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Background: Lung adenocarcinoma (LUAD), a global leading cause of cancer deaths, remains 
inadequately addressed by current protein biomarkers. Our study focuses on developing a protein-based risk 
signature for improved prognosis of LUAD.
Methods: We employed the least absolute shrinkage and selection operator (LASSO)-COX algorithm on 
The Cancer Genome Atlas database to construct a prognostic model incorporating six proteins (CD49B, 
UQCRC2, SMAD1, FOXM1, CD38, and KAP1). The model’s performance was assessed using principal 
component, Kaplan-Meier (KM), and receiver operating characteristic (ROC) analysis, indicating strong 
predictive capability. The model stratifies LUAD patients into distinct risk groups, with further analysis 
revealing its potential as an independent prognostic factor. Additionally, we developed a predictive nomogram 
integrating clinicopathologic factors, aimed at assisting clinicians in survival prediction. Gene set enrichment 
analysis (GSEA) and examination of the tumor immune microenvironment were conducted, highlighting 
metabolic pathways in high-risk genes and immune-related pathways in low-risk genes, indicating varied 
immunotherapy sensitivity. Validation through immunohistochemistry from the Human Protein Atlas (HPA) 
database and immunofluorescence staining of clinical samples was performed, particularly focusing on CD38 
expression. 
Results: Our six-protein model (CD49B, UQCRC2, SMAD1, FOXM1, CD38, KAP1) effectively 
categorized LUAD patients into high and low-risk groups, confirmed by principal component, KM, and 
ROC analyses. The model showed high predictive accuracy, with distinct survival differences between risk 
groups. Notably, CD38, traditionally seen as protective, was paradoxically associated with poor prognosis 
in LUAD, a finding supported by immunohistochemistry and immunofluorescence data. GSEA revealed 
that high-risk genes are enriched in metabolic pathways, while low-risk genes align with immune-related 
pathways, suggesting better immunotherapy response in the latter group.
Conclusions: This study presented a novel prognostic protein model for LUAD, highlighting the CD38 
expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new 
clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.
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Introduction

Bronchogenic lung cancer, originating primarily from 
bronchial mucosa or glands, is generally referred to as lung 
cancer and presents a significant risk to human health. As 
demonstrated in a 2020 global cancer statistics study (1), 
lung cancer accounted for 2,206,771 new cases, comprising 
11.4% of total cancer incidences, and positioned second 
following breast cancer. Moreover, the death toll reached 
1,796,144, representing 18.0% of total cancer fatalities and 
securing the first rank. China, home to 20% of the global 
population, witnessed lung cancer incidence and mortality 
rates accounting for 35.6% and 37.6% respectively, of the 
world’s totals. The country’s 5-year lung cancer survival rate 
stands at a mere 15.6% due to late-stage diagnosis. Lung 
cancer manifests predominantly as small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC), with the 
latter constituting the majority of cases (80–85%). NSCLC 
primarily includes lung adenocarcinoma (LUAD) and lung 
squamous carcinoma (LUSC), with LUAD emerging as 
the most common subtype. Early diagnosis is typically 
challenging; thus, patients often present with advanced-
stage disease by the time symptoms manifest, culminating 

in poor prognosis. Presently, lung cancer screening heavily 
relies on chest X-rays and computed tomography (CT) 
scans. Diagnostic imaging largely depends on clinicians’ 
disease comprehension and image interpretation skills. 
Furthermore, the dearth of specificity in early-stage lung 
cancer imaging further complicates early detection.

The recent advancements in cancer-related biomarker 
research have ushered in a new era for lung cancer 
detection and treatment. Particularly noteworthy are the 
developments in immunotherapy, initiated with studies on 
the clinical effectiveness of pembrolizumab, nivolumab, and 
atezolizumab (2-5) as second-line therapy for lung cancer. 
These studies led to the Food and Drug Administration 
(FDA)’s endorsement of immune checkpoint inhibitors 
as a secondary treatment for lung cancer. Following the 
promising results from the Keynote024 study (6), the 
FDA approved pembrolizumab as a primary treatment 
for patients with programmed death-ligand 1 (PD-L1) 
expression levels above 50% in lung cancer, highlighting 
the beneficial impact of single-agent immunotherapy for 
these patients. Regarding diagnosis and disease detection, 
markers such as cytokeratin 19 fragment (CYFRA21-1), 
carcinoembryonic antigen (CEA), gastrin-releasing peptide 
precursor (ProGRP), neuron-specific enolase (NSE), and 
squamous cell carcinoma antigen (SCCA) are frequently 
used in clinical settings. However, none of these markers 
exhibit high specificity and often only have suggestive value. 
Therefore, the quest for a marker closely related to lung 
cancer continues to be a pressing research direction.

The objective of this study was to identify proteins that 
could potentially forecast the prognosis of lung cancer 
patients, focusing specifically on the proteome of LUAD 
patients. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-1940/rc).

