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Background: Breast cancer (BRCA) is the most common type of cancer and the second leading cause of
cancer-related death in women all over the world. Metastasis to bone is an indicator of poor prognosis in
BRCA patients. This study aimed to develop a prognostic score model for predicting bone metastasis in
patients with BRCA.

Methods: BRCA-related RNA sequencing datasets and corresponding clinical information were
downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA).
Differentially expressed genes (DEGs) were screened using Limma package of R software. A risk score based
predictive model was constructed based on the key genes identified through univariate Cox regression and
the least absolute shrinkage and selection operator (LASSO) Cox regression. The gene expression profiles in
BRCA patients were analyzed by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA).
Random survival forest (RSF) analysis of BRCA patients with bone metastasis was conducted to identify the
key DEGs.

Results: Based on DEG analysis, a total of 677 genes were identified as genes related to bone metastasis
in BRCA. By univariate Cox regression and LASSO regression, 28 DEGs were identified as signature genes
to develop the prognostic model. A risk score for each patient was created by incorporating the expression
values of each specific gene and weighting them with the corresponding estimated regression coefficients.
Patients were divided into a low-risk and a high-risk group based on the median risk score. Overall survival
(OS) was significantly lower in the high-risk group. The receiver operating characteristic (ROC) curve
and multi-omics analysis indicated that the model had high training/testing accuracy and a good clinical
predictive value. We used extra data from GEO database to verify the robustness of the prognostic model,
and the lower OS in high-risk group and area under the curve (AUC) value indicated the model had strong
predictive efficacy for prognosis of BRCA.

Conclusions: A prognostic prediction model was constructed based on 28 key DEGs identified through
multi-omics analysis of studies on bone metastasis. The model may provide a promising method for
distinguishing the high-risk BRCA patients and help on decision making in addition to prognosis prediction
for BRCA patients.
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Introduction

Breast cancer (BRCA) is the most common type of cancer,
with an estimated 2.26 million cases recorded in 2020.
The global age standardized incidence rate in females is
estimated to be 48/100,000 and has been rising in the past
four decades (1). During the most recent data years [2010-
2019], the rate increased by 0.5% annually. At present,
BRCA is the second leading cause of cancer-related death
among women overall, second to lung cancer, posing a
serious threat to women’s health (2,3).

It is a heterogeneous disease with significant differences
between patients and even within each tumor (4). Based on
cancer statistics, in the United States, the average 5-year
and 10-year survival rates for women with non-metastatic
invasive BRCA are 90% and 84%, respectively (5).
Although the median survival and 5-year relative survival
for de novo metastatic BRCA increased over the years,
especially in younger women, the 5-year relative survival
was not more than 40% (6). Moreover, a large percentage
of cancer survivors who were initially diagnosed with
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Key findings

* A prognostic prediction model was constructed based on 28 key
differentially expressed genes (DEGs) identified through multi-
omics analysis of studies on bone metastasis in breast cancer

(BRCA).

What is known and what is new?

* BRCA is the most common type of cancer and the second leading
cause of cancer-related death in women all over the world. Many
prognostic models for BRCA have been developed, but only a few
have been extensively validated in various settings. Furthermore,
their performance is suboptimal in independent populations,
particularly in patients with high risk and in young and elderly
patients.

¢ Bone is the most common site of metastasis for BRCA, with the
5-year overall survival rate being about 20%. Therefore, bone
metastasis is an indicator of poor prognosis in BRCA patients. We
developed a prognostic score model for prognostic prediction in
BRCA based on the genes associated with bone metastasis of BRCA
and externally validated the reproducibility and generalizability of
this prognostic model.

What is the implication, and what should change now?

