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Background: Triple-negative breast cancer (TNBC), a type of breast cancer, lacks immune-related markers 
that can be used for prognosis or prediction. Therefore, we created a predictive framework for TNBC using 
a risk assessment.
Methods: Our previous study group consisted of 360 individuals who were diagnosed with TNBC 
through pathology using RNA sequencing and had clinical data from Fudan University Shanghai Cancer 
Center (FUSCC). A risk scoring model was constructed using the Cox regression method with the least 
absolute shrinkage and selection operator (LASSO). A multivariate Cox regression analysis was utilized 
to develop the prediction model, which was then assessed using the consistency index and calibration 
plots. The validation cohort of The Cancer Genome Atlas (TCGA) TNBC confirmed the strength of the 
signatures’ predictive value.
Results: The prognostic risk score model included 12 genes: TDO2, CHIT1, CARML2, HLA-C, ADIRF, 
C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL. The receiver operator characteristic (ROC) 
curves for survivability values at 1, 3, and 5 years in the FUSCC TNBC cohort demonstrated area under the 
curve (AUC) values of 0.78, 0.83, and 0.75, respectively. These results indicated a high level of accuracy in 
predicting outcomes, which was further confirmed through validation using TCGA database. The patients in 
the high-risk group showed worse prognoses and lower levels of immune cell infiltration, specifically CD8+ T 
cells, than those in the low-risk group. Furthermore, the low-risk group exhibited a significant upregulation 
of genes that encode immune checkpoints, including CD274 and CTLA4, suggesting that immunotherapy 
may yield enhanced efficacy within this particular group.
Conclusions: In conclusion, the prognostic signature consisting of 12 genes can assist in the choice of 

immunotherapy for TNBC.
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Introduction

Breast cancer is the most common lethal cancer in women 
(1,2). Triple-negative breast cancer (TNBC) is a distinct 
subset of breast cancer, accounting for approximately 15% 

of total occurrences. TNBC has a bleak outlook because of 

its high histological grade and aggressive behavior, which are 

not easy for the attainment of effective treatment (3). TNBC 

does not respond to conventional hormonal treatments and 
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is resistant to human epidermal growth factor receptor-2 
(HER2)-targeted therapy. Additionally, chemotherapy and 
radiotherapy may not always provide effective treatment 
for TNBC (4-7). Thus, there is an urgent need to develop 
novel effective targeted therapies.

Studies based on clinical  data and experiments 
have indicated that immunotherapy has the potential 
to significantly extend the lifespan of individuals. In 
recent years, several clinical studies have investigated 
immunotherapy treatments for TNBC (8-10). Compared 
to other subtypes, TNBC is considered to be sensitive 
to immunotherapy due to certain traits, such as genomic 
instability, a high tumor mutation burden, and elevated 
levels of immune infiltration (11,12). In addition, compared 
with other subtypes, TNBC patients exhibit significant 
expression of programmed cell death ligand 1 (PD-L1) (13). 
This discovery opens up new possibilities and guidelines for 
the advancement of effective immunotherapy treatments 
for TNBC patients (14). While TNBC exhibits a greater 
reaction to immune checkpoint inhibitors (ICIs) than 
other subtypes, there are TNBC patients who demonstrate 
limited effectiveness of immunotherapy (15). Hence, it 
is imperative to create innovative and efficient immune-
associated indicators for forecasting the outcome and 
effectiveness of immunotherapy.

This study aimed to discover new prognostic biomarkers 
associated with the immune system. Initially, we discovered 
2,008 genes that were expressed differently between the 
immunomodulatory (IM) group (n=87) and the remaining 
subtypes (n=273). Survival was significantly predicted 
by 33 immune-related genes (IRGs) according to the 
findings of univariate Cox regression analysis. Using the 

least absolute shrinkage and selection operator (LASSO) 
regression analysis, a model was created to predict breast 
cancer survival outcomes, including 12 out of 33 IRGs. 
A prognostic model was built and then validated in The 
Cancer Genome Atlas (TCGA) TNBC cohort. The 
identification of immune-related prognostic indicators for 
TNBC in our study aids in the precise immunotherapy 
of TNBC. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1554/rc).

