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Background: Colorectal cancer (CRC) is characterized by a high metastasis rate, leading to poor prognosis 
and increased mortality. Anoikis, a physiological process, serves as a crucial barrier against metastasis. The 
objective of this research is to construct a prognostic model for CRC based on genes associated with anoikis. 
Methods: The study involved differential analysis and univariate Cox analysis of anoikis-related genes 
(ARGs), resulting in the selection of 47 genes closely associated with prognosis. Subsequently, unsupervised 
k-means clustering analysis was conducted on all patients to identify distinct clusters. Survival analysis, 
principal component analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) analysis were 
performed on the different clusters to investigate associations within the clusters. Gene set variation analysis 
(GSVA) and gene set enrichment analysis (GSEA) were utilized to assess metabolic pathway enrichment 
between the identified clusters. Furthermore, single-sample GSEA (ssGSEA) was applied to explore 
variations in immune infiltration. Multivariable Cox regression and least absolute shrinkage and selection 
operator (LASSO) analyses were conducted to construct a risk model based on ten signatures, which enabled 
the grouping of all samples according to their risk scores. The prognostic value of the model was validated 
using receiver operating characteristic (ROC) curves, area under the curve (AUC) calculations, and survival 
curves. Additionally, the expression of candidate genes was validated using quantitative real-time polymerase 
chain reaction (qRT-PCR).
Results: Forty-seven survival-related ARGs were screened out. Somatic mutation analysis showed that 
these genes revealed a high mutation rate. Based on their expression, two clusters were identified. Cluster B 
patients exhibited a shortened overall survival and higher immune infiltration. A risk scoring model including 
ten genes was subsequently developed, which exhibited excellent prognostic predictive ability for CRC, as 
evidenced by the survival curve, ROC curve, and AUC curve. In addition, a nomogram was developed for 
predicting 3- and 5-year survival probabilities. The qRT-PCR results indicated the dissimilarities among the 
ten signatures in the tumor tissues and adjacent tissues of patients with CRC were fundamentally consistent 
with the analytical findings.
Conclusions: This study comprehensively evaluated the prognostic significance of ARGs in CRC. It 
identified two distinct anoikis-related clusters and examined their respective immune microenvironments. 
Furthermore, an ARGs signature was developed to effectively predict the prognosis of CRC, thereby 
establishing a solid foundation for investigating the clinical prognostic role of anoikis in CRC.
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Introduction

Colorectal cancer (CRC) is the second leading cause 
of cancer-related death worldwide, contributing to 
approximately one million deaths each year (1). The current 
clinical approach to the treatment of CRC involves a 
combination of surgery, chemotherapy, radiotherapy, and 
the integration of molecular targeted therapies. However, 
the effectiveness of these treatment modalities remains 
suboptimal, primarily due to the challenges presented 
by tumor metastasis (2). The metastatic spread of CRC 
accounts for nearly half of all patient deaths, highlighting 
the critical need to identify reliable prognostic signatures 
associated with metastasis (3). These signatures are essential 
for post-intervention monitoring and prognostic prediction 
in CRC.

Anoikis resistance, a phenomenon characterized by 
the ability of cancer cells to survive detachment from the 
extracellular matrix (ECM), is considered a precursor to 
tumor metastasis (4). In normal physiological conditions, 

cells undergo apoptosis upon detachment, which is 
termed “Anoikis” (5). However, cancer cells can evade this 
detachment-induced apoptosis and acquire the capacity 
to metastasize (6). Extensive research has investigated the 
involvement of genes associated with anoikis in CRC. This 
research has demonstrated a close association between these 
genes and disease progression as well as patient survival 
(7,8). However, there has been limited exploration of 
prognostic models based on anoikis-related genes (ARGs) 
for predicting the prognosis of CRC.

The current study aimed to evaluate the prognostic 
significance of ARGs in CRC. Two distinct clusters 
assoc ia ted  wi th  anoik i s  were  ident i f ied  through 
comprehensive analysis and examined their respective 
immune microenvironments. Additionally, an ARGs 
signature was developed that demonstrated robust predictive 
capabilities for assessing the prognosis of CRC patients. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-1221/rc).

