts (Figure 7J).

Discussion

HCC is an aggressive disease with a poor clinical  
prognosis  (33) .  Therefore ,  the  es tabl i shment  of 
predictive models may provide an important tool for 
early intervention. For example, Long et al. developed a  
four-gene prognostic model that performed well in 
predicting the prognosis of HCC (34). Tang et al. 
established a novel tumor immunological phenotype-related 
gene index (TIPRGPI), consisting of 11 genes, to predict 
HCC prognosis and response to immunotherapy (35). A 
recently published work builds anoikis-based signatures 
by machine learning for HCC prognosis prediction. The 
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article was studied by examining data from TCGA-LIHC, 
and validated using data from Hepatocellular Carcinoma 
Expression Database (HCCDB) to obtain risk score 
signatures for nine genes, with a focus on the role of DAP3 
in HCC progression (36). In addition, in recent years, 
there have been articles studying the apoptotic-related 
genes ANRGs and their association with HCC prognosis 

(37-40). In comparison to previous research, our study is 
based on the merged LIHC-GSE76427 cohort, derived by 
combining the TCGA and GEO databases after removing 
batch effects. This approach provides a more comprehensive 
coverage of information and enhances credibility compared 
to individual databases. Through internal validation, 
our model has demonstrated high predictive capability. 

Figure 6 Nomograms for patients with HCC. (A) Nomogram plot determined by clinicopathological variables and ANRGscore. (B) Plot 
of calibration used to validate the nomogram. (C) The nomogram’s DCA curves for patients with HCC’s 1-year OS. (D) DCA curves of 
the nomogram in patients with HCC for 3-year of OS. (E) DCA curves of the nomogram in patients with HCC for 5-year of OS. (F) A 
cumulative hazard curve was used to show the likelihood of surviving as time went on. (G) The multivariable Cox regression analyses of the 
clinical characteristics and risk score in patients with HCC are summarized in a forest plot. ***, P<0.001. OS, overall survival; CI, confidence 
interval; HCC, hepatocellular carcinoma; ANRG, anoikis-related gene; DCA, decision curve analysis. 
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Figure 7 ANRGs expression in HCC TME-associated cells. (A) Annotation of all cell types in GSE166635. (B) Cell clustering in 
GSE166635. (C) Percentage of each cell type in GSE166635. (D) Percentages and expressions of BAK1 in GSE166635. (E) Percentages 
and expressions of SPINK1 in GSE166635. (F) Percentages and expressions of PBK in GSE166635. (G) Percentages and expressions of 
SLC2A1 in GSE166635. (H) Percentages and expressions of FASN in GSE166635. (I) Percentages and expressions of RAC3 in GSE166635. 
(J) Percentages and expressions of MMP3 in GSE166635. LIHC, Liver Hepatocellular Carcinoma; DC, dendritic cells; ANRGs, anoikis-
related genes; HCC, hepatocellular carcinoma; TME, tumor microenvironment. 

1.00

0.75

0.50

0.25

0.00

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

7
6
5
4
3
2
1
0

6

5

4

3

2

1

0

B
CD8T
DC 
Endothelial
Epithelial
Fibroblasts
Malignant
Mast 
Mono/Macro
Tprolif 
Treg

B
CD8T
DC 
Endothelial
Epithelial
Fibroblasts
Malignant
Mast 
Mono/Macro
Tprolif 
Treg

0
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

P
ro

po
rt

io
n

LIHC_GSE166635

BAK1

LIHC_GSE166635

LIHC_GSE166635 LIHC_GSE166635 LIHC_GSE166635

FASN

FA
S

N

RAC3

R
A

C
3

MMP3

M
M

P
3

LIHC_GSE166635 LIHC_GSE166635 LIHC_GSE166635

B
A

K
1

SPINK1

S
P

IN
K

1

PBK

P
B

K

SLC2A1

S
LC

2A
1

LIHC_GSE166635

Celltype (major-lineage)

Cell_type

Cluster

HCC1 HCC2
Patient

B

B

B B B

CD8T

CD8T

CD8T
CD8T

CD8TCD

CD

CD CD CD

End
ot

he
lia

l

End
ot

he
lia

l

End
ot

he
lia

l

End
ot

he
lia

l

End
ot

he
lia

l

Epith
eli

al

Epith
eli

al

Epith
eli

al

Epith
eli

al

Epith
eli

al

Fib
ro

blas
ts

Fib
ro

blas
ts

Fib
ro

blas
ts

Fib
ro

blas
ts

Fib
ro

blas
ts

M
ali

gn
an

t

M
ali

gn
an

t

M
ali

gn
an

t

M
ali

gn
an

t

M
ali

gn
an

t

M
as

t

M
as

t

M
as

t
M

as
t

M
as

t

M
on

o/
M

ac
ro

M
on

o/
M

ac
ro

M
on

o/
M

ac
ro

M
on

o/
M

ac
ro

M
on

o/
M

ac
ro

Tp
ro

lif

Tp
ro

lif

Tp
ro

lif

Tp
ro

lif

Tp
ro

lif
Tre

g

Tre
g

Tre
g

Tre
g

Tre
g

B
CD8T CD

End
ot

he
lia

l

Epith
eli

al

Fib
ro

blas
ts

M
ali

gn
an

t
M

as
t

M
on

o/
M

ac
ro

Tp
ro

lif
Tre

g B
CD8T CD

End
ot

he
lia

l

Epith
eli

al

Fib
ro

blas
ts

M
ali

gn
an

t
M

as
t

M
on

o/
M

ac
ro

Tp
ro

lif
Tre

g

A

F

B

G

C

H

D

I

E

J



Yu et al. Anoikis gene signature in hepatocarcinoma1844

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(4):1834-1847 | https://dx.doi.org/10.21037/tcr-23-2096

Moreover, we not only investigated immune cell infiltration 
under different risk scores but also explored the expression 
of ANRGs in TME-associated cells.