Methods

Study cohort

Our previous study (16) described a total of 465 patients 
diagnosed with TNBC by pathology from Fudan University 
Shanghai Cancer Center (FUSCC) in the entire study 
cohort. The cohort contained 360 samples with RNA-
sequencing data and 279 samples with whole exome 
sequencing (WES) data. All samples were previously 
untreated primary breast cancers. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the independent ethics 
committee at Fudan University Shanghai Cancer Center 
Ethical Committee (No. 2019171). Informed consent were 
obtained. Data on TNBC (n=145), including expression, 
mutation, and clinical information, were obtained by 
utilizing the TCGA database. We acquired the single-cell 
RNA sequencing (scRNA-seq) information of five TNBC 
individuals from the Gene Expression Omnibus (GEO) 
repository using the study identifier GSE148673.

Currently, there is an ongoing multicenter trial called 
I-SPY2, which is adaptively randomized and open-label 
in nature. The study examined the use of neoadjuvant 
chemotherapy (NACT) in treating early-stage breast cancer 
patients with a high risk of recurrence (NCT01042379) 
(17,18). The platform trial simultaneously evaluates 
multiple investigational arms, each comprising NACT as a 
common control arm, along with an investigational agent or 
combination. For women diagnosed with breast cancer, the 
main objective is achieving pathologic complete response 
(pCR), which means there are no invasive tumors present 
in the breast or nearby lymph nodes following surgical 
treatment. The current investigation assessed the expression 
of TDO2, HLA-C, and OPLAH as distinct indicators 
for predicting pCR to the combination of paclitaxel and 
pembrolizumab.

Highlight box

Key findings
• A prognostic signature consisting of twelve genes can assist in 

the choice of immunotherapy for triple-negative breast cancer 
(TNBC).

What is known and what is new?
• TNBC lacks immune-related markers that can be used for 

prognosis or immunotherapy prediction. 
• The prognostic model was found to be associated with the 

prognosis of TNBC patients and immunotherapy efficacy.

What is the implication, and what should change now?
• This study provided immune-related markers that can be used for 

prognosis or prediction.
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Identification of differentially expressed IRGs and 
survival-associated IRGs

We used the limma package in R to analyze differential 
expression. Differential expression analysis was carried 
out comparing the IM group (n=87) with the remaining 
subtypes (n=273). Genes that satisfied the filtering 
conditions of adjust P<0.05 and |Log2 fold change (FC)| 
>0.58 were categorized as genes exhibiting differential 
expression. Survival-associated IRGs were identified using 
univariate Cox regression analysis in R with the ‘survival’ 
package.

Perform GO and KEGG analyses

To elucidate the role of the dysregulated redox-associated 
genes, we utilized the R package ‘clusterProfiler’ to conduct 
enrichment analyses for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses. 
The q value and the P value were the selection criteria, 
which must be less than 0.05.

Development and verification of the IRG signature

To construct the most precise and feasible prediction 
model, one can utilize the LASSO technique, which 
assigns weights to model parameters and identifies the 
crucial variables. We performed LASSO Cox regression 
using the R package ‘glmnet’ (19). Based on the findings 
of this analysis, a model was created using a 12-gene 
signature to forecast clinical outcomes in patients with 
TNBC. For each sample, risk scores were calculated by 
using coefficients assigned to each prognostic IRG. Risk 
scores were used to classify patients into high- and low-
risk groups during training and validation, which was 
determined using the median value.

Performance analysis

The survival package in R was utilized to analyze data 
concerning patients in the model. A log-rank test and 
Kaplan-Meier curves were employed to examine disparities 
between the two groups. The sensitivity and specificity 
of a model in predicting outcome events are often 
determined using a receiver operating characteristic curve 
(20). We utilized the R package ‘survival’ for the purpose 
of the receiver operator characteristic (ROC) analysis. 
Using the median risk score as a threshold, we plotted 

clinical outcome data against the risk score for patients 
with breast cancer. Our research produced ROC curves 
and computed the area under the curve (AUC) for survival 
at 3 and 5 years. Bootstrap resampling (1,000 resamplings) 
was utilized to assess the calibration capability of the 
nomograms. The line at a 45-degree angle symbolized 
ideal calibration, and the proximity of the line indicated 
the quality of calibration.