Methods

Data collection

The present study utilized data retrieved from The Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/) to acquire clinicopathological information including 
tumor-node-metastasis (TNM) stage characteristics, patient 
age, patient survival status, and RNA-sequencing (RNA-seq) 
data of patients diagnosed with colorectal adenocarcinoma 
(COAD). The data download was conducted on March 26,  
2023. Expression profiles of 41 normal tissues and 476 
COAD tissues were obtained through data collation. 
Furthermore, the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) was utilized 
to obtain the GSE40967 dataset along with the associated 
clinical data. Somatic mutation counts and copy number 
variation (CNV) data were obtained from the TCGA 
database. 

Additionally, a screening standard of relevance ≥0.4 was 
employed to retrieve 513 ARGs from the Genecard website 
(https://www.genecards.org/). The search for these genes 
was performed on March 26, 2023.

Highlight box

Key findings
•	 This study evaluated the prognostic significance of anoikis-related 

genes (ARGs) in colorectal cancer, then identified two different 
anoikis-related clusters and assessed their respective immune 
microenvironments. In addition, the establishment of ARGs 
markers can effectively predict the prognosis of colorectal cancer, 
which lays a foundation for the study of ignorance in the clinical 
prognosis of colorectal cancer.

What is known and what is new? 
•	 The expression level of ARGs is closely related to the prognosis of 

colorectal cancer patients, which is supported by a large amount of 
literature.

•	 We constructed a prognostic prediction model for colorectal 
cancer patients using genes associated with anoikis, which may 
provide a basis for post-treatment surveillance of colorectal cancer 
patients.

What is the implication, and what should change now?
•	 The analysis of our data indicates that ARGs are crucial in 

predicting the prognosis of colorectal cancer. It lays the foundation 
for further research on ARGs. In the future, researchers should 
focus on mining information related to these genes.
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Analysis of differentially-expressed ARGs and CNV 
mutation analysis

We identified the differentially expressed genes (DEGs) 
in the TCGA-COAD dataset based on the 513 ARGs. 
To enhance the statistical power and reduce dataset 
heterogeneity, we integrated data from 566 tumor samples 
from GSE40967 and 476 tumor samples from TCGA-
COAD. To identify prognostic-related genes associated 
with CRC patients, we conducted a univariate Cox analysis. 
The results of the univariate analysis were visualized 
using a forest plot, providing a graphical representation 
of the gene-gene relationships and their respective hazard  
ratios (HRs).

Cluster analysis

Cluster analysis was employed to ascertain the potential 
association between the expression of genes associated 

with anoikis and CRC. The findings revealed a robust 
intragroup correlation, while the intergroup correlation 
was found to be moderate when considering a value of k=2. 
Using the “ConsensusClusterPlus” R package (9), patients 
were categorized into cluster A and cluster B based on the 
expression of 47 ARGs. The correlation between molecular 
subtypes and the overall survival (OS) of CRC patients was 
examined using Kaplan-Meier plots. Principal component 
analysis (PCA) and t-distributed stochastic neighbor 
embedding (tSNE) are frequently employed methods 
for reducing the dimensionality of a dataset (10-12).  
This is achieved by converting a multitude of variables 
into a smaller set of variables that retain the majority of 
the information present in the original dataset (13). The 
differences in the expression of 47 genes related to anoikis 
between the two subtypes were visually represented through 
box plots and heatmaps. To investigate the potential 
mechanisms, we performed gene set enrichment analysis 
(GSEA) to analyze the pathways enriched in cluster B.

Construction of the prognostic signature

Integrating the information of 451 patients from TCGA 
database and 561 patients from GSE40967, we randomly 
grouped these 1,012 patients into training and validation 
sets (Table 1). The implementation of the least absolute 
shrinkage and selection operator (LASSO) regression 
methodology enabled the discovery of genes associated with 
survival (14). Subsequently, these genes mRNA expression 
were utilized to forecast the survival and prognosis of 
CRC patients within the training set. The most favorable 
model was subsequently chosen through the application of 
multivariate Cox regression analysis. A total of ten genes 
expression levels were used to construct a risk model. The 
formula for calculating individualized risk scores is: risk 
score = ∑(Exp(mRNA) × coef(mRNA)).