® The prognostic prediction model of BRCA in this study can
provide a promising method for clinical helping on clinical decision
making and prognosis prediction for BRCA patients. Meanwhile,
screening for prognostic biomarker genes and pathways in BRCA
may provide potential therapeutic targets for future treatment.
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early-stage (I-III) cancer later experienced a recurrence
or progression to metastatic disease according to the
analysis of US mortality data from the National Center for
Health Statistics and US Census Bureau populations (3).
Approximately 4% of women with a history of BRCA have
metastatic disease, more than half of whom were initially
diagnosed with early-stage BRCA (3,6). The common sites
of metastasis include bone, lung, liver, and brain. Among
the above metastatic sites, bone metastasis is most common,
accounting for approximately 65-75% of metastasis cases,
with the 5-year overall survival (OS) rate being about 20%
(7-9). Therefore, bone metastasis is an indicator of poor
prognosis in BRCA patients. Current treatments for bone
metastasis include systemic therapies such as chemotherapy
and endocrine therapy to slow the proliferation of
cancer cells; bone-targeted treatments such as potent
bisphosphonates or denosumab to inhibit the excessive
bone destruction associated with cancer; and the use of
bone-seeking radionucleotides (10). However, even these
treatments for many patients result in a major reduction in
skeletal complications, reduced bone pain and improved
quality of life, they are only palliative (10). New treatment
markers and targets are needed to achieve better prognosis.
Although BRCA subtypes partly indicate the preferential
site of metastasis and help to guide clinical therapeutics,
the development of more effective treatments against
BRCA metastases depends on a systematic and deepened
understanding of the molecular mechanism of metastatic
heterogeneity (7). Bone metastasis of BRCA is associated
with activation of several pathways, including epithelial-
mesenchymal transition (EMT), angiogenesis, and
interleukin 1 beta (IL-1p) pathway (11-13). However, the
genetic and molecular mechanism of bone metastasis of
BRCA remains unclear. With the development of gene
expression profiling, such as RNA-seq and single-cell
RNA-seq, researchers have identified gene expression
signatures that are associated with bone metastasis or
survival outcomes of BRCA (14,15). Recently, public
database bioinformatics analysis has been widely used to
investigate prognostic biomarkers in disease progression,
and predictive models can also be used to assess prognosis
in BRCA patients (16-18). As a result, identifying reliable
signature genes and clinical factors will serve as a guide for
clinical decision-making. In this study, we comprehensively
analyzed the RNA-seq data from a BRCA cohort to
construct a BRCA prognostic model based on differentially
expressed genes (DEGs) in bone metastasis, and it can help
identify patients at high risk of bone metastasis for early
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intervention. We present this article in accordance with
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1881/rc).

Methods
Data and patient samples extraction

This study was conducted in accordance with the
Declaration of Helsinki (as revised in 2013). We downloaded
the raw mRNA expression and clinical data of BRCA
patients from The Cancer Genome Atlas (TCGA) database
including normal group (n=113), tumor group (n=1,109).
Limma package of R software was used to identify DEGs,
with a significance threshold of P<0.01. Additionally, we
downloaded the Series Matrix File data files of GSE20685
(annotation platform was GPL570), GSE2034 (annotation
platform was GPL96), GSE124647 (annotation platform
was GPL96), and GSE39494 (annotation platform was
GPL6840) from the NCBI Gene Expression Omnibus
(GEO) database. In GSE20685, a total of 327 BRCA
patients with complete expression profiles and survival
information were collected. GSE2034 was comprised of
286 samples, including 217 patients without bone metastasis
and 69 patients with bone metastasis. GSE124647
featured 30 samples, consisting of 19 patients without
bone metastasis and 11 patients with bone metastasis.
Lastly, GSE39494 encompassed expression profile data of
10 samples, including 5 patients without bone metastasis
and 5 patients with bone metastasis.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis

Enrichment analyses of DEGs were performed using
Metascape (www.metascape.org). We conducted biological
pathway analysis of specific genes through GO terminology
and KEGG pathways. A Min overlap >3 & P<0.01 was
considered statistically significant.

Construction of a prognosis-predicting model based on the
bone metastasis-related DEGs in BRCA

The DEGs associated with bone metastases were carefully
selected, and a prognostic-predicting model was constructed
using the least absolute shrinkage and selection operator
(LASSO) Cox regression. In the LASSO regression analysis,
a risk score for each patient was calculated for each patient
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by incorporating the expression values of specific genes and
weighting them with the corresponding estimated regression
coefficients. Based on their risk scores, the patients were
categorized into low- and high-risk groups, using the median
risk score as the cut-off point. The survival differences
between the two groups were evaluated using Kaplan-Meier
and compared using log-rank statistical methods. Moreover,
the predictive capability of the risk score model for patient
prognosis was examined using LASSO regression analysis
and stratified analysis. Additionally, to assess the prediction
accuracy of the model, the receiver operating characteristic

(ROC) curve was plotted.

Drug sensitivity analysis

Based on the Genomics of Drug Sensitivity in Cancer
(GDSC) databases (https://www.cancerrxgene.org/), we
used pRRophetic to predict the chemosensitivity of each
tumor sample. Cox regression was employed to acquire
estimated half maximal inhibitory concentration (IC50)
values for individual chemotherapy drug treatment, and
10-fold cross-validations were conducted with the GDSC
training dataset to evaluate the accuracy of regression and
prediction.

Infiltrating immune cells analysis

The CIBERSORT algorithm was employed to estimate
the relative proportions of 22 types of infiltrating immune
cells using normalized gene expression data obtained from
various subgroups of BRCA patients. P<0.05 was considered
statistically different.