Methods 

Data collection

The Cancer Genome Atlas (TCGA) program data portal 
(https://portal.gdc.cancer.gov/) was used to access the 
RNA sequencing and protein expression data of LUAD, 
as well as the accompanying clinical and pathological 
data. We collected 59 normal specimens and 541 tumor 
specimens for a total of 600 specimens. We then integrated 
the corresponding information. We created training and 
test sets from all samples at random, and we utilized the 
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training set to build a LAUD protein prognostic model 
and the test set to assess our model. From each of the five 
LUAD patients at the Affiliated Hospital of Hangzhou 
Normal University, paraffin sections were obtained from 
two different sites, with each site providing a pair of 
sections including both tumor tissues and adjacent non-
tumor tissues. This procedure, approved by the hospital’s 
research ethics review, resulted in a total of 10 pairs of 
paraffin sections. The study was a retrospective study, and 
the samples used were from the Department of Pathology, 
which received approval for exemption from informed 
consent. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Affiliated 
Hospital of Hangzhou Normal University [2023(E2)-
KS-036] and the requirement for individual consent for this 
retrospective analysis was waived.

Construction of LUAD prognosis related protein signature

Initially, we conducted univariate COX proportional 
regression analysis with a P value threshold of 0.05 to 
identify proteins potentially linked to the prognosis of 
LUAD in the training set. The objective was to investigate 
the association between these proteins and overall survival 
(OS) in patients with LUAD. The outcomes of this analysis 
are presented in the form of a forest plot. The volcano 
plot illustrates the differential expression of prognosis-
related proteins in both normal and tumor tissues, with 
a significance threshold set at a P value of less than 0.05. 
Subsequently, we conducted a least absolute shrinkage 
and selection operator (LASSO) analysis (7,8) using the 
“glmnet” R package to further refine the selection of 
prognosis-related proteins, aiming to identify the most 
crucial ones. Ten-fold cross-validation was conducted on 
the proteins that had been previously screened in order 
to ascertain the optimal penalty parameter λ and establish 
the most suitable model. Subsequently, multivariate COX 
proportional regression analysis was performed using a 
stepwise regression approach by the “step” function, which 
further refined the selection of variables. This stepwise 
analysis allowed for the construction of a prognostic protein 
signature model for LUAD. The resultant prognostic 
signature was then utilized to compute the risk score for 
each sample, employing the following equation:

( )n

1
Risk score Coef xk

k=
= ×∑ 	

[1]

This was achieved by multiplying the regression 

coefficients (Coef) with the expression levels (xk) of the 
respective proteins. Following this, we calculated the risk 
score for each specimen, spanning both our training and 
test sets. Based on this computation, samples are then 
stratified into groups of high and low risk. This segregation 
is guided by the median risk score.

Assessment of the prognostic model

Upon model construction completion, our goal was 
to examine its functionality in numerous aspects, thus 
confirming its possible use in clinical settings. We assessed 
the model’s capacity to differentiate between high and low 
risk cohorts through principal component analysis (PCA) 
on all proteins and modeled proteins with the assistance 
of the “scatterplot3d” R package. For further verification, 
Kaplan-Meier (KM) analysis was conducted on both risk 
cohorts across all datasets, the training set, and the test 
set. The analysis was supplemented by progression-free 
survival (PFS) examination in these risk cohorts, statistical 
significance being underscored by P values beneath 0.05. 
As we proceeded, our assessment incorporated receiver 
operating characteristic (ROC) curve analysis to investigate 
the predictive potential of both the protein model and 
clinicopathological factors for patient survival, as well as 
the model’s forecasting ability for 1-, 2-, and 3-year patient 
survival. This predictive capacity was quantified through the 
area under curve (AUC), computed using the “timeROC” R 
package. The “survival” and “survminer” R packages were 
also featured in this process. Conclusively, we probed the 
risk scores, survival condition, and expression metrics of six 
prognostic proteins across all datasets, the training set, and 
the test set. Patients were classified into groups of high and 
low expression hinging on protein expression differences. 
The survival rates of these clusters were then scrutinized via 
KM survival curve analysis.

Comprehensive clinical analysis and construction of the 
nomogram

To verify the model’s practicality across a variety of patient 
demographics, we segregated the patients into subgroups 
according to various clinicopathological data, including age, 
gender, TNM stages (Tumor, Node, Metastasis stages), 
and overall stage. This classification allowed us to perform 
in-depth analyses, one of which involved scrutinizing 
OS in high- and low-cohorts via KM survival curve 
analysis. With the assistance of “corrplot” and “circlize” R 
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packages, we inspected the differential expression of each 
protein represented in the model across these different 
subgroups, and visually presented the results through 
boxplots. Subsequently, both univariate and multivariate 
COX regression analyses were conducted to evaluate 
the independent prognostic power of our model and the 
prognostic value inherent in various clinicopathological 
factors. With the intention of directly benefiting clinical 
practice, we devised a nomogram that amalgamated both 
risk scores and clinicopathological factors. This tool was 
intended to predict the survival of LUAD patients at 1-, 
3-, and 5-year intervals. The precision of these nomograms 
in forecasting survival was further confirmed through 
calibration curves.