Validation of the risk assessment model for prognosis and 
establishment and verification of nomograms

To gain further insights into the precision and prognostic 
significance of this risk score, the patients within each 
cluster were categorized as high-risk or low-risk based on 
the calculated risk score. Receiver operating characteristic 
(ROC) curves, area under the curve (AUC) curves, and 
survival curves were used to validate the accuracy and 
prognostic value of the model. Independent predictors 
identified through multivariate Cox regression analysis 

Table 1 Basic characteristics of patients from TCGA and GEO 
database

Clinical 
features

Total patients 
(n=1,012), n (%)

TCGA  
(n=451), n (%)

GSE40967 
(n=561), n (%)

Age (years)

≤65 407 (40.22) 185 (41.02) 222 (39.57)

>65 605 (59.78) 266 (58.98) 339 (60.43)

Gender

Male 545 (53.85) 237 (52.55) 308 (54.90)

Female 467 (46.15) 214 (47.45) 253 (45.10)

Fustat

Alive 725 355 (78.71) 370 (65.95)

Dead 287 96 (21.29) 191 (34.05)

Stage T

1–2 142 (14.37) 80 (22.60) 55 (10.22)

3–4 846 (85.63) 274 (77.40) 483 (89.78)

NA 23 (2.27) 0 (0.00) 23 (4.10)

Stage N

N0 566 (57.40) 230 (64.79) 298 (55.70)

N1–3 420 (42.60) 125 (35.21) 237 (44.30)

NA 26 (2.57) 0 (0.00) 26 (4.63)

TCGA, The Cancer Genome Atlas; GEO, Gene Expression 
Omnibus; NA, not applicable.
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were incorporated to construct nomograms using the 
“rms” package. The consistency index was then utilized 
to measure the discriminatory power of the nomogram, 
and the observed probability was graphed in comparison 
to the probability predicted by the nomogram to assess 
the calibration curve. Decision curve analysis (DCA) 
was employed as a tool to evaluate the effectiveness and 
reliability of the nomograms.

Immune cell infiltration analysis

The ESTIMATE algorithm was utilized to analyze the 
immune score and tumor purity, providing insights into the 
extent of immune cell infiltration within the tumor tissue. 
The “CIBERSORT” R package was used to compare the 
immune microenvironment across the different clusters.

Patients and samples

To validate the reliability of the above bioinformatics 
analysis, we obtained clinical tissue samples from ten pairs of 
CRC patients from The First Affiliated Hospital of Zhejiang 
Chinese Medical University. After surgical resection, the 
tissue samples were stored in a cryogenic refrigerator at  
−80 ℃ and kept at low temperature during sample transfer 
and non-experimental processing. Biometric testing of all 
tissue samples was performed with the informed consent 
of the patients. This study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by the Ethics Committee of The First 
Affiliated Hospital of Zhejiang Chinese Medical University 
(No. 2017-K-002-01). 

Quantitative real-time polymerase chain reaction  
(qRT-PCR) validation

PCR primers are available in Table S1. The manufacturer’s 
protocol, as provided by Invitrogen (Carlsbad, USA), was 
followed to extract total RNA from tissue using Trizol 
reagent (Invitrogen, Carlsbad, USA). Subsequently, 
cDNA reverse transcription was performed using a reverse 
transcription RNA kit from Thermo Scientific (Vilnius, 
Lithuania). The gene of interest was then amplified using a 
SYBR Green PCR kit from Applied Biosystems (Invitrogen, 
Vilnius, Lithuania). Samples were analyzed using an ABI 
PCR system, and each experiment was repeated at least 
three times. The 2−ΔΔCt method was used to determine gene 
expression relative to the reference gene GAPDH.

Statistical analysis

Statistical analysis and graph plotting were performed 
using R (version 4.2.1) and GraphPad Prism (version 9),  
respectively. The t-test was used to compare the data 
between the two groups. Statistical significance was 
determined at P values of <0.05 (*), <0.01 (**), and <0.001 
(***) for differences observed within and between the 
groups.