Estimation of immune infiltration

The CIBERSORT algorithm (21) was utilized to examine 
the infiltration of immune cells. The Wilcoxon rank-
sum test was used to analyze the disparities in immune 
infiltrating cell scores between the low- and high-risk 
groups.

Mutation spectrum characteristics

The analysis involved utilizing genetic somatic mutation 
data from the FUSCC TNBC cohort to compare the 
disparities between low- and high-risk groups. The analysis 
of genetic mutation differences between low-risk and high-
risk groups was conducted using Maftools (22).

Single-cell RNA-seq analysis

The t-distributed Stochastic Neighbor Embedding (tSNE) 
method was employed with the ‘seurat’ data processing 
package to decrease nonlinear dimensions (1). An annotated 
cell cluster was then created using the “singleR” package in 
combination with canonical markers (2). Additionally, the 
expression of genes in each cluster was plotted using the 
‘seurat’ package.

Statistical analysis

The data were assessed for statistical significance using 
GraphPad Prism software version 8 (GraphPad Software, 
San Diego, CA, USA) and R software version 3.5.2. 
Recurrence-free survival (RFS) was defined as the period 
from surgery to recurrence or last follow-up. Plots were 
created to assess the patients’ prognosis for 1-, 3-, and 5-year 
RFS using ROC curves. Survival analysis was performed 
using Kaplan-Meier with the Log-rank test. Student’s t-test 
was used to compare the variances between two groups. 
Analysis items with P<0.05 were considered statistically 
significant.
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Results

IRG model construction

We identified a total of 2008 distinct genes with differential 
expression (P<0.05, |log FC| >0.58) between the IM 
subtype and the remaining subtypes (Figures 1,2A). 
Univariate Cox analysis was conducted to detect survival-
associated IRGs, resulting in the identification of 33 genes 
as survival-related genes (Figure 2B). Afterwards, the 
implementation of LASSO Cox regression analysis led to 
the discovery of twelve genes associated with the immune 
system: TDO2, CHIT1, CARMIL2, HLA-C, ADIRF, 
C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and 
NEBL (Figure 2C). We used these genes to establish a 
prognostic risk model. The risk score for each individual 
was computed using the following equation: risk score = 
[The expression of TDO2 × (−0.13)] + [The expression 
of CHIT1 × (−0.13)] + [The expression of CARMIL2 × 
(−0.0004)] + [The expression of HLA-C × (−0.05)] + (The 
expression of ADIRF × 0.07) + (The expression of C19orf33 
× 0.07) + (The expression of CA8 × 0.03) + (The expression 
of AHNAK2 × 0.05) + (The expression of RHOV × 0.03) + 
(The expression of OPLAH × 0.006) + (The expression of 

THEM6 × 0.16) + (The expression of NEBL × 0.16). After 
calculating their risk scores, the patients were divided into 
two groups based on whether their scores were above or 
below the median value.

We displayed the distribution of risk scores between the 
low-risk and high-risk groups in the training and validation 
sets (Figure 3A,3B). Next, we displayed the survival status 
and survival time of patients in various risk categories 
in both the training and validation sets (Figure 3C,3D). 
In addition, the expression levels of 12 immune-related 
prognostic genes were examined in both the training and 
validation sets for each patient, as shown in Figure 3E,3F. 
According to the findings, patients who experienced 
recurrence exhibited elevated risk scores (Figure 3G). The 
analysis of survival indicated that participants classified 
as high-risk experienced a lower rate of RFS than those 
classified as low-risk (FUSCC TNBC cohort, P=0.001; 
TCGA TNBC cohort, P=0.005) (Figure 3H).