Gene set enrichment analysis (GSEA) and construction of 
the protein coexpression network

To probe the potential regulatory mechanisms differentiating 
the cohorts of high and low risk, we employed the “c2.
cp.kegg.symbols.gmt” and “c5.go.symbols.gmt” gene 
sets as our background gene sets. The “clusterProfiler” 
package enabled us to conduct Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses on patients within the high- and low-
risk cohorts. This approach allowed us to investigate the 
potential biological functions and signaling pathways that 
may bear relevance to patients in various risk cohorts. We 
set a P value of less than 0.05 as the screening threshold, 
and the top five most significant pathways were retained and 
visualized for further scrutiny. Moreover, we harnessed the 
“corrplot” and “circlize” packages to examine interactions 
between the six proteins represented in our model, with 
results visually presented in a comprehensive circos plot. 
Continuing our exploration, we evaluated the co-expression 
relationships between model proteins and other proteins 
using the “ggplot2” and “ggalluvial” packages, representing 
the findings in a detailed Sankey diagram.

Tumor immune environment and the sensitivity of 
immunotherapy

In our endeavor to discern the variations in the tumor 
immune environment of patients in different risk cohorts, 
we exploited the CIBERSORT algorithm (9) to analyze 
the proportion of 22 immune cell infiltrates in LUAD 
samples obtained from the TCGA database. For a nuanced 
examination of the differences in the proportions of immune 

cell infiltration between high- and low-risk cohorts, we 
employed the “limma” package. Visualization of these 
disparities was accomplished with the “ggpubr” and 
“fmsb” packages, resulting in box plots and radar plots. 
Furthermore, we employed The Cancer Immunome Atlas 
(TCIA) (https://tcia.at/home) database to evaluate the 
sensitivity of LUAD patients to immunotherapy. We initiated 
by downloading the pertinent data for LUAD patients 
from the TCIA database, which included information 
related to programmed cell death 1 (PD-1) and CTLA4 
immune checkpoints, as well as the immunophenoscore 
(IPS). Subsequent to this, we conducted an analysis of 
the disparity in IPS between high- and low-risk cohorts. 
The IPS functioned as an immunogenicity measure, with 
a higher IPS indicative of stronger immunogenicity. This 
consequently suggested a more favorable immunotherapy 
response.

Consensus clustering analysis

Aiming to gain a comprehensive understanding of 
the clinical characteristics of patients with LUAD, we 
conducted an unsupervised consensus clustering analysis 
using the ConsensusClusterPlus package. This procedure 
allowed us to categorize LUAD patients into distinct 
subtypes. Following this, we conducted a survival analysis 
among the various subtypes to investigate any potential 
disparities. Additionally, we delved into whether different 
clinicopathological indicators, such as age, gender, and 
TNM stage, varied significantly between the subtypes. 
To present these findings more effectively, we employed 
the “ggplot2” package, converting the results into visually 
understandable histograms.

Validation of prognostic protein expression levels

We obtained immunohistochemical images of the model 
proteins in both lung cancer tissue and normal lung tissue 
from the Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/) to facilitate a comparison of the 
expression levels of the model proteins. The selection of 
images, representing protein expression in LUAD, was 
based on clear staining patterns and relevance to LUAD 
pathology. We prioritized high-resolution images with 
consistent protein expression patterns, ensuring an accurate 
and representative depiction of the protein expression in 
lung cancer tissues. Subsequently, we identified the “optimal 
protein” (exhibiting the most significant difference) for 

https://tcia.at/home
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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validation, basing our selection on the results of differential 
expression of the model proteins in subgroups according 
to clinicopathological factors. With the help of the “plyr”, 
“reshape2”, and “ggpubr” packages, we conducted a pan-
cancer analysis of these “optimal proteins” in human tumors. 
A differential expression analysis of the “optimal protein” 
in various tumors was conducted, and then the results 
were arranged according to the expression of the “optimal 
protein” in different tumors, with the findings represented 
in a box plot. As a subsequent step, to further validate the 
“optimal protein”, we implemented immunofluorescence 
staining on formalin-fixed paraffin-embedded (FFPE) 
samples of lung cancer tissues and paraneoplastic tissues 
from five LUAD patients at the Affiliated Hospital of 
Hangzhou Normal University. In this investigation, the 
antibody against CD38 (Santa Cruz Biotechnology, Dallas, 
TX, USA; Cat# sc-18858, RRID:AB_627050) was utilized. 
We quantified the immunofluorescence intensity using 
Image J software to conduct a semi-quantitative analysis 
of protein expression, thereafter examining whether the 
protein exhibited differential expression in lung cancer 
tissues and paracancer tissues employing a t-test.

Statistical analysis

Statistical analysis was carried out using R software 
(version 4.0.2). For all tests, a P value of less than 0.05 
was considered statistically significant. The normality 
of data distribution was assessed using Shapiro-Wilk 
test. Differences between groups were analyzed using 

the Student’s t-test for normally distributed data and the 
Mann-Whitney U test for non-normally distributed data. 
Chi-square or Fisher’s exact test were used for categorical 
data analysis. Survival analysis was performed using KM 
method and differences between survival curves were 
evaluated using the log-rank test. Multivariate survival 
analysis was carried out using Cox proportional hazards 
model. The proportional hazards assumption was tested 
using Schoenfeld residuals. ROC curve analysis was used to 
evaluate the prognostic accuracy of the protein signature, 
with the area under the curve (AUC) indicating predictive 
performance. For the analysis of protein expression levels 
and immunotherapy response, Pearson or Spearman 
correlation analysis was employed depending on data 
distribution. GSEA was performed to identify significant 
pathways associated with risk scores, and the Benjamini-
Hochberg method was used for adjusting P values for 
multiple comparisons.