Results

Identification of prognostic-related differential ARGs in 
CRC and normal tissues

The study’s workflow is depicted in Figure 1. The TCGA 
dataset was utilized to investigate the expression levels of 
513 ARGs in both normal and COAD specimens. Through 
differential analysis, a total of 160 DEGs associated with 
anoikis were identified, with 113 genes upregulated and 
47 genes downregulated in COAD tissues compared to 
normal tissues (Figure 2A, Figure S1). Among these DEGs, 
47 ARGs exhibited a strong correlation with the prognosis 
of CRC patients through univariate regression analysis. 
A forest plot, generated from the results of the univariate 
regression analysis, demonstrated that approximately  
30 gene expression levels showed a significant association 
with the OS of CRC patients (Figure 2B).

Genetic variations of ARGs in COAD

A network diagram was employed to depict the intricate 
interactions between genes associated with anoikis and 
their prognostic significance in CRC (Figure 3A). Genetic 
mutations play a crucial role in tumor development and 
contribute to characteristics like tumor metastasis. The 
CNV mutation data for 47 genes located on various 
chromosomes was presented (Figure 3B). Analysis of these 
47 DEGs associated with anoikis revealed a high prevalence 
of CNV-related mutations (Figure 3C). Notably, several 
genes, including MYC, SNAI1, FASN, BIRC5, BRCA1, 
and SLC2A1, exhibited widespread CNV amplification  
(Figure 3C).

Cluster analysis with 47 ARGs

A consensus clustering approach was used to categorize 
patients with CRC into two distinct clusters based on the 
expression patterns of 47 ARGs. The data revealed that 

https://cdn.amegroups.cn/static/public/TCR-23-1221-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-1221-Supplementary.pdf
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classifying patients into cluster A and cluster B proved to 
be a viable option (Figure 4A). Furthermore, the results 
from the survival analysis indicated that patients classified 
in cluster A had a more favorable prognosis compared to 
those in cluster B (Figure 4B). To validate the accuracy of 
the clustering, PCA and t-SNE analysis were conducted, 
confirming substantial differences in the transcriptional 
expression of ARGs-associated genes between cluster A 
and cluster B (Figure 4C,4D). Almost all of the 47 DEGs 
exhibited significant differences in expression between the 
two clusters (Figure 4E). 

Immunoassay and functional analysis with two clusters

The heatmap visualization depicted the detailed expression 
patterns of the 47 ARGs in cluster A and cluster B  
(Figure 5A). When comparing the tumor microenvironments 
(TMEs) of the two clusters, it was observed that cluster B 
exhibited a significantly higher prevalence of immune cell 
infiltrates (Figure 5B). To further elucidate the potential 
mechanisms underlying the prognostic impact of ARGs, 
GSVA enrichment analysis was performed on the two 
clusters. The results revealed 20 Kyoto Encyclopedia of 

Figure 1 The design and flow chart of this study. TCGA, The Cancer Genome Atlas; COAD, colorectal adenocarcinoma; LASSO, least 
absolute shrinkage and selection operator; ROC, receiver operating characteristic; AUC, area under the curve; qRT-PCR, quantitative real-
time polymerase chain reaction.
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Figure 2 Forty-seven ARGs screenings that are closely related to the prognosis of colorectal cancer. (A) A volcano plot illustrating the 
differential expression of ARGs. (B) A forest plot displaying the prognostic genes identified through univariate regression analysis. FDR, 
false discovery rate; FC, fold change; CI, confidence interval; ARG, anoikis-related gene.
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Figure 3 Information on 47 prognosis-related apoptosis genes. (A) Network diagram showing the interaction of 47 anoikis-related genes in 
CRC. The size of circles indicates the P value of each gene on survival prognosis. Red represents anoikis genes, purple represent risk factors, 
and green dots represent favorable factors. The thickness of the lines represents the correlation values between genes with red and blue 
lines indicating positive and negative correlations of gene regulation, respectively. (B) The localization of the 47 anoikis-related genes on 23 
chromosomes. (C) CNV frequency of 47 anoikis-related genes. CNV, copy number variation; CRC, colorectal cancer.
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Genes and Genomes (KEGG) pathways that exhibited 
differential enrichment between the two clusters (Figure 6A).  
Cluster A showed significant enrichment in pathways such as 
peroxisome and aminoacyl tRNA biosynthesis, while cluster B 
exhibited enrichment in pathways such as glycosaminoglycan 

biosynthesis (chondroitin sulfate), complement and coagulation 
cascades, as well as other pathways. Notably, cluster B displayed 
higher activity in pathways such as ECM receptor interaction,  
hematopoietic cell lineage, and cell adhesion molecules (CAMs) 
(Figure 6A,6B).