Gene set variation analysis (GSVA)

GSVA was used to estimate variation of gene set enrichment
through the samples in an unsupervised manner. Gene sets
were downloaded from the Molecular signatures database
(v7.0). GSVA algorithm was used to score each gene set
to evaluate the potential biological function changes of
different samples.

Gene set envichment analysis (GSEA)

GSEA (http://www.broadinstitute.org/gsea) of BRCA
patients’ expression profiles was conducted on the TCGA
database to identify genes showing differential expression
between patients in the low- and high-risk groups. Gene sets
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Figure 1 The volcano plot of the DEGs in BRCA with bone metastasis after correction of combat-seq. (A) The before-PCA data contains

a strong batch effect, as samples clearly separated by batch in the principal components indicated the lower gene expression values. (B) In

the Combat-seq corrected data, variation explained by batch is greatly reduced compared to that in unadjusted data. (C) Volcano plot of 677

DEGs in BRCA with bone metastasis. Blue dots: downregulated genes; red dots: upregulated genes. PCA, principal component analysis; FC,

fold change; DEGs, differentially expressed genes; BRCA, breast cancer.

were filtered using the maximum and minimum gene set
sizes of 500 and 15 genes, respectively. After performing 100
alignments, enriched gene sets were obtained based on a P
value <0.05 and a false discovery rate (FDR) value of 0.25.

Random survival forest (RSF)

The gene selection process was executed using the
randomForestSRC. We applied the RSF algorithm to
prioritize the significance of prognosis-related genes
(nrep=1000, which indicated a number of 1,000 iterations in
the Monte Carlo simulation).

Statistical analysis

Survival curves were generated by the Kaplan-Meier
method and subsequently compared using the log-rank
test. The Cox proportional hazards model was employed to
conduct multivariate analysis. All statistical analyses were
performed in R (version 3.6). All statistical tests were two-
sided, and P<0.05 was statistically significant.

Results
DEGs for bone metastasis in BRCA

We downloaded GSE2034, GSE124647, and GSE39494
BRCA-related databases from the GEO database and
included expression profile data from 326 patients, with
241 having no metastasis and 85 having bone metastasis.

© Translational Cancer Research. All rights reserved.

Combat-seq was employed to mitigate for batch effects
within databases (Figure 1A4,1B). A total of 677 DEGs
were identified using Limma (P<0.01), comprising 379
upregulated genes and 298 downregulated genes. Volcano
plots revealed the expression patterns of these differentially
expressed genes between bone metastasis and non-
metastasis BRCA (Figure 1C).

Construction of prognostic model for BRCA

Univariate Cox regression and LASSO regression were
used to identify key DEGs in BRCA with bone metastasis
based on clinical data from BRCA patients. Univariate Cox
analysis (P<0.05) identified 77 genes significantly associated
with bone metastasis BRCA. These genes are tabulated in
Table 1. The functional enrichment analysis performed using
Metascape revealed a significant enrichment of the DEGs
in processes such as peptide metabolic process, regulation
of B cell activation, intestinal immune network for IgA
production (Figure 24). Then protein-protein interaction
(PPI) network was conducted using Cytoscape (Figure 2B).
The partial likelihood deviance of validation included
lower and upper standard deviations (SDs) as a function
of log (lambda) for the dataset of the BRCA patients
(Figure 34). LASSO-Cox regression analysis revealed that
the model built with 28 key DEGs performed better in
both the training and test sets, and the OS was significantly
lower in the high-risk group than in the low-risk group
(Figure 3B). In LASSO regression analysis, a risk score for
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Table 1 A total of 77 DEGs identified by univariate Cox regression with P value <0.01 in BRCA with bone metastasis

Gene expression level Genes

Upregulated

CPT1A, RPL27, TMOSF3, TFF1, RPA3, GPN3, GGCX, AATK, CACYBPF, SEC24A, BLVRA, KANSL2, SLC1A1,

CRIP1, NDUFB1, GAPVD1, SNW1, SLC22A18, TOR1B, GSTO1, GSTK1, METTL17, ATP7B, SLC19A2,

SLC30A5, WDR41, RACGAP1, ATG12

Downregulated

VDAC1, BRD4, ZFP36L2, TNFRSF17, NONO, GSTM4, IGLL5, AARS, SLC25A28, MED17, CIR1, UGP2, CCNC,

RPL29, N4BP2L1, UBXN7, MED15, CD79A, GSTK1, TNFRSF13B, APC2, SOCS3, PRKG2, HLA-DMA, RDX,
UBTF, MZB1, LCP1, TNFAIP2, CXCL13, OSBPL1A, APOBEC3C, FRS3, CD74, KRT5, HYAL2, MAP3K6, CD27,
GUSBP11, SGPP1, RABIF, IL27RA, KRT15, WAC, HLA-J, PIGR, RASAL2, MPST, MTPAP