Results

Construction of the protein risk signature and evaluation 
of the prognostic model 

At the commencement of our investigation, we harvested 
RNA sequencing data, protein expression data, and 
corresponding clinicopathological data from 600 LUAD 
samples via the TCGA database. An amalgamation of 
these datasets resulted in a collection of 357 samples with 
comprehensive data, forming the cornerstone of our study. 
We randomly partitioned these 357 samples into two 
equitable sets: the training set, encompassing 179 cases, and 
the test set, inclusive of 178 cases. This partitioning was 
instrumental in facilitating subsequent model construction. 
We began with univariate regression to probe the 
association of proteins with OS, identifying ten significant 
proteins (Table 1). These were depicted in a forest plot 
(Figure 1A), where the x-axis showed hazard ratios on a 
log scale, and the y-axis listed proteins. The length of the 
lines represented 95% confidence intervals. A volcano 
plot (Figure 1B) illustrated differential protein expression: 
the x-axis showed log2 hazard ratios and the y-axis showed 
the negative log10 P values. Red points indicated high-risk 
proteins, green points indicated low risk, and black points were 
nonsignificant. We further refined the selection of prognostic 
proteins using LASSO regression (Figure 1C,1D). This process, 
guided by the optimal lambda value obtained through 
cross-validation, identified eight key proteins (NDUFB4, 

Table 1 Univariate regression proportion analysis result

Protein HR HR.95L HR.95H P value

NDUFB4 0.197 0.040 0.966 0.05 

TRAP1 1.605 1.017 2.531 0.04 

CYCLINB1 1.355 1.030 1.784 0.03 

CD49B 1.856 1.043 3.304 0.04 

UQCRC2 3.469 1.059 11.367 0.04 

SMAD1 3.290 1.129 9.590 0.03 

CD134 0.146 0.028 0.778 0.02 

FOXM1 2.049 1.188 3.534 0.01 

CD38 0.351 0.151 0.816 0.02 

KAP1 4.437 1.703 11.563 0.002 

HR, hazard ratio; L, low; H, high.
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CD49B, UQCRC2, SMAD1, CD134, FOXM1, CD38, 
KAP1) associated with prognosis. Subsequently, six of 
these proteins (CD49B, UQCRC2, SMAD1, FOXM1, 
CD38, KAP1) were selected via multivariate regression 
proportional analysis to construct the final prognostic 
model (Table 2).  Risk scores for each sample were 

calculated by multiplying each protein’s expression level in 
the model by its corresponding regression coefficient, and 
then summing up these products. Ultimately, all samples 
were bifurcated into high- and low-risk cohorts based on 
the median value of the risk scores from the training set 
samples.

Figure 1 Screening prognostic-related proteins in LUAD from TCGA database. Study of the correlation between 10 prognostic-related 
proteins and overall survival of LUAD patients by univariate Cox regression analysis (A). The upregulated and downregulated prognostic-
related proteins in volcano plot (B). The LASSO regression analysis of these 10 proteins (C,D). The lines in different colors represent 
the coefficients of the 10 prognostic-related proteins in the LASSO regression analysis. CI, confidence interval; HR, hazard ratio; Sig, 
significant; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator.
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After developing the model, we conducted a comprehensive 
evaluation of its performance. In Figure 2A, PCA on 
all proteins showed overlapping clusters with no clear 
separation of risk cohorts, with axes representing the 
principal components. Figure 2B’s PCA, on model proteins, 
delineated distinct high- and low-risk cohorts. KM curves  
(Figure 2C for the entire dataset, Figure 2D for the 
test set, and Figure 2E for the training set) showed the 
survival probability over time on the y-axis, revealing a 
statistically significant difference in OS between the high-
risk (red line) and low-risk (blue line) cohorts. For PFS, 
Figure 2F indicated no significant disparity in survival 
probability between the risk cohorts. ROC curve analysis 
demonstrated that the risk model’s AUC values were 
higher compared to other clinicopathological factors, as 
illustrated in Figure 3A. Specifically, the AUC values for 
the risk model at 1, 3, and 5 years were 0.685, 0.618, and 
0.635, respectively, as shown in Figure 3B. This highlighted 
the superior predictive accuracy of the risk model over 
traditional clinicopathological factors. Investigation into 
patient risk score and survival time across the entire 
dataset, the training set, and the test set indicated an 
increasing mortality rate in proportion to escalating risk 
scores. Moreover, heatmaps demonstrating protein-related 
expression highlighted CD49B, UQCRC2, SMAD1, 
FOXM1, and KAP1 as being highly expressed in the high-
risk cohort, whilst CD38 exhibited high expression in 
the low-risk cohort (Figure 3C-3E). Analysis of protein 
expression and patient survival curves manifested longer 
OS in patients with low expression of CD49B, UQCRC2, 
FOXM1, and KAP1, as opposed to their high expression 
counterparts. In contrast, high levels of CD38 expression 
indicated longer OS compared to its low expression 
counterparts. No noteworthy relationship was discovered 
between SMAD1 expression and OS (Figure 3F). 