Anoikis is a form of apoptosis in which when cells are 
separated from the right ECM, they disrupt the binding 
of integrins. This is a key mechanism to prevent dysplastic 
cell growth or attachment to inappropriate substrates (41). 
Anoikis prevents shed epithelial cells from colonizing 
elsewhere and is therefore critical for tissue homeostasis 
and development (42). Normal epithelial cells undergo 
an apoptotic process known as anoikis as they detach, 
losing important survival elements (43). To survive before 
metastasis, tumor cells must develop anoikis resistance, 
and metastatic tumor cells of HCC acquire resistance to 
anoikis, enabling them to initiate metastasis (44). The role 
of promoting anoikis resistance in liver cancer progression 
has been reported (45,46).

In our study, 219 DEGs were obtained by comparing the 
expression of ANRGs in the TCGA-LIHC cohort between 
tumors and adjacent normal tissues, of which 99 ANRGs 
were associated with the prognosis of HCC, TCGA-LIHC 
and GSE76427 were combined and randomly divided into 
training and test groups, and data from the training group 
were used to construct the LASSO regression model and 
determine the penalty regularization parameter λ by cross-
validation, and the Cox model was constructed using the 
obtained signature genes to obtain their corresponding 
coefficients, and risk scores based on the seven signature 
genes obtained and validated using the test group data, 
and finally, ETV4, SPINK1, PBK, SLC2A1, FASN, 
RAC3, and MMP3 were used to construct a prognostic 
prediction model for HCC. Among the seven prognosis 
genes signatures, a specific link between these genes and 
cancer progression has been identified in earlier studies. For 
example, ETV4 promotes pancreatic ductal adenocarcinoma 
metastasis by activating the CXCL13/CXCR5 signaling  
axis (47). SPINK1 is upregulated in HCC and its upregulation 
is associated with poor prognosis and is an oncogenic factor 
for HCC progression (48). PBK/TOPK is associated 
with the development, progression, and metastasis of  
malignancies (49). SLC2A1 plays a critical role in cancer 
progression and is primarily associated with functions such as 
epithelial-mesenchymal transition (EMT), glycolysis, hypoxia, 
cell cycle regulation, and DNA repair (50). Stabilization of 
FASN by ACAT1-mediated GNPAT acetylation plays a critical 
role in hepatocarcinogenesis (51). Rac3 regulates breast 
cancer invasion and metastasis by controlling adhesion 
and matrix degradation (52). Matrix metalloproteinases 

(MMP) contribute to the local and distant progression 
of HCC by participating in the EMT of HCC (53). 
By examining immune cell infiltration at different risk 
scores, we found a higher proportion of activated memory 
T-cell CD4 among immune cells in the high-risk group, 
suggesting that activation of memory T-cell CD4 may play 
an important role in patients’ poor HCC prognosis. We 
created nomograms using clinical data and the ANRGscore 
model, and the DCA curves indicated that risk score was 
an independent prognostic factor for HCC patients, and 
the ANRGs risk score-based nomograms were reliable 
in predicting the clinical prognosis of HCC patients, in 
addition, we further explored the relevance of these seven 
ANRGs to the tumor immune microenvironment.

The HCC patients were divided into groups based on 
the high or low expression of genes related to anoikis. 
Different subgroups significantly differed in the expression 
and prognosis of ANRGs, and the risk score was an 
independent factor impacting the prognosis of HCC. It 
is suggested that our seven signature genes can be used to 
effectively judge the prognosis of the patients. This aids 
clinicians in designing various treatment plans. The DCA 
curves also showed that nomograms based on the seven 
genetic characteristics could benefit HCC patients within 1, 
3 and 5 years.

Although our risk score and the established nomograms 
based on the risk score it are good predictors of clinical 
outcomes in patients with HCC, our study has some 
inadequacies. Firstly, the construction and validation of our 
prognostic model are based on a retrospective database; 
therefore, our research findings should be further confirmed 
through prospective clinical studies. Secondly, the potential 
mechanisms of these seven ANRGs associated with HCC 
prognosis require further experimental investigation.

Conclusions

Our study established a novel risk feature based on seven 
ANRGs, demonstrating significant efficacy in predicting 
the survival outcomes of HCC patients. Furthermore, 
our research revealed a close association between the risk 
score and the immune microenvironment, exploring the 
expression of ANRGs in TME-associated cells. In summary, 
the nomogram based on our model serves as a reliable 
predictive indicator for the survival of HCC patients, 
aiding healthcare professionals in formulating personalized 
treatment plans in clinical practice. Future investigations 
into the biological basis of this feature and prospective 
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randomized clinical trials may have substantial clinical 
implications and potentially lay the foundation for precision 
medicine.
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