DEGs, differentially expressed genes; BRCA, breast cancer.

each patient was created by incorporating the expression
values of each specific gene and weighting them with
the corresponding estimated regression coefficients [risk
score = SGPP1 x (-0.101225800921312) + CXCL13 x
(-0.0990602304262338) + TFF1 x (-0.0761355688305833)
+ GSTM4 x (-0.0701245664074805) + OSBPL1A x
(-0.0697959194240498) + SOCS3x (-0.0697408751094871)
+ SLCIAL x (-0.0626539083827484) + SNW1 x
(-0.0613959366359668) + UBTF x (-0.0532038393937342)
+ SLC19A2 x (-0.0522506821431928) +
IGLLS5 x (-0.050589292470364) + KRT15 x
(-0.0275896594668161) + RPL3 x (-0.0221797643103188)
+ ATP7B x (-0.0191263079888773) + LCP1 x
(-0.0182193631834509) + MZB1 x (-0.0180883496044173)
+ IL27RA x (-0.0111516113130218) + TINFAIP2 x
(-0.0066362926318615) + CIR1 x (-0.00522630755396113)
+ PRKG2 x 0.00628130837936622 + GGCX x
0.00672477812884809 + UGP2 x 0.00901642206667127
+ APC2 x 0.0502830638605627 + CPTIA x
0.0755668823957223 + VDACI1 x 0.0804574886170706
+ RPA3 x 0.0929797695524507 + TOR1B x
0.125112100662822 + MED17 x 0.132621345321979]
(Figure 3C). A prognostic score model for BRCA was
developed based on the above 28 genes. The median risk
score in the clinical cohort is firstly determined based on
the model. Subsequently, enrolled patients are grouped
into high-risk group (> the median risk score) and low-risk
group (< the median risk score).

We randomly divided BRCA patients from TGCA
database into training and testing sets in the ratio of 4:1.
Patients were divided into high-risk and low-risk groups
according to the median risk score (-0.0320772653171833,
-0.00532802039832265, 0.0019647229505629 for TCGA
training, TCGA testing, and GEOL1 validating and GEO2
validating, respectively) and analyzed using Kaplan-Meier
curves. OS was significantly lower in the high-risk group

© Translational Cancer Research. All rights reserved.

than in the low-risk group in both the training and testing
sets (Figure 3D). The ROC curve showed that the area
under the curve (AUC) values obtained in the training and
testing sets for periods of 1, 3, and 5 years were greater than
0.70, indicating that the model had high training/testing
accuracy (Figure 3E). Therefore, the model had strong
predictive efficacy for the prognosis in BRCA patient.

Multi-omics analysis exploring clinical predictive value of
the prognostic model for BRCA

The tumor microenvironment (TME), mainly composed
of tumor-associated fibroblasts, immune cells, extracellular
matrix, various growth factors, inflammatory factors,
specific physicochemical characteristics, and cancer cells,
significantly affects the diagnosis, survival outcome and
clinical treatment sensitivity of tumors (19). We analyzed
the relationship between risk score and tumor-infiltrating
immune to further explore the molecular mechanisms of
risk score affecting BRCA progression. Our result showed
that risk score was significantly positively correlated with
macrophages (MO0, M1 and M2) and neutrophils; while was
negatively correlated with dendritic cells, T cells, B cells,
plasm cells, and monocytes (Figure 4A).

In clinical practice, for early-stage BRCA, surgery
combined with chemotherapy is effective. Based on
drug sensitivity data from the GDSC database and
the comparison of the IC50 values to get a better
comprehensive analysis of chemotherapy response, we
predicted chemotherapy sensitivity for each tumor sample
and explored the correlation with risk score and sensitivity
of common chemotherapy drugs for BRCA patients.
Pearson correlation between the risk score and IC50 of
different chemical compounds was conducted, and six
chemical compounds (bleomycin, camptothecin, cisplatin,
docetaxel, doxorubicin, gemcitabine) were identified as
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Figure 2 GO enrichment and interactome analysis of DEGs in BRCA with bone metastasis. (A) Top non-redundant enrichment clusters

were displayed in a Metascape bar graph, one per cluster. Network of enriched terms were colored by cluster ID. (B) PPI network. GO,

Gene Ontology; DEGs, differentially expressed genes; BRCA, breast cancer; PPI, protein-protein interaction.
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having a negative correlation with the risk score, indicating
that BRCA patients in high-risk group had a lower drug
sensitivity (Figure 4B).