Comprehensive clinical analysis

The patient cohort was further segmented into several 
subgroups in accordance with age, gender, TNM-stages, 
and stage. Subsequent analysis of KM survival curves within 
these diversified subgroups (Figure 4A) revealed a longer OS 
for the low-risk cohort relative to the high-risk counterpart. 
However, within the T3–4 patient subgroup, no significant 
difference in OS was noted between the two risk cohorts. 
A deep-dive into the relationship between model proteins 
and clinicopathological factors revealed unique patterns 
of protein expression. The x-axis in Figure 4B categorized 
clinical factors such as age, gender, and TNM-stages, 
while the y-axis measured the expression levels of model 
proteins. CD38 showed differential expression in the age 
and TNM-stage subgroups; CD49B in the gender and 
T-stage subgroups; FOXM1 in the gender subgroup; KAP1 
in the M-stage and stage subgroups; and the risk score in 
the T-stage subgroup also indicated differential expression. 
The univariate and multivariate COX regression analysis, 
depicted in Figure 5A,5B, established the risk score as an 
independent prognostic indicator, as indicated by P values 
less than 0.05 in both analyses. The x-axis represented the 
hazard ratio for clinical variables such as age, gender, and 
TNM-stages, with the y-axis listing these variables. The 
boxes represented the hazard ratios with their confidence 
intervals, and the dashed line denoted a hazard ratio of 
one. We assembled nomograms that incorporated both risk 
scores and clinicopathological factors for LUAD patients. 
These nomograms, as depicted in Figure 5C, provided 
a visual representation where points were assigned for 
each factor, including M stage, T stage, N stage, overall 
stage, gender, age, risk scores, and, to predict the OS at 
1, 3, and 5 years. The calibration plot in Figure 5D was 
scrutinized to assess the accuracy of our prediction model. 
The alignment of the plotted points with the diagonal line 
represented the model’s reliability. Points closer to the 
diagonal line indicated more accurate predictions, and our 
model demonstrated superior prognostic accuracy at 1 and 
3 years, as evidenced by the plotted points’ proximity to the 
45-degree line, compared to the 5-year predictions.

GSEA and construction of the protein coexpression network

Our exploration into the biological mechanisms and 
regulatory pathways implicated in varying risk cohorts 
utilized GO and KEGG analyses. The results indicated 
significant enrichment in five key pathways for genes of 

Table 2 The regression coefficients of six model proteins

Protein Coef

CD49B 0.64292591

UQCRC2 1.219037602

SMAD1 0.998231812

FOXM1 0.553722336

CD38 −0.639864924

KAP1 1.035762646

Coef, coefficients. 



Yu et al. Proteomic profiling in LUAD prognosis2194

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(5):2187-2207 | https://dx.doi.org/10.21037/tcr-23-1940

Figure 2 Survival analysis of the risk model. PCA for whole protein expression profile (A) and the proteins in the model (B). Kaplan-Meier 
analysis of OS in the high- and low-risk groups in the entire (C), test (D) and train (E) sets. (F) Progression-free survival analysis between 
the high- and low-risk groups. PC1, first principal component; PC2, second principal component; PC3, third principal component. PCA, 
principal component analysis; OS, overall survival.
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Figure 3 Assessment of the predictive power of the prognostic signature. ROC analysis for the risk model, age, gender, T, M, N (A), and the 
risk model at 1-, 3-, 5-year survival time (B). The distribution of risk scores, survival status and expression level of six prognostic proteins in 
the entirety set (C), test set (D) and train set (E). The overall survival analysis of the six proteins expressions in LUAD patients (F). AUC, 
area under curve; ROC, receiver operating characteristic; LUAD, lung adenocarcinoma.
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Figure 4 Comprehensive clinical analysis. The overall survival of LUAD patients grouped according to clinical characteristics between the 
high- and low-risk groups (A). The relationship between prognostic proteins and clinical factors (B). LUAD, lung adenocarcinoma.
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Figure 5 Identification of independent prognostic factors and establishment of the nomogram. Univariate and multivariate Cox regression analyses 
to verify the prognostic values of various clinicopathological factors and risk scores (A,B). A nomogram based on the prognostic signature consisting 
of risk score and clinical factors (C). The calibration plot of the nomogram (D). CI, confidence interval; OS, overall survival.
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patients in the high-risk cohort: cell cycle, Parkinson’s 
disease, pyrimidine metabolism, ribosome, and spliceosome. 
These genes were also associated with biological processes 
such as appendage development, morphogenesis, and 
epidermis development; cellular components like the 
ribosomal subunit; and molecular functions such as 
the structural constituent of the ribosome (Figure 6A). 
Conversely, genes of patients in the low-risk cohort were 
notably enriched in distinct pathways: allograft rejection, 
asthma, intestinal immune network for immunoglobulin 
A (IgA) production, primary immunodeficiency, and 
systemic lupus erythematosus. These genes were linked to 
cellular components such as the immunoglobulin complex, 
circulating immunoglobulin complex, and T cell receptor 