Validation of the prognostic risk model

By integrating the risk score with the pathologic T and 
N stage, we constructed a nomogram (Figure 4A). When 

Figure 1 Schematic of the research strategy. FUSCC, Fudan University Shanghai Cancer Center; TNBC, triple-negative breast cancer; IM, 
immunomodulatory; DEGs, different expression genes; FC, fold change; LASSO, least absolute shrinkage and selection operator; TCGA, 
The Cancer Genome Atlas; ROC, receiver operator characteristic.
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solely utilizing pathologic T stage for prognosis prediction, 
the anticipated AUC values for the 1-, 3-, and 5-year 
operating curves in the training and validation sets were 
0.50, 0.55, and 0.54 and 0.78, 0.74, and 0.68, respectively 
(Figure S1A,S1B). Using only the pathologic N stage as 
a predictor of prognosis, the predicted AUC values for 
the 1-, 3-, and 5-year operating curves in the training and 
validation sets were 0.74, 0.74, and 0.70 and 0.82, 0.77, and 
0.74, respectively (Figure S1C,S1D). Moreover, when we 
integrated the risk score with pathologic T and N stage to 
forecast prognosis, the projected AUC values for the 1-, 3-, 
and 5-year operating curves in the training and validation 
sets were 0.78, 0.83, and 0.75 and 0.91, 0.85, and 0.81, 

respectively (Figure 4B). The calibration graph additionally 
demonstrated that the forecast likelihood of the nomogram 
aligned with the real probability of RFS at 1, 3, and 5 years 
(Figure 4C), demonstrating the model’s prediction ability 
with satisfactory discrimination and accuracy.

Molecular features of the high- and low-risk groups

Prognostic genes were identified by conducting differential 
expression analysis between the high-risk and low-risk 
groups. A total of 885 distinct genes with differential 
expression (P<0.05, |log FC| >0.58) between the high-
risk and low-risk groups were identified. The results of the 

Figure 2 Identification of differentially expressed IRGs and construction of prognostic model. (A) Volcano plot of IRGs in the IM subtype 
and other subtypes. Through differential expression analysis, downregulated genes are labeled in blue and upregulated genes are labeled 
in red, respectively. (B) An analysis of univariate regression revealed 33 genes that were linked to prognosis (P<0.05). (C) The LASSO Cox 
regression model was used to plot partial likelihood deviations against log(λ). HR, hazard ratio; CI, confidence interval; IRGs, immune-
related genes; IM, immunomodulatory; LASSO, least absolute shrinkage and selection operator.
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enrichment analysis for biological process (BP) indicated 
that the differentially expressed genes were primarily 
enriched in the promotion of leukocyte activation and 
cell activation (Figure 5A). The results of the enrichment 
analysis for cell component (CC) indicated that the 
immunoglobulin complex and the external side of the 
plasma membrane were the main areas where differentially 
expressed genes were enriched (Figure 5B). The results of 
the analysis on molecular functions (MFs) indicated that 

various genes with differential expression were primarily 
enriched in antigen binding and binding to immunoglobulin 
receptors (Figure 5C). The KEGG pathway enrichment 
analysis showed that the genes with differential expression 
were predominantly enriched in cell adhesion molecules 
and infection caused by Staphylococcus aureus (Figure 5D). 
Next, we conducted additional analysis on the impacts 
of genetic mutations in both the high-risk and low-risk 
groups (Figure S2A,S2B). The top 15 genes with the 

Figure 3 Validation of prognostic risk scoring model. (A) An illustration of the distribution of risk scores in the FUSCC TNBC cohort is 
shown below. The color progression from green to red indicates the progression from low- to high-risk scores. (B) TCGA TNBC cohort 
risk score distribution. Low risk is indicated by the color green, while high risk is indicated by the color red. (C) The FUSCC TNBC 
cohort includes information about the survival status and duration of survival for each patient with TNBC. (D) Survival status and survival 
time were examined for patients in the TCGA TNBC group. (E) The FUSCC TNBC cohort displays a heatmap illustrating the expression 
of 12 immune-related genes that are prognostic for TNBC patients. (F) The TCGA TNBC cohort displays a heatmap illustrating the 
expression of 12 immune-related genes that are prognostic for TNBC patients. (G) Risk score in the no recurrence and recurrence groups 
in the FUSCC TNBC (left) and TCGA TNBC cohorts (right). Comparison using an unpaired t-test. (H) The survival rates of patients with 
TNBC in the high-risk and low-risk groups were compared in the FUSCC TNBC cohort (on the left) and the TCGA TNBC cohort (on 
the right). Statistical tests were performed using the log rank method. FUSCC, Fudan University Shanghai Cancer Center; TNBC, triple-
negative breast cancer; TCGA, The Cancer Genome Atlas.
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Figure 4 Combination of risk score and clinicpathological features to improve risk stratification and survival prediction. (A) A nomogram that 
merges a risk score with clinical attributes. (B) The time-ROC curves of the risk score combined with T and N stage in the FUSCC TNBC (left) 
and TCGA TNBC (right) cohorts. (C) Calibration plots of the risk score combined with clinicopathological features in the FUSCC TNBC (left) 
and TCGA TNBC (right) cohorts. AUC, area under the curve; RFS, recurrence-free survival; ROC, receiver operator characteristic; FUSCC, 
Fudan University Shanghai Cancer Center, TNBC, triple-negative breast cancer; TCGA, The Cancer Genome Atlas; T, tumor; N, lymph node.