We further explored the mutation profiles of patients
in the high- and low-risk groups, and the results showed
that the proportion of mutations in genes such as TP53
was significantly higher in the high-risk group than in the
low-risk group (Figure 4C). Further, the tumor mutational
burden (TMB) and neoantigen in high-risk group were
significantly higher than low risk groups (Figure 4D). Taken
together, this model had a good clinical predictive value.

Robust analysis of the prognostic model for BRCA

The data used for validating the prognostic model were

© Translational Cancer Research. All rights reserved.

processed data of BRCA patients with survival data in
the GEO database (GSE20685 and GSE12093). Based
on the model, clinical staging of BRCA patients in the
GEO database was predicted and survival differences
between the high- and low-risk groups were assessed
using Kaplan-Meier analysis. The OS of the high-risk
group in two data sets was significantly lower than that
of the low-risk group (Figure 5A4). ROC curve analysis
was performed to verify the predictive accuracy of the
model. The results showed the AUC values of 1-, 3-, and
S-year in GSE20685 data set were not less than 0.70, and
the AUC values of 1-, 3-, and 5-year in GSE12093 data
set were not less than 0.65, indicating that the model
had strong predictive efficacy for patient prognosis
(Figure 5B).
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Figure 4 Multi-omics analysis of clinical predictive value. (A) Correlation between risk score and infiltrating immune cells in BRCA were

analyzed. (B) Chemotherapy IC;, of bleomycin, camptothecin, cisplatin, docetaxel, doxorubicin, gemcitabine in high-risk and low-risk

groups was estimated. (C) Waterfall plot (oncoplot) showed the distribution of mutations in high-risk and low-risk groups. (D) TMB and

neoantigen in high-risk group were significantly higher than low risk groups. TMB, tumor mutational burden; BRCA, breast cancer; 1Cy,
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Analysis of independent prognostic factor

To analyze the independent prognostic factor for BRCA
patients, we built the multivariable logistic regression
prediction model based on integrating clinical information
and the risk scores of patients in the high and low-risk
groups and used the nomogram to visualize the model
(Figure 64). The total points were summated by adding each
point of age, gender, stage, TMN classification, and risk
score, respectively, and we found that the clinical indicators
and risk score values all contributed to the total point. The
calibration curves of 5- and 7-year survival demonstrated
favorable prediction performance of nomogram (Figure 6B).
Univariate Cox regression analysis and multivariate Cox
regression analysis results demonstrated that age and risk
score were the independent prognostic factors for BRCA
patients (Figure 6C,6D).

© Translational Cancer Research. All rights reserved.

Relationship between risk score and clinical parameters

To further understand the relationship between the risk
score and other clinical data, we grouped the risk score
values of all samples by different clinical parameters, and
found that the risk score was significantly associated with
age (Figure 7A), fustat (Figure 7B), clinical-stage (Figure 7C)
and the extent of the tumor (T, Figure 7D) (all P<0.001),
but not with gender (Figure 7E) , the extent of spread to the
lymph nodes (N, Figure 7F) classification and the presence
of metastasis (M, Figure 7G) classification.

Identifying potential biological pathways associated with
BRCA

We then used GSVA to reveal the pathways associated with
the progression of BRCA based on the TGCA database.

Transl Cancer Res 2024;13(5):2419-2436 | https://dx.doi.org/10.21037/tcr-23-1881



2428 Ren et al. A prognostic score model for BRCA

. 0 10 20 30 40 50 60 70 80 90 100 . .
A Points B e
— 7-year vl :
Age 253545 5565 75 85 / g
Gender N-‘—E 0.8 /
2 4 .
Stage ————3—
T & 8
4 ) O 064
o
M = [} p
1.3 % <
N &5 2 ¥
) g 04
Risk score -12 -1 -08-06-04-02 0 02 04 06 08 1 12 14 16
Total points e a0 w00 10 10 Th0 10 20 02
Linear predlctor -25-2-15-1-05 0 05 1 15 2 25 3 35
5_year survival probablllty 095 09 08 0708050403020 004.-
7-year survival probability —_———— T r - T
095 09 08 07060504030201 0.0 0.2 0.4 0.6 0.8 1.0
Nomogram-predicted OS
2906 d127 P=7, 300 subjects per group Xeresampling optmism added, B=1000
Gray: deal Based on cbserved-precicted
C Univariate Cox regression
|
P value Hazard ratio (95% CI) '
Age <0.001 1.032 (1.018-1.047) *
|
Gender 0.876 0.855 (0.119-6.135) _h,—— )
|
Stage <0.001 2.146 (1.701-2.708) ' b
|
|
T <0.001 1.538 (1.243-1.905) N
|
M <0.001 6.322 (3.548-11.263) 1 I - {
|
N <0.001 1.703 (1.417-2.047) ]
|
|
Risk score <0.001 5.400 (3.726-7.826) \ .
r T T T T 1
0 2 4 6 8 10
Hazard ratio (95% ClI)
D Multivariate Cox regression
|
P value Hazard ratio (95% CI) |
Age <0.001 1.025 (1.010-1.041) *
|
Gender 0.584 0.576 (0.080-4.152) — — i
|
Stage 0.088 1.604 (0.933-2.758) ||—-—|
1
T 0.817 0.963(0.703-1.321) |-q|—|
|
M 0.538 1.306 (0.559-3.052) —_ —]
|
N 0.301 1.173 (0.867-1.589) Hm—
|
. ]
Risk score <0.001 4.195 (2.841-6.195) \ I = {
I I T T T T 1
0 1 1 3 4 5 6