complex; alongside biological processes such as antigen 
binding and immunoglobulin receptor binding (Figure 6B). 
Subsequent to this, a co-expression analysis was performed 
between the model proteins, and the outcomes are depicted 
in Figure 6C. The circos plot illustrated the strength and 
direction of the co-expression relationships among model 
proteins, with red lines indicating positive correlation and 
green lines indicating negative correlation. The intensity 
of the color on each line reflected the magnitude of the 
correlation coefficient, demonstrating the degree of co-
expression between the proteins. To shed further light 
on the interplay among these proteins, we analyzed the 
regulatory relationships between the model proteins and 
other proteins, as represented in the Sankey diagram  
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Figure 6 Pathway enrichment analysis and protein interaction network. The top 5 KEGG and GO pathways enriched in the high- and low-
risk groups (A,B). The interaction relationships among 6 prognostic proteins in circos plot (C). Analysis of co-expressed proteins in LUAD 
in Sankey diagram (D). KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; LUAD, lung adenocarcinoma.
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(Figure 6D). The Sankey diagram detailed the complex 
interactions and the flow of regulatory influence from model 
proteins to various other proteins implicated in LUAD, 
highlighting the pathways and potential mechanisms that 
these proteins may have influenced.

Exploration of tumor immune microenvironment and 
response to immunotherapy

To examine the extent of immune cell infiltration in various 
risk cohorts, we deployed the CIBERSORT algorithm. The 
outcome of this analysis revealed differing degrees of Plasma 
cell infiltration within the high- and low-risk cohorts, 
with more pronounced infiltration in the low-risk cohort  
(Figure 7A,7B). However, the infiltration levels of other 
immune cells did not exhibit any significant disparities 
between the two risk cohorts. Further, we conducted 
an immunotherapy sensitivity analysis using the TICA 
database for patients in the high- and low-risk cohorts. This 
analysis disclosed a higher Immune Potential Score (IPS) 
in the low-risk cohort than in the high-risk counterpart in 
the presence of positive immune checkpoints (PD-1 and/or 
CTLA4), suggesting an enhanced immune response within 
the low-risk cohort (Figure 7C).

Consensus clustering analysis

The application of unsupervised consensus clustering 
analysis to the prognostic proteins identified an optimal 
value of k=2 for the LUAD samples, as evidenced by the 
consensus matrix (Figure 8A), the consensus cumulative 
distribution function (CDF) (Figure 8B), the delta area plot 
(Figure 8C), and the tracking plot (Figure 8D). Subsequently, 
we partitioned the sample into two distinct subtypes: 
subtype 1 and subtype 2. Probing survival rates across 
these subtypes uncovered that subtype 2 demonstrated 
significantly enhanced OS (Figure 9A). Additionally, when 
examining the clinical correlations within the varying 
clusters, we discerned pronounced discrepancies in N-stage 
and T-stage amid the two subtypes (Figure 9B).

 Validation of CD38 expression level

Our comprehensive pan-cancer analysis, as illustrated in 
Figure 10A, displayed significant differential expression of 
CD38 between normal and tumor tissues across various 
cancer types, notably in LUAD, BRCA, CHOL, COAD, 
HNSC, KICH, KIRC, LIHC, LUSC, PCPG, PRAD, 

READ, and THCA. In Figure 10B, the relative expression 
levels of CD38 are depicted, showcasing the variability in 
its expression among different tumor types. Subsequently, 
through the utilization of immunohistochemical images 
from the HPA database, we confirmed differential 
expression of CD38 and other model proteins in LUAD 
tissues as opposed to normal lung tissues, with a significant 
upregulation in the former (Figure 10C). Our prior analysis 
singled out CD38 as having the most prominent expression 
across the diverse subgroups. With this discovery, we designated 
CD38 as the “prime protein” for subsequent validation. 
Immunofluorescence staining was performed on 10 pairs of lung 
cancer and adjacent non-tumor tissues (Figure 10D), followed 
by semi-quantitative analysis (Figure 10E). The results clearly 
indicated that CD38 is highly expressed in lung cancer tissues 
compared to adjacent non-tumor tissues.