Total points

1-year survival

3-year survival

5-year survival

0  1  2  3  4  5  6  7  8  9

0  1  2  3  4  5  6  7  8  9 10 11 12 13

0.9 0.7

0.0 0.2 0.4 0.6 0.8 1.0

0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.9 0.7

0.5 0.3 0.1

0.5 0.3 0.1

2

1  3
1  3

0  2

–1           –0.5             0              0.5             1             1.5             2              2.5

10

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.9

0.8

0.7

0.6

1.0

0.9

0.8

0.7

0.6

0.5

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity
O

bs
er

ve
d 

R
FS

O
bs

er
ve

d 
R

FS
S

en
si

tiv
ity

1–Specificity

Nomogram-predicted RFS Nomogram-predicted RFS

1–Specificity

1-year AUC =0.78
3-year AUC =0.83
5-year AUC =0.75

1-year
3-year
5-year

1-year
3-year
5-year

1-year AUC =0.91
3-year AUC =0.85
5-year AUC =0.81

Points

Risk score

T

N

A

B

C

0.9 0.7



Song and Shao. Predictive model and TNBC1714

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(4):1707-1720 | https://dx.doi.org/10.21037/tcr-23-1554

highest mutation frequencies were identified. In the low-
risk group, the TP53, PIK3CA, TTN, KMT2C, and ABCA13 
genes exhibited the most frequent mutations. In the high-
risk group, the TP53, TTN, PIK3CA, MUC16, and OBSCN 
genes exhibited the most mutations.

Differences between high-risk and low-risk groups in 
terms of immunity 

Our calculation of immune infiltration percentages based 
on the LM22 signature matrix was performed using 
CIBERSORT, and the integration of CIBERSORT and 
differential expression profiling revealed an abundance 
of immune-activated cells and immunostimulators within 
the low-risk group (Figure 5E and Figure S3A) (21,23). 
Meanwhile, we found that the low-risk group had a 
significant increase in the expression of immunoinhibitors, 
which further supports the use of immune checkpoint 
blockade as a therapeutic strategy (Figure S3B) (23).

To examine the association between IRGs and the 
effectiveness of immunotherapy, a total of 29 patients who 
received neoadjuvant immunotherapy in conjunction with 
chemotherapy were included in the study. The findings 
indicated that TDO2 and HLA-C exhibited reduced 
expression in non-pCR individuals (n=10). Conversely, 
OPLAH  was  overexpressed in  non-pCR pat ients  
(Figure 6). The utilization of these genes is anticipated 
for the prediction of the clinical effectiveness of TNBC 
immunotherapy.

Single-cell RNA-seq analysis of 12 genes of the signature

Using the tSNE technique and Single R annotation, we 
categorized TNBC tumor cells and microenvironmental 
cells from five patients in the GEO (GSE148673) 
repository. Our analysis revealed eight distinct cell clusters 
comprising malignant cells, B cells, T cells, macrophages, 
monocytes, fibroblasts, endothelial cells, and tissue stem 
cells (Figure 7A). The expression of the 12 genes in 
the signature revealed that HLA-C, ADIRF, C19orf33, 
CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL 
were frequently expressed in tumor cells, as depicted in  
Figure 7B-7M. However, TDO2, CHIT1, and CARMIL2 
had higher expression in tumor stem cells, macrophages and 
T cells, respectively. In addition, consistent with previous 
studies (24,25), we observed that HLA-C was expressed at 
a high level in all other immune cells. In addition, the Dim 
plot illustrates the relative expression of the 12 genes in the 

signatures (Figure 7N).