Hazard ratio (95% Cl)
Figure 6 Nomogram predicting OS in BRCA patients based on risk score. (A) Nomogram model was used to predict the probability of
5- and 7-year OS of BRCA. Points were assigned for seven features. The sum of these points was located on the total point axis. The total
points axis contained the sum of these points. The bottom scales’ total points corresponded to BRCA’s predicted 5- and 7-year OS. (B)
Calibration curve of 5- and 7-year survival was showed in the nomogram model. X-axis indicated nomogram predicted survival, and Y-axis
indicated actual survival. (C,D) The univariate and multivariate Cox regression analyses verified the independent value of prognostic model
for BRCA. Point estimates and associated P-values for covariates are shown. CI, confidence interval; OS, overall survival; BRCA, breast

cancer.

© Translational Cancer Research. All rights reserved. Transl Cancer Res 2024;13(5):2419-2436 | https://dx.doi.org/10.21037/tcr-23-1881



Translational Cancer Research, Vol 13, No 5 May 2024

2429

A Risk score (P=3.8656-04) B Risk score (P=2.55e-10) C Risk score (P=8.891e-05)

1.5 N 1.5 1.5 o

1.0 1 1.0 1.0
[} [} [
= = =
g 05 S 054 2 95
o o o
I} I} o}
] ] ]
¥ 0.0 ¥ 0.0 ¥ 0.0 |
o [ [

-0.5 -0.5 -0.5
-1.0 -1.0 -1.0
T T T T
<60 >60 Alive Death
Age, years Fustat

D Risk score (P=2.662e-08) E Risk score (P=7.36e-01) F

1.5 1.5

[
0 0
1.0+
(o) ()
S S (9]
= 1 =3
g g 05 E
< <4 °
3 8 s
(2] 2] 8
% > 0.0 <
[ [ e
_0_5_
1.0 Y R S O
T 1 T T
1 2 3 4
N

0.5 |

0.0

Risk score value

Loy
o o
1 1

Figure 7 The correlation analyses between clinical parameters and the risk score. (A-G) The Wilcoxon rank-sum test showed that the risk
scores of BRCA patients were significantly related to age (A), fustat (B), clinical stage (C), and T classification (D), but not gender (E), N
classification (F), and M classification (G). F, female; M, male; BRCA, breast cancer.

The data showed that signaling pathways converging at
various biological processes were significantly different
between low-risk and high-risk groups (Figure §). The high-
risk group was more likely to be related to KRAS signaling,
IL2-STATS signaling, inflammatory response, Notch
signaling, complement, hedgehog signaling, interferon-y
(IFN-y) response, coagulation, EMT, interferon-a (IFN-a)

response, angiogenesis, allograft rejection, hypoxia;

© Translational Cancer Research. All rights reserved.

while the low-risk was preferentially related to P13K-
AKT-mTOR signaling, DNA repair, and Wnt signaling,
indicating that disruption of these signaling pathways in
BRCA patients would affect their prognosis.

GSEA analysis was conducted to identify significant
enrichment patterns using the TGCA database. GO
pathway enrichment analysis revealed that the 677 DEGs
were enriched in female meiotic nuclei division, meiotic I
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cell cycle, meiotic cell cycle, neuroinflammatory response,
and regulation of chemotaxis (Figure 94). KEGG pathway
enrichment results revealed these genes were enriched in
aminoacyl tRNA biosynthesis (ARS), cell cycle, cytokine-
cytokine receptor interactions, hematopoietic cell lineage,
and RNA degradation (Figure 9B).