Figure 4 Classification analysis of colorectal cancer patients based on the expression level of ARGs. (A) The patients with COAD were 
divided into two distinct gene clusters (clusters A and B). Consensus clustering of COAD patients for k=2. (B) Prognostic analysis of distinct 
anoikis subtypes. (C,D) PCA and t-SNE analysis of distinct anoikis clusters. (E) Box plot of 47 ARGs expressed in two clusters. Statistical 
significance was indicated by asterisks: **, P<0.01; ***, P<0.001. ARG, anoikis-related gene; PCA, principal component analysis; PC, 
principal component; t-SNE, t-distributed stochastic neighbor embedding; COAD, colorectal adenocarcinoma. 
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Figure 5 ARG annotation and immune infiltration analysis. (A) The annotation of 47 ARGs in gender, age, TNM stage, and cluster. (B) 
The abundance of each TME-infiltrating cell, stromal scores, and immune scores in A and B clusters. Statistical significance was indicated 
by asterisks: *, P<0.05; **, P<0.01; ***, P<0.001. ARG, anoikis-related gene; TCGA, The Cancer Genome Atlas; MDSC, myeloid-derived 
suppressor cell; TNM, tumor-node metastasis; TME, tumor microenvironment.
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Construction of an anoikis-related signature and a 
nomogram based on the signature

In order to avoid overfitting, the data dimensionality was 
reduced using LASSO regression analysis and multivariate 
Cox regression analysis, resulting in the identification of 
ten prognostic ARGs for COAD patients (Figure 7A,7B). 
Among these ARGs, LAMC2, inhibin subunit beta B 
gene (INHBB), CD36, EDAR, HOX transcript antisense 
RNA (HOTAIR), and SNAI1 were identified as risk 
factors associated with a higher risk (HR >1) for COAD 
patients. On the other hand, NAT1, FASN, CCDC80, and 
GZMB were identified as protective factors associated 
with improved prognosis for COAD patients. A risk score 
calculation formula was established based on the expression 
levels of these ten ARGs. The model’s reliability was 
confirmed in both the training and test sets (Figures 7,8). 
The training and test sets were divided into high-risk and 
low-risk groups using the median value of the risk score. 
Kaplan-Meier analysis demonstrated that patients with 
high-risk scores had a significantly higher probability of 
mortality in the training set, test set, and the entire cohort 
(Figure 7C). ROC curve analysis showed that the risk 
score signature had AUC values of 0.666 (1 year), 0.710  
(3 years), and 0.661 (5 years) for the entire cohort (Figure 7D).  
The model displayed good predictive ability and accuracy 
in identifying the prognosis of CRC patients. The 
relationship between the prognostic model of ARGs and 
clinicopathological characteristics was analyzed using a 
heatmap, which revealed the expression differences of ARGs 
between the high-risk and low-risk groups (Figure 8A,8B). 
A Sankey diagram demonstrated the relationship between 
the two clusters, risk scores, and the prognostic status of 
patients (Figure 8C). To enhance the predictive capacity 
of the model, a nomogram was developed by integrating 
clinical factors and risk scores, enabling the prediction of 
OS at 1, 3, and 5 years (Figure 9A). The calibration plot 
indicated a satisfactory level of concordance between the 
nomogram and the model (Figure 9B). This approach 
allowed us to conduct a more comprehensive analysis of 
the risk model’s predictive potential. The cumulative risk 
curve demonstrates that patients classified in the high-
risk group exhibit a higher risk magnitude compared to 
those in the low-risk group as time progresses (Figure 9C). 
The nomogram exhibited advanced prognostic abilities 
compared to other clinical characteristics, as demonstrated 
by the DCA (Figure 9D-9F). 

Overall, this comprehensive analysis of the risk model’s 

predictive potential provided valuable insights into the 
prognosis and survival prediction of COAD patients.