Discussion

In our prior investigation, we categorized TNBCs into four 
transcriptome-derived subcategories: (I) luminal androgen 
receptor (LAR), (II) IM, (III) immune-suppressed basal-
like, and (IV) mesenchymal-like. Among each subtype, we 
discovered potential therapeutic targets or biomarkers (16). 
For this research, we incorporated 360 individuals with 
TNBC from the FUSCC TNBC group and discovered 
2008 different expression genes (DEGs) between IM and 
the remaining subtypes, which were selected for subsequent 
investigation. Potential prognostic factors were identified 
through regression analysis, revealing 12 immune-related 
DEGs (TDO2, CHIT1, CARMIL2, HLA-C, ADIRF, 
C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and 
NEBL). A risk score model was constructed using these 
genetic factors, enabling accurate prediction of RFS in 
patients with TNBC. Furthermore, the validation of the 
model was conducted using a dataset acquired from the 
TCGA TNBC cohort, suggesting its potential broad 
applicability for patients with TNBC.

According to our discovery, the risk-scoring model 
consisting of 12 genes has the potential to be used as a 
prognostic predictor for TNBC. Notably, TDO2, CHIT1, 
CARMIL2, and HLA-C were identified as protective factors 
that contribute to a favorable prognosis. ADIRF, C19orf33, 
CA8, AHNAK2, RHOV, OPLAH, THEM6 and NEBL were 
risk factors unfavorable to prognosis. TDO2 participates 
in the metabolism of tryptophan (26), catalyzing the 
production of kynurenine, which undermines the immune 
surveillance of the host and facilitates the progression 
of cancer (27). CHIT1, also known as chitotriosidase, is 
a member of the GH18 glycosyl hydrolase family 18 in 
humans (28,29). A prior investigation indicated that CHIT1 
levels are increased in individuals diagnosed with primary 
breast cancer (30). Invadopodia formation necessitates the 
presence of CARMIL2, a regulator of capping protein and 
linker of myosin 1 (31). Impaired T-cell activation has been 
reported as a characteristic of CARMIL2 deficiency (32). 
The HLA-C gene is part of the major histocompatibility 
complex and has become a prominent target of biomedical 
research due to its involvement in a number of diseases, 
such as cancer and autoimmune disorders (33-36). Studies 
have demonstrated variations in C10orf116 among various 
pathological grades of ovarian carcinoma and nonmuscle-
invasive bladder cancer (37-39). C10orf116 deficiency in 

https://cdn.amegroups.cn/static/public/TCR-23-1554-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1554-Supplementary.pdf
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Figure 5 Molecular features of the high- and low-risk groups. (A-D) Enrichment analysis for differentially expressed genes in the high- and 
low-risk groups was performed using (A-D). BP (A), CC (B), MF (C), and KEGG (D) methods. (E) The proportions of infiltrating immune 
cells across different risk groups are illustrated by the Violin plot. Comparison using an unpaired t-test. Significant results were observed 
at ***, P<0.001; **, P<0.01, and *, P<0.05, respectively. BP, biological process; CC, cell component; MF, molecular function; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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Figure 6 Correlation between IRGs expression and the efficacy of immunotherapy. Comparison using an unpaired t-test. Significant results 
were observed at ***, P<0.001; and *, P<0.05, respectively. pCR, pathologic complete response; IRGs, immune-related genes.