Predicting mRNA-miRNA-IncRNA interaction

miRNAs and IncRNAs play critical roles in the progression

© Translational Cancer Research. All rights reserved.

of BRCA (20-22). Therefore, we conducted a competitive
endogenous RNA (ceRNA) network to visualize the
mRNA-miRNA-IncRNA interaction. The miRWalk
database and the ENCORI database were used to predict
miRNA-binding sites and lincRNA-binding sites of these
28 genes. With the miRWalk database, 347 mRNA-
miRNA pairs (accessibility <0.001 and TargetScan of 1 or
miRDB of 1) were identified, including 21 mRNAs and
168 miRNAs. Next, these miRNAs were used to predict
reciprocal IncRNAs using ENCORI database, and a total of
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Figure 9 GSEA enrichment plots (GO-base and KEGG-base). (A) Enriched pathway was analyzed by the GSEA based on GO. (B)
Enriched pathway was analyzed by the GSEA based on KEGG. ES >0 represented that the distribution of the gene set was biased upstream

of the ranking list, and ES <0 indicated the gene set distribution was biased downstream of the ranking list. GSEA, gene set enrichment

analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ES, enrichment score.
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Figure 10 CeRNA regulation network of mRNA-miRNA-IncRNA interaction. A total of 347 mRNA-miRNA pairs (including 21 mRNAs
and 168 miRNAs) and 13,766 mRINA-miRNA-IncRNA pairs (including 34 miRINAs and 4,040 IncRNAs) were predicted. The red diamonds
indicated IncRNAs, green diamonds indicate miRNAs, and the purple diamonds indicated mRINAs. CeRNA, competitive endogenous RINA;
IncRINA, long noncoding RNA; miRNA, microRNA; mRNA, messenger RINA.

13,766 miRNA-IncRNA pairs were predicted (including 34
miRNAs and 4,040 IncRNAs). The CeRNA network was
constructed by Cytoscape (v3.7) (Figure 10).

Identification of key genes via RSF analysis

Sensitivity analyses were conducted by the tree number
in the RSF model and the derived variable importance
ranking (Figure 11A4). In our study, genes with relative
importance greater than 0.8 were considered as the
ultimate marker genes (Figure 11B). The key genes
that were associated with prognosis of BRCA included
voltage-dependent anion-selective channel 1 (VDAC-1),
immunoglobulin lambda like polypeptide 5 (IGLLY),
upstream binding transcription factor (UBTF), mediator
complex subunit 17 (MEDI17), and marginal zone B and
B1 cell specific protein (MZBI).

© Translational Cancer Research. All rights reserved.

Discussion

BRCA is the most commonly occurring cancer in women
and the second most common cancer overall (2). Even
though women with non-metastatic invasive BRCA have
a S-year survival rate of up to 90%, women with distant
metastatic invasive BRCA have a 5-year survival rate of only
30-40% (5,6). Most of the patients still have poor prognoses
after metastasis. Bone is the most common site of metastasis
for BRCA (7-9). A prognostic model based on multiple
predictors can be used to predict the risks of a specific
endpoint for individual patients. Many prognostic models
for BRCA have been developed, but only a few have been
extensively validated in various settings (23). Furthermore,
their performance is suboptimal in independent populations,
particularly in patients with high risk and in young and
elderly patients (23). Therefore, we developed a prognostic
score model for prognostic prediction in BRCA based on
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Figure 11 Identifying important gene by RSFE. (A) Optimal tree number selection and (B) variable importance ranking for RSF model was

used to predict important gene in BRCA. RSF, random survival forest; BRCA, breast cancer.

the genes associated with bone metastasis of BRCA and
externally validated the reproducibility and generalizability
of this prognostic model.

Based on the analysis of expression profile data of
326 patients from GSE2034, GSE124647, and GSE39494
BRCA-related databases, a total of 677 DEGs (379 upregulated
genes and 298 downregulated genes) were preliminarily
screened by Combat-seq correction, and 77 DEGs were
identified by univariate Cox regression, with P value
of <0.01 between BRCA with metastasis and without
metastasis. A total of 28 of these genes (such as SGPPI,
CXCL13, and TFF1) ultimately performed better in the
LASSO Cox regression model for variable compression and
were used to establish an optimal prognostic score model.
A recent study showed a potential role of sphingosine-1-
phosphate phosphatase 1 (SGPPI) in driving the metastasis
of BRCAs into the bone microenvironment through
the IL22R1-S1PR1 axis (24). Chemokine C-X-C motif
ligand 13 (CXCL13) can target BRCA cells to promote
proliferation, migration, and invasion (25,26). Furthermore,
upregulation of trefoil factor-1 (7FFI) in estrogen-receptor
(ER) positive BRCA is associated with a higher risk of
bone metastasis (27). The risk score value for each sample
by LASSO regression analysis based on these genes was
obtained, and we divided these BRCA patients into two
groups based on a median risk score. The high-risk group
showed a significantly worse OS compared to the low-risk
group. ROC curve analysis revealed that the model had
high training/testing accuracy.