Estimation of tumor immune cell infiltration according to 
the signature

The CIBERSORT algorithm was used to analyze a total 
of 22 immune cell types, allowing for the investigation 
of the ability of ARGs models to accurately reflect the 
immune micro-environment in CRC (Figure 10A). 
Heatmaps were created to illustrate the close association 
between the ten signatures and immune cells (Figure 10B). 
Moreover, the high-risk group exhibited increased numbers 
of macrophages M0, macrophages M2, eosinophils, 
and neutrophils cells compared to the low-risk group  
(Figure 10C). Conversely, the high-risk group displayed 
significantly reduced numbers of T cell CD8 and T cell 
CD4 memory activated (Figure 10C). These findings suggest 
that the model is associated with immune cell infiltration in 
COAD specimens. 

The expression of ARGs in CRC

To validate the results obtained from our data analysis, we 
collected total RNA from both tumor tissue and adjacent 
normal tissue. Subsequently, we performed qRT-PCR assays 
to assess the mRNA expression levels of CD36, CCDC80, 
INHBB, SNAI1, HOTAIR, LAMC2, EDAR, NAT1, FASN, 
and GZMB. The qRT-PCR results demonstrated that the 
mRNA expression levels of CD36, CCDC80, HOTAIR, 
EDAR, NAT1, INHBB, and GZMB were significantly lower 
in colon cancer tissue compared to adjacent normal tissue. 
Conversely, the mRNA levels of SNAI1, FASN, and LAMC2 
were significantly elevated in colon cancer tissue (Figure 11).  
This validation experiment supports the findings of our data 
analysis and further confirms the differential expression of 
these ARGs in CRC.

Discussion

Anoikis resistance is a crucial process that allows tumor 
cells to evade apoptosis and regain attachment capacity, 
facilitating dissemination, metastasis, and invasion (15). 
It plays a significant role in tumor metastasis, and various 
molecules, including SNORA42, have been implicated in the 
development of anoikis resistance in CRC (16). Additionally, 
certain drugs like Src kinase inhibitor AZD0530 have been 
found to reverse an anoikis-resistant and spheroidogenic 
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Figure 6 Pathway analysis of two different clusters constructed based on anoikis-related genes. (A) GSVA enrichment analysis in cluster 
A and cluster B. (B) Multi-GSEA analysis of cluster B patients. KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer 
Genome Atlas; GSVA, gene set variation analysis; GSEA, gene set enrichment analysis. 
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Figure 7 Construction and validation of the ARG model. (A,B) LASSO analysis of the ten prognostic ARGs. (C) The Kaplan-Meier survival 
curves of the high- and low-risk groups. (D) The ROC curves for predicting overall survival at 1, 3 and 5 years. AUC, area under the curve; 
ARG, anoikis-related gene; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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intermediate mesenchymal state phenotype of SKOV3 
ovarian cancer cells (17). Previous research has highlighted 
the potential of genes associated with anoikis as prognostic 
markers for CRC, but limited studies have explored their 
prognostic impact.

Our investigation aimed to examine the correlation 
between genes involved in anoikis and the prognosis of 
individuals with CRC. Our study revealed mutations in 
these genes at both the genetic and transcriptional levels. 
Consistent with previous studies, we found that genes with 

Figure 8 Identification of predictive power of prognostic models. (A) Heatmap of gene expression levels in high- and low-risk groups for the 
ARG signature. (B) The risk score between two cluster. (C) Sankey diagram of two clusters and risk score. ARG, anoikis-related gene.
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abnormal CNVs may serve as potential candidate markers 
for CRC (18). Understanding the differential expression 
of ARGs in CRC can contribute to the development of 
personalized and precise treatment strategies. Tumor 
molecular classification refers to the categorization of 
tumors using molecular analysis techniques, with varying 

types necessitating distinct treatment approaches, thereby 
facilitating tailored disease management (19). Therefore, 
an unsupervised consensus clustering algorithm was used 
to classify patients with CRC and divided all patients into 
two clusters. We further analyzed and evaluated these two 
subtypes, and the survival curve showed cluster B had a 