prostate cancer (PCa) is linked to unfavorable disease-free-
survival (DFS) outcomes (37). Pancreatic cancer, along with 
other types of cancer, has been found to exhibit abnormal 
expression of C19orf33 in previous research (40). According 
to reports, the excessive expression of CA8 has been found 
to enhance the proliferative and migratory capabilities of 
renal cell carcinoma (RCC) (41). In thyroid carcinoma 
tissues, AHNAK2 was discovered to be increased, and 
it stimulates the advancement of thyroid carcinoma by 
activating the NF-κB pathway (42). According to a recent 
investigation, it was suggested that RHOV enhances the 
growth and spread of lung adenocarcinoma cells via the 
JNK/c-Jun pathway (43). Earlier research indicated that 
OPLAH functions as a standalone prognostic factor for 
gastric cancer and squamous cell carcinoma, as evidenced 
by previous studies (44,45). In a prior investigation, it was 
discovered that THEM6, a member of the thioesterase 
superfamily, serves as an indicator of resistance to ADT 
in PCa (46). According to prior research, NEBL has 
been identified as a crucial element in the advancement 
of ovarian cancer (47). These genes, as indicated by the 
aforementioned studies, might have an impact on the 
advancement of TNBC. Furthermore, immune-associated 
DEGs have the capability to accurately forecast the 
outcomes of patients with TNBC.

In addition to accurately predicting tumor progression 
and prognosis, the risk score more effectively distinguishes 
immune cells infiltrating TNBC from nontumor cells. 
The low-risk group exhibited notably elevated levels of 
infiltration by CD8+ T cells, CD4 memory-activated T cells, 

and M1 macrophages. CD8+ T cells play a significant role in 
the immune response by identifying and acknowledging tumor 
cells in tumor immunotherapy (48). In the traditional sense, 
CD4+ T cells are regarded as assisting cells that stimulate 
CD8+ T cells (49,50). Upon different stimuli, uncommitted 
macrophages (M0) transform into proinflammatory 
macrophages (M1 and M2), and the production of 
proinflammatory cytokines by M1 macrophages hinders 
tumor growth (51,52). To some degree, within the low-risk 
category, there was a notable increase in the expression of 
substances that boost the immune system and substances 
that suppress the immune system, suggesting positive 
immune responses and advantages of immunotherapy.

Nevertheless, our study still has certain limitations. The 
predictive model still needs additional validation through 
extensive clinical trials. Furthermore, it is necessary to 
conduct biological experiments to investigate the underlying 
mechanisms of immune-related prognostic genes in TNBC. 

Conclusions

In summary, a signature consisting of twelve genes was 
created by utilizing IRGs that exhibited differential 
expression between the IM subtype and other subtypes. 
This signature has been shown to be sufficiently accurate 
to predict prognosis in TNBC patients. In addition, the 
signature is linked to the expression of immune checkpoints 
and the infiltration of immune cells, providing a means to 
identify potential populations that could potentially benefit 
from immunotherapy.
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Figure 7 Single-cell RNA-seq analysis of 12 IRGs. (A) Distribution of cell clusters shown by the tSNE method. (B-M) The mRNA 
expression of (B) TDO2, (C) CHIT1, (D) CARMIL2, (E) HLA-C, (F) ADIRF, (G) C19orf33, (H) CA8, (I) AHNAK2, (J) RHOV, (K) OPLAH, 
(L) THEM6, and (M) NEBL in different cell clusters. (N) Dim plot of gene distribution. IRGs, immune-related genes; tSNE, t-distributed 
Stochastic Neighbor Embedding.
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Supplementary

Figure S1 The time-ROC curve for evaluating prognosis. The time-ROC curves of T (A) and N (C) in the FUSCC TNBC cohort. The 
time-ROC curves of T (B) and N (D) in the TCGA TNBC cohort. ROC, receiver operator characteristic; FUSCC, Fudan University 
Shanghai Cancer Center, TNBC, Triple-negative breast cancer; TCGA, The Cancer Genome Atlas; T, tumor; N, lymph node.

Figure S2 The landscape of genetic mutations of high- and low-risk groups. (A,B) The waterfall diagram displays the mutation specifics and 
tumor mutation burden for every sample of TNBC cancer patients in the low-risk (A) and high-risk (B) categories. TNBC, Triple-negative 
breast cancer.
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Figure S3 The immune landscape of high- and low-risk groups. (A) The presence of immune-boosting substances in individuals classified as 
high- and low-risk. (B) The high- and low-risk groups exhibited differential expression of immune checkpoint genes. Comparison using an 
unpaired t-test. Significant results were observed at P<0.001, and P<0.05, denoted as *** and *, respectively.