Discussion

The landscape of lung cancer research is heavily populated 
by investigations centered on identifying relevant biomarkers 
due to their potential utility in early screening, diagnosis, 
efficacy evaluation, and prognosis prediction. One promising 
direction was the exploration of autoantibodies against 
lung cancer as such markers. Massion et al. (10) reported 
a substantial improvement in their CT screening risk 
model’s diagnostic potency for lung cancer upon integrating 
antibodies to p53, NY-ESO-1, CAGE, GBU4-5, SOX2, 
HuRt, melanoma antigen, and MAGE-A4. The modified 
model yielded a specificity exceeding 92% and a positive 
predictive value surpassing 70%. Similarly, the study 
by Dai et al. (11) demonstrated that the sensitivity for 
detecting NSCLC increased to 84% when the detection 
of anti-ENO1 was combined with two other tumor 
protein biomarkers (CEA and CYFRA 21-1). Another 
study (12) capitalized on complement fragment 4d (C4d) 
to differentiate benign from malignant lung nodules. 
However, the restricted sensitivity of these autoantibodies 
curtails their utility in early screening. Alternative strategies 
for biomarker discovery, such as microRNA, circulating 
tumor DNA, circulating tumor cells, exosomes, and DNA 
methylation, have been exploited (13-17), albeit they 
suffer from the drawbacks of the testing processes being 
inconvenient and expensive, thus limiting their translation 
into clinical practice. While the pursuit of lung cancer 
biomarkers at the RNA and DNA levels continues to attract 
attention, it is crucial to remember that proteins primarily 
mediate biological functions. Proteins such as CEA, NSE, 
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Figure 7 Tumor immunology and the sensitivities of patients in the different risk groups to immunotherapy. Significant relationships 
between the risk score and infiltration abundances of immune cells (A,B), **, P<0.01. The differential responses to anti-CTLA4 and anti-
PD-1 immunotherapy in LUAD patients (C). NK, natural killer; PD-1, programmed cell death 1; LUAD, lung adenocarcinoma.
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Figure 8 Consensus clustering analysis of prognostic proteins. Consensus matrix of LUAD samples’ co-occurrence proportion for different 
values of k (A). Consensus CDF or different values of k (B). Delta area plot (C) and tracking plot (D) for optimal k-value. CDF, cumulative 
distribution function; LUAD, lung adenocarcinoma.
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Figure 9 Kaplan-Meier analysis and clinical relevance in different clusters. Kaplan-Meier analysis of OS in the different clusters (A). 
Analysis of the clinical relevance in the different cluster, analysis of significant differences in clinicopathological factor (age, gender, stage I-IV, 
TNM stage) in the different cluster (B). OS, overall survival; TNM, Tumor, Node, Metastasis.
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Figure 10 Verification of the expression levels of prognostic proteins. Comprehensive pan-cancer analysis of the CD38 across human 
cancers (A,B). Representative immunohistochemical staining images of the six proteins comprising the risk model in normal lung tissue 
and lung cancer tissue in the Human Protein Atlas (C) (https://www.proteinatlas.org/) and the links to the individual normal and tumor 
tissues of each protein are provided for CD38 (https://www.proteinatlas.org/ENSG00000004468-CD38/tissue/lung#img; https://www.
proteinatlas.org/ENSG00000004468-CD38/pathology/lung+cancer#img), CD49B (https://www.proteinatlas.org/ENSG00000164171-
ITGA2/tissue/lung#img; https://www.proteinatlas.org/ENSG00000164171-ITGA2/pathology/lung+cancer#img), FOXM1 (https://www.
proteinatlas.org/ENSG00000111206-FOXM1/tissue/lung#img; https://www.proteinatlas.org/ENSG00000111206-FOXM1/pathology/
lung+cancer#img), KAP1 (https://www.proteinatlas.org/ENSG00000130726-TRIM28/tissue/lung#img; https://www.proteinatlas.org/
ENSG00000130726-TRIM28/pathology/lung+cancer#img), SMAD1 (https://www.proteinatlas.org/ENSG00000170365-SMAD1/
tissue/lung#img; https://www.proteinatlas.org/ENSG00000170365-SMAD1/pathology/lung+cancer#img), and UQCRC2 (https://www.
proteinatlas.org/ENSG00000140740-UQCRC2/tissue/lung#img; https://www.proteinatlas.org/ENSG00000140740-UQCRC2/pathology/
lung+cancer#img). The immunofluorescence staining of CD38 in LUAD tissues and normal lung tissues was conducted using clinical 
samples (D). Semi-quantitative analysis of CD38 based on immunofluorescence intensity (E). *, P<0.05; **, P<0.01; ***, P<0.001. LUAD, 
lung adenocarcinoma.
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CYFRA21-1, ProGRP, and SCCA serve as primary lung 
cancer biomarkers in clinical settings. NSE and ProGRP 
are principally employed for SCLC’s early diagnosis, 
efficacy monitoring, and prognostic assessment (18-20), 
while CEA, CYFRA21-1, and SCCA are predominantly 
used for NSCLC (21-23). CYFRA21-1 and SCCA hint at 
a higher likelihood of LUSC, and a close correlation exists 
between CEA and LUAD. Nevertheless, the credibility of 
CEA is compromised by various factors that can induce its 
elevation, including different adenocarcinoma types (24)  
and certain benign diseases (25). Hence, the pressing 
requirement for identifying additional protein biomarkers 
closely tied to LUAD, the most impactful subtype of lung 
cancer, is clear. Catering to this need, our research aims to 
scrutinize the database for proteins with a strong association 
with LUAD (CD49B, UQCRC2, SMAD1, FOXM1, 
CD38, and KAP1-6) and build a model to predict the 
prognosis of LUAD patients.