Figure 9 Construction and verification of nomogram. (A) The prediction of nomogram. (B) Calibration plot for the nomogram. (C) 
Cumulative hazard curve with the high- and low-risk groups according to the nomogram score. (D-F) DCA curves of the nomogram and 
other clinical factors regarding the OS. Statistical significance was indicated by asterisks: *, P<0.05; ***, P<0.001. DCA, decision curve 
analysis; OS, overall survival. 
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Figure 10 Correlation analysis of prognostic model risk scores with immune microenvironment. (A) A correlation between the risk score 
and the number of TME infiltrating cells. (B) The correlation between the ten signatures and immune cells. (C) A comparison of immune 
cell infiltration between two risk groups. NK, natural killer; TME, tumor microenvironments. 
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shortened survival time than cluster A. The role of the 
immune microenvironment in the development of CRC 
and evasion of primary corresponding treatment is very  
critical (20). In order to examine the potential correlation 
between the observed difference and the immune 
microenvironment, an investigation was conducted on the 
immune infiltration of patients belonging to two distinct 
clusters. A number of scholarly articles have previously 
reported that patients diagnosed with CRC and with 
a poor prognosis exhibit a greater degree of immune 
infiltration (21). The findings of our study indicate that 
cluster B patients’ tumor tissue exhibited a higher degree of 
immune cell infiltration. This suggests a robust association 

between the TME and the regulation of anoikis in CRC, 
a relationship that has been substantiated by earlier 
investigations (22).

To further predict the prognosis of CRC patients, we 
performed LASSO regression analysis and multi-univariate 
analysis. This allowed us to construct a risk model based on 
the expression of ten genes related to anoikis. The signature 
included CD36, CCDC80, INHBB, SNAI1, HOTAIR, 
LAMC2, EDAR, NAT1, FASN, and GZMB. These genes 
have been closely associated with tumor development and 
progression. For example, CD36, a membrane glycoprotein 
involved in various cellular functions including fatty acid 
metabolism and apoptotic cell clearance, has been shown 

Figure 11 The qRT-PCR was utilized to measure the mRNA expression levels of ten signature genes in three pairs of tissues. The obtained 
results were normalized to the housekeeping gene GAPDH. The data were presented as the mean ± SEM, and statistical analysis was 
performed using the t-test for each gene. The number of independent experiments was three (n=3). Statistical significance was indicated by 
asterisks: *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001, while non-significant results were denoted by “ns”. qRT-PCR, quantitative real-
time polymerase chain reaction; mRNA, messenger RNA; SEM, standard error of the mean.
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to inhibit tumor cell proliferation and promote apoptosis 
in CRC cells when activated by the long non-coding 
RNA TINCR (23,24). Similarly, CCDC80 has been found 
to attenuate the proliferative impact of nonylphenol on 
CRC cells by inhibiting nonylphenol-mediated ERK1/2 
activation (25). These findings suggest that CCDC80 may 
function as a tumor suppressor in CRC cells, exerting an 
anti-cancer effect. These studies are consistent with our 
results, suggesting that CD36 and CCDC80 are meaningful 
as prognostic monitoring factors. The model’s applicability 
was confirmed through the utilization of survival and ROC 
curves, which demonstrated its superior ability to predict 
patient prognostic risk. Notably, the risk score for the 
previous classification exhibited a significant divergence 
between the two clusters, indicating the meaningfulness of 
ARG expression detection in the prognosis prediction of 
CRC. Then, a nomogram was built to accurately quantify 
personalized predictive scores and survival probabilities. 
The calibration curve and DCA showed that the nomogram 
had a good prediction effect. Through the nomogram, 
an accurate digital survival or risk probability can be 
provided for each patient, which can assist clinicians in 
making decisions. An immune cell infiltration analysis was 
conducted on both risk groups, revealing notable differences 
in the majority of immune cells. This finding provides 
additional evidence of the strong correlation between ARGs 
and the TME in individuals with CRC. However, further 
investigation is required to establish the precise nature of 
this relationship.