The clinical predictive value of the prognostic model for

© Translational Cancer Research. All rights reserved.

BRCA was further evaluated using multi-omics analysis.
Although BRCA has been viewed as a relatively non-
immunogenic cancer, the BRCA TME is rich in immune
infiltrates with distinct functions and varies according
to tumor subtypes (28,29). Recent advances in immuno-
oncology have revealed prognostic and predictive values for
tumor infiltrating lymphocytes (TILs) in BRCA, especially
in patients with hormone receptor negative subtype. Higher
tumor-infiltrating B cells, tumor-infiltrating T cells, and
dendritic cells represent a favorable prognosis, while high
tumor-associated macrophages (TAM) and neutrophil
infiltration promote progression in BRCA (30-34). Similar
to the above studies, after analysis of the relationship
between risk score and tumor-infiltrating immune cells, we
found that risk score was significantly positively correlated
with TAM and neutrophils, and negatively correlated with
B cells, T cells, and dendritic cells. Meanwhile, TME
is of prime importance in clinical settings due to the
development of drug resistance and recurrence of BRCA
by inducing genes involved in self-renewal. Based on
drug sensitivity data from the GDSC database, we found
that high-risk group had a higher IC50 of Bleomycin,
Camptothecin, Cisplatin, Docetaxel, Doxorubicin, and
Gemcitabine, indicating that BRCA patients in high-risk
group presented low sensitivity to these drugs. Moreover,
TMB is associated with high neoantigen burden and helps
predict responses to certain cancer immunotherapies. In
addition, high TMB is associated with better response
rates to immunotherapies in melanoma, non-small cell

lung cancer (NSCLC) and urothelial cancer (35-38). In
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this study, we found that TMB and neoantigen in the
high-risk group were significantly higher than in low-risk
group, this may be because high TMB is more common in
metastatic BRCA (39). All these data suggested that based
on the predicting model, BRCA patients with high-risk
score exhibited features of poor prognosis, indicating that
this model had a good clinical predictive value. To validate
the robustness of the prognostic model, we downloaded
the processed data of BRCA patients with survival
information. Based on this model, high-risk patients had
a worse OS. Further, the ROC curve analysis revealed
that this model had strong predictive efficacy for patient
prognosis. Through multivariate Cox regression analysis,
we were able to conclude that our prognostic model was
efficient and independent of other clinical factors, such as
age, gender, clinical stage, and TNM classification. The
nomogram model incorporating these factors exhibited
better discrimination ability for predicting prognosis
in BRCA patients. Therefore, the model may provide a
promising method for distinguishing the high-risk BRCA
patients and help guide the stratified treatment of BRCA
patients.

The prognostic biomarker pathways of BRCA were
screened. The results of GSVA showed that different
signal pathways were activated in different risk groups of
BRCA. Being consistent with existing reports, our study
indicates that KRAS signaling, IL2-STAT'S signaling,
Notch signaling, and hedgehog signaling play important
roles in BRCA metastasis (40-44). GSEA analysis showed
significantly increased expression of genes in the high-
risk group, mainly involving the meiotic nuclear division,
meiosis I cell cycle, and meiotic cell cycle. The miRNAs
and IncRNAs also play critical roles in the progression
of BRCA through a variety of biological effects and
mechanisms (20-22). Aco-expression network of the 28
genes-related mRNAs and IncRNAs was constructed in
this study, and most nodes in the network were reported
for the first time. Then, RSF revealed that the key
genes that were associated with the prognosis of BRCA
included VDAC-1, IGLLS, UBTF, MED17, and MZBI,
with a relative importance >0.8. Among them, VDACI,
MEDI17, and MZBI are unfavorable and associated with
poor prognosis in BRCA, while IGLLS was identified
as the best predictor of relapse-free survival with >85%
accuracy (45-49). Although experimental validation has
not been conducted, the above results provide potential
targets for future treatment of BCRA patients with bone
metastasis.

© Translational Cancer Research. All rights reserved.
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Conclusions

In conclusion, 677 genes related to BRCA bone metastasis
were screened by DEGs analysis based on public databases.
Based on the univariate Cox regression and LASSO-Cox
regression model analysis, we developed a prognostic
model consisting of 28 prognostic DEGs, which can help
distinguish the high-risk BRCA patients. The predictive
efficacy of our prognostic model was further tested by
external validation cohorts. Furthermore, the 28 signature
genes-based predictive model and nomogram might be
useful for prognostic prediction for BRCA patients. The
prognostic prediction model of BRCA in this study can
provide a promising method for clinical helping on clinical
decision making and prognosis prediction for BRCA
patients. Meanwhile, screening for prognostic biomarker
genes and pathways in BRCA may provide potential
therapeutic targets for future treatment.
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