Leveraging the LASSO-COX algorithm, we developed 
a prognostic signature, subsequently determining the risk 
score for every sample. These samples were then segregated 
into two risk cohorts using the median value. Subsequently, 
we employed PCA analysis, ROC curve analysis, and KM 
curve survival analysis to assess the performance of our 
protein model. The PCA analysis suggested the protein 
model’s effectiveness in categorizing samples into the 
two risk cohorts. The ROC curve further attested to the 
model’s superior predictive ability for LUAD patient 
prognosis compared to other factors. Additionally, survival 
analysis demonstrated a more favorable prognosis in the 
low-risk cohort than in the high-risk cohort, although no 
significant variation in PFS between the two categories 
was noted. Patient PFS evaluation presents a multifaceted 
clinical challenge as it often mandates a comprehensive 
assessment by clinicians considering patient status, clinical 
examination metrics, and imaging results (26). Interestingly, 
our study revealed a direct correlation between risk scores 
and patient mortality, signifying an incremental increase in 
mortality with higher risk scores. Upon conducting clinical 
correlation analysis, we found a significant divergence 
in prognosis among the high- and low-risk cohorts across 
different clinicopathologic factor subgroups. This suggests 
the potential broad applicability of our protein model to 
LUAD patients. Further, COX regression analysis revealed 
the risk score’s potential as an independent prognostic 
indicator. We subsequently incorporated clinicopathologic 
factors to develop a nomogram, aiming to provide a practical 
tool for clinicians in predicting LUAD patient survival.

In our research, we conducted an analysis to understand 
the differential expression of model proteins across various 
subgroups. Intriguingly, CD38 outperformed as the 
“optimal protein”, thereby prompting a detailed examination 
of its expression. Notably, among the model proteins, 
CD49B, UQCRC2, SMAD1, FOXM1, and KAP1-6 
exhibited heightened expression in the high-risk cohort, 
whereas CD38 was predominantly expressed in the low-
risk cohort. The prognosis for the CD38 high-expression 
cohort outperformed that of its low-expression counterpart, 
suggesting CD38’s role as a “protective factor”. Conversely, 
the other proteins, exhibiting superior prognosis in the low-
expression group, are suggested to function as “risk factors”. 
Intriguingly, this outcome contradicts our subsequent 
validation analysis, thus highlighting a “contradiction”. 
Both the HPA database’s immunohistochemistry results 
and the immunofluorescence staining of clinical samples 
revealed elevated CD38 expression in tumors, implying 
its role as a tumor promoter. Current research consensus 
acknowledges CD38’s ability to dampen the immune 
response, with anti-CD38 therapeutics employed in multiple 
myeloma treatment. Within solid tumors, CD38 is commonly 
perceived to enable tumor cells to evade immunotherapy via 
immune response suppression (27). However, the regulatory 
function of CD38 within tumor cells remains elusive. Some 
studies have reported high CD38 expression in lung cancer, 
indicating its role as an oncogenic factor (28,29). These 
findings align with the results of immunofluorescence 
staining and semi-quantitative analysis in our study. The 
other study, however, revealed lower CD38 expression 
in lung cancer, suggesting an inhibitory role (30). These 
results resonate with the pan-cancer analysis in our study, 
demonstrating lower CD38 expression in LUAD, LIHC, 
BRCA, COAD, CHOL, KICH, LUSC, PCPG, PRAD, 
READ, and THCA. Zucali et al. showed no significant 
antitumor activity associated with CD38 inhibition (31), 
and Ng et al. indicated improved prognosis in HCC patients 
exhibiting high CD38 expression (32). Consequently, 
we propose that this “contradiction” may arise from the 
existence of protein interactions or potential regulatory 
pathways involving CD38 in lung cancer and other solid 
tumors. Further exploration is warranted to uncover the 
underlying mechanisms.

In addition, we conducted gene enrichment analysis 
among patients categorized into high- and low-risk 
cohorts. Interestingly, the genetic makeup of high-risk 
cohort patients appeared to be substantially enriched in 
pathways associated with metabolism. This observation 
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led us to postulate that tumors in the high-risk cohort 
exhibit greater proliferation, invasiveness, and migratory 
abilities, thus indicating poorer prognosis. Conversely, the 
genetic profiles of patients within the low-risk cohort were 
primarily enriched in immune-related pathways, suggesting 
a superior immune infiltration status for this cohort. 
Subsequent analysis of immune cell infiltration within the 
tumor microenvironment revealed that only plasma cells 
demonstrated significant infiltration in the low-risk cohort. 
Nevertheless, the infiltration levels of other immune cells 
did not differ significantly between the groups, preventing 
an assessment of immune infiltration abundance via the 
risk scores. With CD38 showcasing heightened expression 
in the low-risk cohort, the potential suppression of the 
immune response could explain this outcome. Analysis of 
immunotherapy sensitivity indicated a potentially greater 
therapeutic benefit for the low-risk cohort patients. Further, 
we conducted consensus clustering analysis on our samples 
to investigate the prognostic and clinical correlations across 
various subtypes.

Admittedly, this study bears certain limitations. Our 
findings, derived primarily from public databases, and 
validated with a limited number of clinical samples, 
somewhat undermine the robustness of our model. In 
future research, we aim to corroborate our model utilizing 
a larger set of clinical samples. Concurrently, we plan to 
delve into biomolecular experimentation to unravel the 
enigma surrounding the “contradiction” of CD38. Further 
exploration into potential regulatory pathways of CD38 in 
solid tumors will also be a central focus.

Conclusions 

In summary, we established an efficacious protein model 
designed for the prognosis prediction of LUAD patients. 
By integrating it with clinicopathologic data, we devised 
a nomogram, thereby introducing novel tools for clinical 
application. Our utilization of clinical samples for validation 
bolstered the practicality of this study. Ultimately, it is our 
aspiration that this research will serve as a foundation for 
future explorations into the role of proteins in lung cancer 
pathogenesis.
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