To enhance the credibility of our findings, we conducted 
a measurement of the expression levels of ten genes 
in both tumor and adjacent tissues of tumor patients. 
While the majority of gene expression levels aligned 
with database projections, a few exhibited different 
trends. This discrepancy may be attributed to the limited 
sample size of three pairs. Consequently, we conducted a 
literature search to investigate the expression patterns of 
these four genes. INHBB encodes a pre-protein, which 
subsequently is processed to inhibin and activin. In many 
cancers, including CRC, INHBB shows a tendency to be 
overexpressed (26). In CRC, INHBB overexpression is often 
closely related to tumor metastasis and CRC staging (27). 
HOTAIR expression in cancerous tissues was significantly 
higher than in paracancerous tissues and high-expression 
HOTAIR was strongly associated with poor prognosis 
(28,29). This may be due to the induction of genome-wide 
retargeting of polycomb-repressive complex 2 (PRC2) in 
CRC by HOTAIR expression (29). HOTAIR trimethylates 

histone H3 lysine-27 (H3K27me3) of the HOXD locus 
with the PRC2 (30), which is composed of EZH2, SUZ12, 
and EED, and inhibits HOXD gene expression. The 
ectodysplasin a receptor (EDAR) may be a novel component 
of the Wnt/β-catenin signaling cascade, which plays a key 
role in regulating the proliferative ability of CRC. The 
elevated expression of EDAR was significantly related to the 
pathogenesis and progression of CRC (31) and is a potential 
indicator of CRC diagnosis and prognosis. Granzyme B 
(GZMB) is a member of the serine protease family and is a 
potent cytotoxic molecule. GZMB synthesized with toxic 
T lymphocytes and natural killer cells can enter tumor cells 
through the channel formed by perforin, targeting and 
destroying cancer cells (32,33). 

Our study provides the differential expression of ARGs 
in CRC tumor tissue and normal groups and their effects 
on the immune microenvironment. Despite the robust 
prognostic capabilities exhibited by the ARGs signatures 
developed, this study is not without its constraints. A 
lack of clinical specimens can cause validation to be 
inaccurate. Additionally, additional experiments like 
immunohistochemistry (IHC) and immune blotting may be 
necessary for joint validation, and qRT-PCR alone may be 
insufficient to validate the predictions. It is also required to 
validate our prognostic model using the patient’s prognostic 
data. Drawing upon the amalgamation of findings from this 
investigation and antecedent research, it is our contention 
that the ARGs hold considerable importance in the 
monitoring of prognoses for CRC. Furthermore, we posit 
that the potential mechanism of ARGs and the immune 
microenvironment in CRC presents expansive opportunities 
for exploration and warrants further investigation.

Conclusions

This study evaluated the prognostic value of ARGs in 
CRC. Two distinct clusters were identified based on their 
association with anoikis, and the corresponding immune 
microenvironments were examined. An ARGs signature 
was developed, which demonstrated strong predictive 
capabilities for determining the prognosis of CRC. These 
findings provide a strong basis for further investigation into 
the role of anoikis in the clinical prognosis of CRC.
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Table S1 PCR primers

Gene Organism Primer name Sequence

GZMB Human Forward TGCGGTGGCTTCCTGATACG

Reverse TCGGCTCCTGTTCTTTGATATTGTG

LAMC2 Human Forward AGGAGCTGGAGTTTGACACG

Reverse ACACTGAGAGGCTGGTCCAT

NAT1 Human Forward GCCGGCTGAAATAACCTGAAT

Reverse AATGTCCATGATCCCCTTTCTTA

EDAR Human Forward CTCTGCCCCAGCCTGTTG

Reverse GCTTTGCTGGAGTTGCTGTC

CCDC80 Human Forward CCCTCGGTAAAGAGAGAGAGG

Reverse TCATTGTGTAATCCAATGGTGGC

SNAI1 Human Forward CGAGTGGTTCTTCTGCGCTA

Reverse CTGCTGGAAGGTAAACTCTGGA

HOTAIR Human Forward AAGTGAAACCAGCCCTAGCC

Reverse GCTCTGTGCTGCCAGTTAGA

FASN Human Forward GCAAGCTGAAGGACCTGTCT

Reverse AATCTGGGTTGATGCCTCCG

INHBB Human Forward GGCTACTACGGGAACTACTGTGAG

Reverse GTGTGGAAGGAGGAGGCAGAG

CD36 Human Forward TTGATTGAAAAATCCTTCTTAGCCA

Reverse TGGTTTCTACAAGCTCTGGTTCTTA

Supplementary
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Figure S1 Heatmap of 160 anoikis-related differential expression genes in normal and tumor samples.


